


1.Introduction

As is known, J.Lioville has already shown that the arbitrary
linear .ordinary differential equation (LODE) is not integrable in
quadrature dgenerally . However, not being reduced, the value of the
integrable cases even more increases due to: that .discovery. This
results from their fundamental rdle -in various appligations 6f
mathematlcs, mechanics, physics,etc. '

A natural exten51on of the set of integrable cases is attalned by
conélderlng LODE resolvable in special functions, thereby the idea of
integrability is generalized itselfL

The theory of differential equations and, applications dispose of
a significant number ‘of equations with known: solutions. . Their
accumulation came about irregularly) essentially at the expense of
ceparate equations discovered by one researcher or another at tinmes.
Today', an urgent need is observed for regular procedures , admitting
use of computer,to constract purposefully differential equations'which
are resolvable in the sense mentioned. )

The following way of multiplying resolvable equations seems to be
tempting : to arrive at the case concerned one should take a proper
equation and apply one transformation or another of variables. But the
basic difficulty of this approach consists just in finding successful
substitutions. Such devices are of heuristic character and therefore
- ineffective.’ ' » ‘ '

In connection with'the inverse scattering problem method and the
KdV equation theory, techniques of multipling integrable equations
using the classic first order differential transformation {1,2] and
the Infeld - Hull factorization {3] as well have gained wide use. The
e“ficiency of the Kummer - Liouville transformation has been proved in
[4,5] which in many cases allows given equations_tdybe integrated by
reducing them to equations with coﬁstant coefficients.‘ In the present
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paper .the algorithmization of an original procedure for nultiplying -

integrable equations {6) is described which is also associated with
the problem of reducibility-of the second order LODE. It is shown how

computer algebra can be applied to construct-specific sequences of LODE

solved in terms of a chosen generating equation.

2.Initial correlations )«

In the works [5-7]1 an important special case of the Kummer -
Liouville problem is considered , 'namely reduction of the second order
-LODE to equations with constant coefficients. ~Later on we shall be
based on the following principal results . ’

For the LODE:

¥+ a ()Y +a (x)y = 0, a(x) € C, (‘)=d/dx o
by means of the point local transformation of variables:
y = v(x)z , dt = u(x)dx-, v(x),u(x)e c ‘ (2)
" to be. reduced to the LODE with constant coefficients
z +bz+bz=0, b, b = const , (°)=d/dt 3)
'«it is necessary and sufficient that the transformation functions
satisfy the relations:
(1/2) ('’ /u) - (3/4) (u'/w)® = (1/4)8u° = A (x) , , (4)

v = ™ exp((-1/2)fadx + (1/2)bJ u dx) )

.o 2 I
Ab" a, - (1/2)al (1/4)al., 3 bl

- 4b .
[o]
_ From the form of equation (3) and transformation (2) it is clear
that with regard for (5) the fundamental system of solutions of LODE

(1) being reducible to the form (3) can be presented as:

y v exp(r, _ Ju dx = .
1,2 ’ p( 1,2 (6).
-172 exp((-1/2)Jfa dx * (1/2) (8) 172

= jul Ju dx) .,

where r , are the characteristic roots of equation (3). Equation (4)

is closely related to the resolvent equation for LODE (1) reducedto

s

the canonical form Y’'‘+ Ab(x) Y = 0:
R’ + 4 A (X)R + 2 A’ (X)R = O. . . - (7)

From this it follows that for the general solution of equation (4) a
nonlinear superposition principle is wvalid with respéct to the
linearly independent solutions of LODE (1): '

2

u = (Ayz + Byy, + cy?), B® - 4Ac = 5. - (8)

Correlations (4) and (5) can be reformulated excluding the.
function u(x) . Then we come to the integro-differential equation

in v(x):
v’ '+’a1 (x)v'+a_(x) v exp((-2)fa dx) [k+b f v'exp(-fa dx)dx] dx, (9)

where k=1 if b1= 0, and k=0 if bl¢ 0.
on the other hand, supposing u(x) is known, we obtain the LODE
for v(x):

v+ al(x)v’ + [ao(x) - bouz(x)] v =20. i ) (10)-
3.The Kummer-Liouville procedure

In the previous paper of the authors {4] on the basis of relation
(4) for u(x) practical aspects were considéred of reducing LODE (1) to
the preassigned form (3) - the equation with constant coefficients
whose general solution is known. Now,'applying*equation (9) to v(x) we
shall be engaged in somewhat the inverée problem : construction of a
sequence of LODE, the .general  solution for each of those is
expressed in elementary functions in terms of the fundamental system
of solutions of a beforehand chosen generafing eduation. The lattér
term is caused by the fact that the basic differential field 6f the
mentioned sequence of LODE is. generated by the Picard - Vessiat
extension of the field of the initial equation {8]. V

