


§1 Introduction

Many applled problems lead to systems of nonlinear algebraic
equations for some (generally non- commutative) set of - variables. . In
Vlthe commutative case tbe most developed way of analyzing and solving.

algebraic systems is ‘based on the Groebner basis construction for
polynomial ideal generated by a set of polynomials of a given system
[1}. In the framework of this approach the universal effective
algorithms have been  developed and implemented in modern computer
algebra systems [2}. In the general (non-commutative) case finite
‘Groebner basis for a given finite set of polynomials could not exist.
This fact essentially restricts an applicability of the basis Groebner
technique in non-commutative case [31. '

In the present paper we propose another approach to the problem
of solvab111ty of a given system of nonllnear algebra1c equations 1n
the class of Lie algebras over the field C of complex numbers. We use
a concept of Hall basis for a free Lie algebra’ [4,5]. It should be
noted that in the finite-dimensional case the effective~a1gorithms’are
developed for the problem of construction of matrix representations’
for an algebra generated by a finitevset of polynomials (6. ‘

The method described below for restoring Lie: algebras can be
applied also to the infinite- d1men51onal case and has an a1gor1thm1c
‘form as well. It is reallzed in’ the computer algebra system REDUCE
[71- ) - i

The 1nd1cated problem is very actual’ in part1cu1ar, “for
‘Walhqu1st Estabrook (W.-E.) method in the theory of ‘nonlinear partlal
differential equatlons [8-10]. In fact, numerous successful attempts,

'1nclud1ng computer-aided [11], to realize W.-E. scheme in Lie algebras
are based on a priori additional assumptions on a ‘class of Lie algebra
for the - solution. It could lead to complete . or- part1al loss of
solutions unlike our approach which is directed to obtaining all the
solutions of an initial algebraic system.

In ref. [12] by verification of Jacobi identities for basis
elements taking into account initial (determining) algebraic relations
one of particular problems of such a'type has been solved. However,
more general cases, cause very tedious algebraic manipulations and
therefore necessity of using a computer. '
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In the present paper we propose the algorithm for .the whole
computational process and describe its realization in REDUCE. ’

$2 Main notations and definitions.

Let L be Lie algebra over field €. Then Lie product [.,.]
" satisfies to the following axioms for any u,v,w € L :
: » _
1) [u,[v,w]] + [v,[w,u]] + [wv,[u,v]] =
2) [u,u] = , OTclna cienyet [u,v] = ~ [v,u]
a) [(clq'+ czv),v] = cl[u,v] + cz[vrv], when €1/C5 € c.
Generators X(
Llevalgebra elements from ‘which any other element is c¢onstructed by

Lie. product, addition and multiplication by complex numbers from C.

-~ The basis R(X) of Lie algebra is a minimal set of elements such.

ithat any other element 'is  their linear combination with the

‘coefficients from cC.

Lie monomial ("word")- m(X) is any element from L constructed of

‘the generators X; by Lie products.

Lie polynom1a1 P(X,C) is a -sum of Lie monomials with a set of

coefficients C(cl,...ck) € C.

Determining relations ("phrases") are a set of Lie polynomial
equalities of the form Pi(x,c)=ol. :
determining relations leads to.  a system of algebraic equations in
..unknowns c; € c,.

x, € L. wnen\the values of c; are strictly defined

one can say about the construction of the guotient Lie algebra for a

.free Lie algebra over an ideal . given by a set of éenerators ‘andn

_determlnlng relations. !

The algorithm proposed below for solv1ng this problem is based on
the concept of "Hall structure". (4] of a Lie monomial. By base Hall
family of a free Lie algebra with alphabet X we shall mean any set R
of Lie monomials with linear ordering < which'satisfies‘the following
conditions:

In discrete group theory the term “genetic code“ is used [13]-for
the aggregate of generators and algebraically independent relations.

Hyrenes k) (“alphabetlcal letters") are a set of

In the general case a set of
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2. An element m of the form [ml,m ] e R iff
(a) ml,m2 e R,

(b) m, < m2 R

(c) if m, = [m3,m4] then my, > mg.
3.[m1,m2] > m,.
For basis elements as Lie monomials of the above structure a computer
can be effectlvely used to 51mpllfy algebralc express1ons and to
verify Jacobi identities.