For more clearness and simplification of calculation (but without
loss of generality ) we shall consider LODE in the semi-canonical
form:

y'o+ a,,®y =20 : (@)
(the sense of the notation being introduced will become clear from

subsequent).
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Let the fundamental system of solutions for equation (ah)) be
known. Then it is reducible by a transformation of type (2):

y = Vi, (X) z at = u , (x) dx,' : (11)

where the function u, (x) 1s determined by (8):
= 2 4+ B +C 2 y -
(x) = (A(l)y“)z (¥ 1Yo (12 ¥cin ' (12)
o

u(l)

2 =
"B 4A(1)c(1), Sy v

and v“)(x)’satisfies a LODE of type (10):

v+ lag, (%) - by, ,u (1)(X)] v=_0. : 1(13)

Let us redenote the dependent variable in (13):

y” + 3(2,(X)Y'= o,

2
a,, (X)) = a,,(x) - Bycy) Yoy (X0 (3!
In view of (6) one can write the fundamental system of solutions for

(13) and, hence, ‘for the LODE (a(m):

y(zn,z(x) V““,Z(X) =
. 172 ,
= U, (%)l exp(x(1/2)b  jfu 0 ‘ax), b ,* 0F ‘
B ' ~1/2 (14)
'y(zil(x) =‘v(1u(x)'= (1)(x)| 4
- . o -1/72
k y(2)2(x) = V(¥ = w1 Ju o dx), b, = 0.
-Considering the problem of reduc1b111ty of the LODE.(aQ)) and the

‘accompanying equation -in Ve (x) we come to the LODE.V
»‘y,, + a (x)y= 0' § . B %

3) .
: =, ' (é(:«))

= - . - b u
?(3)(X) a(l)(x) ) bo<1 )Q(:)(X) 0(2) (2)

rand s0.,0on. . .
Having executed n-1 of these steps, we obtain a LODE of the "n—th

generation":

yt+a,, (x)y=o,

n-1 - . - . L ) .

(x) = a,,(x) - E bou)utzk)(x)‘ (a

a(n) m?

The outlined procedure which ‘is immediately related to the
problem of reduc1b111ty of LODE to form (3) by transformatlon (2) w111
be called the Rummer-Liouville (K-L) procedure; and the 1n1t1;1 LODE

of the first generation ( a generating.

)
(1)
In the infinite sequence of LODE:

)~ e VNS I €

motion not only straight but also backwards is admitted, so that the
fundamental syStem of solutions of{eath its member can be expressed in
terms of those of others and, in the-end}in terms of the éolutions of
the generating equation. In thlS connectlon, one should keep in mind
of
4-parameter” families of LODE arises as far as, we are free in ch0051ng

that according to expre551ons (12) -(14), actually, the sequenc

numeric values of b1' b0 (or 3 ) and any two constants from A B and C:

y" +:[a (%) - (1/4)(b Y

. + )
(n) 10a) 6(n))(A(n)y(n)z : ?(n)y(n)l (n)2

n#l)

2 (-2 2 ) _ '
t Cm Yy 1Y = 00 (174 (B T S ,) = By, (a
'Besides,' the coefficients of LODE from the next’ generation
contain solutions of the corresponding equation from the previous one,
the form of which "principally ' depends on combination of the signs of

the parameters b and 8 setting results of integration in (6) and (14).
In all, there are 9 possible variants: 3‘cases for b1 (b1 > 0; b1= iw,

by = - W< 0; b= 0 ) with 3 cases for & f\§>0,; 3<0 ; 3=0_) but one

of them ‘(b =0; 8=0)  does not lead to a new' egquation- since then'

(x) = a_ (%)

The relations of the corresponding functlons u(x) and fundamental

a(m»l )

systems of LODE “of neighboring generations (a (m) and (a ) are

. (n+1)
shown in the table below. For greater obviousness the subscript (n)

has been onmitted. in notation ‘of the solutions y ,(x) and

(n)1,2
parameterS'bl, 3, o, B, A, B, and C. The 1mportant special cases’ of



the variants §>0 and 3=0 are also given.

Table ¢
o _Fundameﬁtal system of solutions
: Transformation function ) Yinern,2
Uigy () b =Reb_#0| b =Imb_=iw| b = 0
N } . 1 1 i 1 1 1
. ' ; : . '1) 2y 3)
1. & = (a,B,-0,B2) >0 ' :
y : ’ . ' (1,1) (1,2) (1,3)
u(n}(x)_- (1) )
2, .8 = B*-4ac<0 .
- : (211) - (212) (213)
u(n,(x) = (2)
‘3. d =0 ‘ . )
u(n)(x) ='»(3) i (311) (312) (313)
4. 8 = &% >0 . :
S (x) = (4) (4,1) (4.2) (4,3)
(n) .
5.8 =0 .
l'lA (x) = (5) ' (5,1) (5,2) (513)
(n) . .
Notation:
E(x) = ((a,y, + B,¥,) (ay, + By '"?

P(x) = Iy, + BY,)/ (Y, + B,y)]
2 172

F(x) = (Ay. + By,y, + CY’ )
Q(x) = atan((2ay,+ By,)/((-8)'®y))
R(X) = (ay,+ By,)/y,
G(x) = (y,(ay,*+ By,))"?
© 8(x) = loglIR(x)|
1 3 = (a8, -.aZBI)Z > 0,
UG, () = (@Y, + By T @y, + By

(1)

1) b1=Reb # 0,

Y (x) = E(x)[P(x)]

{n+1)1,2

2) b1_= Im b1 = iw,

’

(.tbl/( 261,/2))
w3 : (1,1)

4 cos : : >
Yinna(¥) = E(X) i ((w/(28))1log P(x)); (1,2).
4! ) , N . - .
3) b, = o,
i L E(X) ' ’
Y (x) { }: (1,3)
(n+1)1,2 E(x)log P(x) g . .
2. 8§ = B® - 4ac < 0,
u  (x) = Ay, + By,y, + &y’ )7': _ (2)
1) bl=Rebl¢0,
" 4
cosh - 172,
T,z () = FOO S350 (b /(=8) 000 ): (2,1)
o 2).b, = Im b = iw, .
: . cos is2 5
Y2 (X) = FO0 50 (w/(=8)7%)00x) ) (2,2)
3) b =0,
F (%) o ;
Yeiyy o (X) = yioo- (2,3)
) G F(x)Q(x) _
3.8 =0,
-2
u (X)) = (xy, +BY) ; (3)
1) b1 = Re b1 0,
) cosh
Yeomr o(X) = oy, + By)) - (b /(20R(x))): (3,1)
o sinh .
2) b =Inb = iw, ‘
i . . COS : , N :
N Yoo (¥) = (@, + BY)) i ((W/ (2aR(x))}; (3,2)

-1



3) bl = 0,
8 T %y, Y T Yt
4. 8 = a® > 0,
\ = v, (ay, + By) "
u  (x) =y, (ay, Y,) s ,
. ’ P
1) b1=Reb1=e0,
‘ * b/ 2a )
Yo, 2(X) = G(X)IR(x) | o3
2) bl = Im b1 = 1w,
cos

y(n+1)1,2(x)> = G(x) sin {(W/(Zd))S(X));

3) b = o0,
L)
Yy (x) = { H
(n+1)1,2 G(X)S(X)b
5. --jiO,
. _ ol
Yy (¥) =y, 75

"1) b, =Reb =0, - )
x) =y, “® (by )/ v
(nn)l? 1 . 142 1777

sin

2) b'1 = Im b1 = iw,

- cos ) .
Y1, 2¥) =y, 7 Wy )/(2y,));
sin
3) b =, |
qnet) T Byt Yoy T Y

Thus, the K-L procedure generates 8 equatlons with dlfferent
coefflclents (or 13 ones J.ncludlng the mentloned special cases ) from -
each chosen LODE , 1 -e. the number of LODE is growing from generation.

(4)

(4,1) .