Under quotation of free Lie algebra some of Lie monomials from R
may remain free, i.e. they will play a role ef basis for a quetient
Lie algebra. In addition to it every such a monomial according to the
above definition either is Lie product of a pair of other basis
elements or a separate generator which can be treated as a pair as
well. Therefore we shall call basis monomials free pairs.‘Rf wlll

will denote a set of
f

denote a set of such pairs. Correspondingly Rb
pairs [ml,mz], such that m;,m, € Rf m, <m, and [m m2] ¢ R These»
will be called bound ones. In the process of computation the bound
pairs are expressed in terms of linear combinations of basis elements
with coefficients from C. Expressions of such a kind will be denoted
Thus, Rf U Rb

together with generators.

phrases. is commutant of the-desired - Lie algebra
For subsequent description it is useful. a concept of weight’V(xi)_

It means that the certain natural number is

for a’ generator.
assigned to each generator. The weight of Lie monomial is defined as
sum of weights of its constituents (letters), for example:

if V(xl) =1, V(xy) =

then V([rl,[xl,[[xl,xgngJJJ) = 3V(x;) + 2V(x3) =3+ 4 =7

§3 Statement of problem. Example

be subset rRf U Rb if u, v e Rf and

Let Rk such that [u,v] ¢ Rk’
V(u) + V(v) = k where k is a natural number. Then R U R ; Rb = U
. K
Rb; Rf U Rb = U R, . Let us call R, k-row. The question now arises how
K b Pk "k ==

row by the given n rows, i.e. U.R, .

to construct Rn
k=1
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To make this question clear‘and for a better ihsight into the
algorithm of §4 let us analyze one of the problems [12}

* detail.
The determining relations for that problem have the following form

in more

[xl,[xz,xll] - ¢y [x5x,] + cx, =0 e (1)
(x5, [X5,%]] - [x5,%3] - ¢ x, =0 (2)
[xz,x3].— cz[xz,xl] - CgX, = 9- J' . (3)

Here Xy,X5,X5 are generatdrs, €; € c,

1772
elements of

[.1 - Lle product. There
XgoXgrXgo (x5, %]
It means that one of the last two Lie monomials can be

" are five basis
(x5, [x5,x,]].

chosen as an element of basis and another is expressed according to

‘and [xl,x ] or

(2). Let [xz,[xz,xl]] be an element of our basis.
ordering . . .

‘Then introduce the

*2 <x; < [xz,xl] < xg

< [xz,[xz,xll] < ...
with weights:iv(x ) = V(x

Vllxy. [x5,x,1]1) = 3 :
Now we can present the problem in the table form:

=1,

2) V(x3) = gf‘Then V([x,,x,]) = 2,

b.¢
Cf 2
Ryl Ry
le. N
£ [x5.%5]
Ryl Ry
X3
Rf [x 4[x
3 2 [X5. %411
'R = ‘ - ’
Ry [x5,[%5,%,]] Cylx,y,x,] = ca%g (1)
: b , v -
Ry [x3:%3] = cylx,.x1] + cpx, (2)
[x,x5] = [x5.[%,5,%,]] - C4%q (3)°
A
4

L

o

[xg,[XQ.Xi]]’=

In the given specific case arbitrariness in a choice of the
ordering for initial elements of Hall basis (42) is relatively small.
Therefore the problem (1)-(3) is easily reduced to the form (1)"-(3)’
to which our algorithm ($4) can be effectively apﬁlied In the general
case the optlmal choice of ordering as well as in Groebner basis
construction [2] is a dlfflcu;t _problem that calls for further
investigation. . '

In our example we shall verifying a certain sequence of Jacobi

identities for the basis element already available..

Calculation of R4:

Jacobi identity for xz;xl,[xz,xl] is:

[xz,[xl,[xz,#l]]] * %5, %0, [X5,x00] + [[[x5,%x7],%,],%,] =0
Using skew-symmetry and bilinearity of Lie brackets we obtain
from (1) '

Cylxy, [xy,x ]] + [[Ix,,x,1,%x,].x,] = 0 e ()
° : :

‘Transform the last monomial in eq. (4) to the Hall structure

according to the chosen ordering and rewrite (4) to the form
[xl,[xz,[xz,xl]{] =- cl[kz,[xz,xl]]' S R €