(4,2)

(4,3)

(5)

(5,1)

(5,2)

(5,3)

e .,
e T e T

to generation according to geometric progression w1th the ratlo 8
(or 13) which is illustrated by the following scheme - "tree": -

al)

e

B

an 2 o ey
. : EY o Qo . )
i : U S L_H e )

(169) (158) (157 (a3 @ (n
8y o By a3 BBz, L 2

(2197 (2186) . (2185

(@ 7 By B P3) , L : .

Here the éupersbripts are used to distinguish the’ equations within the

same generation: each coefficient has its own “"history" of obtaining ,
i.e., the path covered from the root to the given -node of: the tree
(graph) . In.this standpomt the.tree looks as. follows (the flrst d1g1t
in the parentheses indicates a row number, and the second one a column
number in the table; the the cases, (3,3) and (5,3) are _omltted ).

LI . . o :
- l ST s o %
S s : v ~1(1,21 S lu,n. HETRT
!is,'z)‘ I(1,2) In,n I(s,z) |u,2) Iu,n,
|(5,2) (1,2) Iu,n

Of some interest is also ‘the direct connection between group

properties of equaxtions of the sequence (a). So, cons_idering the.
problem of reducibility of - the LODE (a_ ) and (ah'“”)‘ and
corresponding relat‘ions “(4) --and - (5) -one can .show that the LODE



. equation

' i y = lu

(a- ) is reducible to the form ) (i.e.,. to -the

(n+1) 1({n)

((-1/4)0°

with constant coefficients z - h/d)bI(n) z = 0) by the

transformation :

~1/2 _
(nﬂ z, dt = u““(x) dx.

In conclusion note that along with sequences of integrable LODE ,
the K-L . procedure permits constructing analogous sequences of
integrable associated equations: third order linear (resclvent) (7) ,
nonlinear (4) and integro-differential 9).

‘4.The basic sequence

_.As an e#ample of application of the K-L procedure we consider the
sequence (we call it basic) being generated by the equation y’‘=0
whose: fundamental role is known [9]. The second . generation of this
séquence‘are represented by LODE of the form:

v+ ( k/(AX + Bx +C) )y = 0 , k=const,

studled in’ detail in [6] where the. ccﬁplete collection of their

o €1)7 7101 1 (2) 102) (2)
(0) > ( )

“‘golutions is offered.

Below "two instances are given of LODE treated by another

~techn1que in [10] in -connection with the Schradlnger radial equation

for a particle in a central field . The LODE are found to be of the

' third generation of the basic sequence. o

Example 1. y'‘+ [1/(4x2)~+ 1/(x2(a log x + B)4)]y = 0, «a,B=const.

The eqdation is obtained by means of the K-L procedure along the path
on the tree (D) with the parameters (the digits under the arrows

_.indicate , as before , the corresponding numbers of rows and. columns

LR

‘of the above table ):

3 >0;b =0 - 8, _=0;b =iw

1 -1 )
. (4,3) " ax° (3,2) 4 . P (x log x+@* -
and has the fundamental system of solutions

cos

Z(a-log x + B) SS5 (1/(a(a log x + 8)))-

Y(3)1.2 =

10 Qag)

(for m=-1/2 see example 1 ).

Example 2. y’’ = [m(m+1)/kx2f¢+ R (x)1y =

(m+1)

’

R(X) = o % (8/(2m+1))x™ , m :1)2 .

Eor'this,equation there are a correépcnding'path&
E) >0b >0 8 _ =0:b >0 -
(1 ¢ +
(0) 1 1{ > (- m(m 1) ) (2) 1(2) > (_um(m:1)
(4,1) : (x%) , C(3,1) (X))
and a fundamental system of solutions RO '

)

me

Yoo = RO 2T, | |

If the term with R (x) in the equation is opposlte in sign then the
hyperbolic - functions should be replaced with the correspondlng
trigonometric ones, which' conforms to the variant 3.,
( i.e., (3,2)) on the second step of the K-L procedure.