Thus, we receive the expression for the commutator -of the basis

elements X, and [xz,[xz,xi]] in basis: element
(x5, [x5,%x,1] «

Computation of the commutator of the elements x

terms of  the

3 and [xz,xl] by
Xg glves o :

verification of Jacobi identity ‘for xl, 2

= [Xp (x5 Do xy 111 + (0105 = cg)lxg,xy] = Spegxy

‘We have looked over all possible Jacobi identities for basis elenents

of weight 4 and”the result is as follows



by

;[x24[xa'[xz'x1]f]

Ry| | [xgo[%p0[x5x,111 = = cylx5 [x5%,1]
2 | | -

X5 (X5, X 115 [X 5 [X 5, [X 5, X, ] ]]#(CCmC o) [ X5, X ]-CpC X,

-~

Computation R_ with verification of Jacobi identities for the

6
‘beéSi$,9}3?$9FS xl,[xz,xl] and [xz,[xz,xl]] relations gives: :

c3[x2.[x2.[fé.x1]]] = ¢ C x5 x5 x,1] /2 - ’ S (8)

We call the relation of type (5) "key phrase" as far as at this

moment our computational process gets a branch. Indeed, now we have .

three possibilities:
1) cy * o.
Ci»In this .case the monomial [xz,[xz,[xz,x ]1]] belonging earlier to

YHRZ now should be considered as element of Rb and hence computation has

4
to start at R, in view of eq. (5). .
2):c3 =c, s o .
-3) €y =c¢y =.0 .

njln‘ these. cases one has to repeat all computation from the Very

\beginning with the assigned values for =F

In. the general case similar calculations can lead to three

different situations:

~1.Finite-dimensional Lie algebra is obtained.

2.After calculating a suff1c1ent1y large volume, it -is possible
to deduce the structure of further rows R, by induction and to write

. k
- an 1nf1n1te-d1men51onal Lie algebra .in the recurrent form.

: “VﬁifThe number of basis elements is growing too fast that makes
further,andlysis by induction very difficult. In this case one can
introduce ‘new determining relations, i.e. express sepafate basis
-elements in terms of linear combinations of low weight elements with
arbitrary coefficients from €. In our example we receive four
‘}distinguished solutions: i

First solution.
All c; are arbitrary constants.

Lie algebra basis: xl,xz,xj,[xz,xl]. Let [xz,x1]=x4.
Four-dimensional Lie algebra:
.
[x,,%x,] = x,,

[xz,xj] =Cc_ X, + C_X

2%4 5% 2
[x5,%x,] =0,

[xg:X3] = = cg%p
Axy. x4l = —c3%5,

[x5,x,] = (cy6,-C5)x, — €CyC3X,.

Second solution.

€y = O ( the other c; are arbitrary ).

Lie algebra basis: xl,xz,x3,[xz,xl],[xz,[xz.xl]],

Let x4;[x2,x1], x5;[x2,[x2,xl]]

Five~dimensional Lie algebra: "
[x5,%,] = x4,
[xlrxj] =X

[x5,%x,] = Xg,

[X,,X3] = C %, + CpXy,
[x9.%4] = 1%, = C3%,,
[x;.%X5] = ¢1Xg5,

[x,,x5] = 0O,

[x3,x,] = ( cy¢; ~C5lx,; = CyE5X,,
[x3,x5] = ( €4€,5 - ?c )x5,
[xz,x5] = 0.

)x

Third solution.

c3 = ¢4 = 0 ( the other c; are arbitrary ).

: P . K © = K
Lie algebra basis: X5, X3, ad xz(xl), {k}o. Let Yy = ad xz(xl).

- Infinitely-dimensional Lie algebra:
[xz,xj] = C,Y, * CgX,,
[%2: Y] = Yiepq-



g

[Yo Yl = €Y, -
[Yg:X3] = Y5 .

[Ypr¥3] = Ypep * (€5 = €165 MYy

[Yp ¥l = 0

{n};, {p}3.

Forth solution.

€, = €3 =Cg = 0 ( the other c; are arbitrary ).