Example 3.' The equatlons with constant coefficient:

0, buz) P

yota'y =

belong to the second generation of the basic sequence and are obtained

‘along the paths

6“) = 0, b = 2A1 and 6- = 0, b1 = 2A
")

_(i e., (5,2) and (5 1) respectlvely) Among -LODE generated 1n turn by

these equations, the follow1ng ones are.of interest for example.
" The equation-:

vy’ + [A%-Db

0(,‘_»,’(p sinz(hx)+d sin(hx)cos(hx)+r cosz(hx))'z]y = 0,

p,q,r = ccnst, Az(q2 - pr) = 6(2)< o,

has the fundamental system of solutions:

= ‘172 cosh b, 2y »
Y = €050 (260 S3o (—2E 500, }
. (- @’ : . f
Q(x) = p tan’(ax) + g tan(hx) +r, L .
s(x) = atan(——2—— ) (2p-tan(ax) + @),
) (-3 )

(2)
if the nunmeric- coeff1c1ents are such that'

11 -



by = 5 2) 4b,,, > O-

For b = 0 we have:

1(2)

Yz (%)

172

= cos(AX) (Q(X))  , ¥ 5,(X) = R(X) ¥ (X).

Analogous formulae are valid for the LODE: e

2
s
Y H[ATHD,

(p sinhz(hx)+q_ sinh(Ax)cosh(ax)+r coshz(hx))'z]y=0,
‘as well, but with replacing the tfigonohetric functions by the
corresponding hyperbolic ones in the expressions for -Q(x) and
S(x).

. ‘ . n ko
Example 4 (see [111). y™"+ (1/(4x) T [ ](log}*¥)y = 0.
N : k=0 s=0 s

where'logox =1, logx = log log ....log x.

- s times —
The ~equation belongs to the (n+2)-th qeneration of  the basic

>0 6 b =0, k=2,...,(n+tl), i.e.,

sequence and is obtained .for s, L)

iy
>(4,3) corresponds to<it.
, . B :

The' LODE is reduced to z = 0 by the transformation:

= (p(x))

the path (4,3) >(4,3)

1/2

z, dt = (1/p(x)) dx, p(x) = x [ (log x)

=0
and has the fundamental system of solutions:

172 n+1

s () T (BOO) 4 ¥ (0 = Y, (0T (log, ).

Y (n+2)2
5.Algorithm description

The application of the recursion formulas relating (by means of
elementary functions ) the
neighboring generations (see the table)

calculation process fully controlled and selective . .On the basis of

eoeffiqients and ‘solutionsl of the

allows one to make the
the 'K-L - procedure the authors have developed an algorithm for
generating the sequence (a) with an arbitrary given 'number -of
generations starting from the- given. coefficient ai(x) and linearly
independent solutions Y, (x) 4 y,(%) of the generating equation.

Using another algorithm one can obtain a LODE with an integrable
-

12

potential (a coefficient a )(x) ) of .any structure .(from those
possible within the procedure) hav1ng chosen a certain path from ' the
root to the desirable node of . the tree (D) . To this, a needed
sequence of number pairs is set ‘where each’ one- corresponds - to the
chosen variant of transferring to the next generation according to the
row and column numbers in the table respectively .The 'deseription of
the algorithm is outlined:below. E

Algorlthm for generating a sequence of 2-nd order 1ntegrab1e
: LODEs of the prea551gned structures

Given a 2-nd order LODE y’' + a(x)y =0 with known fuhdamental
system of solutlons Y, (x) , y (x) and two arrays (r ) (c ) i) = 1+ n,
where n is the number of the de51rab1e generatlon (not countlng the
initial one ) The sequence of the palrs (r c, ). 1-—1+n, determlnes
the path along the tree (D) leading to the needed LODE (a( n s

Yy +a(n,(X)Y—0- ‘ ,

Gl. a,,i=a(x)i- y(m = (x), Ynz =¥, (x)i.
is=1; a

G2. Determine (x) according to the* expre551on in the’ rl-th
row of the table with y(m(x) and y(l)z(x).-

s :

G3. a,,,, = LTI (1/4)( bm) 5(1)) Y-

G4. Determine y(m“(x) and y““)z(x) by the formulas at the
intersection of the r, 2th row and c, -th column of the table
with y““(x) and y“)z(x) .

G5. i:=i+1;

f i = n then go to G2

(x).

else return a (%),

(n+1)

(x) and ¥, ),

y(n&l )1

The .algorithm mentioned has been implemented in the REDUCE
computer algebra system on IBM PC compatible computers.
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