. s k © : _ kK
Lie algebra basis: X5, X ad xz(xl), {k}o. Let Yy = ad xz(xl)
Infinitely-dimensional Lie algebra:

AX5 ¥, ] = Yyuq- ,
[yy X3] = Y3 : . .
[y;. Y5l = 0,
[x5,%3] = cy¥,)
[yo,x3] =Y, t X,
[YpoX3] = Ypiaf (p - 2)c,c,7, 4
. 1
[¥p Yol = 5 (P |- 2)cyy
[yp vl = g, »
[yy,75] = 5 c4ﬂp,

«© «©
{p}'2 AN}k, .
§4 Algorithﬁ description
The algorlthmlfor solving the problem formulated earlier (§2) is
based on the advent of the ordering by numeration of each word of Lie

algebra L. Searchlng for a given word in whole list of words is perfor-

med by its number.io abbreviate we shall denote a word m by a number in

parenthesis (i), i‘ € N, omitting the symbol m. Then any element
[mi’mj] € R will have a form' of the pair of number (i, j). Call this
‘pair free, so as in set R it can be found by its number. A bounded

pair from L has' not

fulfilled for any triple numbers.

its own number. ‘Jacobi identities in L are

To realize the ordering corresponding to the Hall ordering it is
necessary to know alsc the contents of subwords of a number pair. Let

M e
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"

us describe the procedure of constructlon of the -row with welght n+1

by given rows with weight 1, 2,...,n. "
Step 1. Generate a word with weight n+1 from free words.” It can
be done, for example, by adding a word with weight k+1 to a word with

weight n-k. Since the number of the. first word <4s less than the number
of the second one the rule (a) in definition of the Hall basis‘family
(§3) is satisfied. ) :

Step 2.

accordance to general numbering of the basis elements.

Assign to pairs, obtained at the previous step numbers in
A number is
assigned to a word if the two other rules (b) and (c) in the' Hall
basis definition are satisfied. If these rules are not satisfied one
has to make substitutions of the subwords which follow from Jacobi

identities ( Lie differentiation )

[a,[b,c]]

The appearing pairs [a,b] and [a,c] are replaced by the word having a

= [[a,b],c] - [[a,c],b] , a,b,c €N .

number. ;
Step 3. Construct a word with. welght n+1 from free pairs with
weight k+1 and bound pairs with welght n-k. Add from the left words

with a number from the initial data in such a: way that the resulting
Differentiate ‘the word with weight n+1
Oon the other hand the

i.e a word with a

weight is still equal to n+1.

in the same way as it has been done at step 2.
same word can be.produced‘by adding a free pair,
number, to the right side of a bound‘pair. Everywhere substitute words
with numbers for number pairs. The equation obtained is solved with
respect to the word with a leading. number.
Here the

solutions may take place.

This equation is called
"key phrase". branching of the problem  with. different
If the leading word has a number less than
) must be

n+1 the process is interrupted. It means that the problem

solved. under considering the new phrase that has been obtained. .In
other words it is necessary to start with new initial data. Other
solutions. leading essentially to new tasks will appear'from analysis
of the letter coefficients of a key phrase.

Step 4. The row with weight n+1 has been already constructed. All
There are no Kkey

possible. free  pairs R have been obtained.

+1 .
phrases. Inltlal data are supplementing by the row w1th weight n+1 and

then the next rows with weights n+2,n+3,... are computed. The process

of computation is finished when, beginning:with some row, there:are no



free words or when we obtain data enough'for-restoring Lie algebra by

1nduct10n.

Comment :

v

Now we can present our algorithm in REDUCE-like form:

Input of initial data,

lengths 1 = IR | 1 =0,1,...,n .
Ihput_,: R ; i=0,1,...,n; li =
Output : R1+1 s i1 = IRzl
for kK := 1 : n do %
for j1 := 1 : lk+1 do %
for j2 := 1 : ln—k do
if j1 < j2 then %
Cifx jle R k+1and
Xip € R;_; then
if le >y, and Yy = %
‘then %
. i
X., ,X. = 1 + £
. [ j1 j2! s£1 s
%
" else

end;

‘Comment :

contents of first i rows Ri

IR,

start of steps 1 and 2
generation of words, weight= n+1 -

verification of Hall conditions

Y, /= car XJZ
Yy, i= cadr sz

assignment of ordinal numbers to
pars '

[xj15[y1,y271 SNSRI AR

with weight n+1

for k :=1 :

end; -

n do
for j1 :=1: lk+1 do
for j2 := 1 : ln—k do
if j1 < j2 then
. f
if le € R* and
le < gl and
sze R
then

As a result of steps K and -

o

o

o0

%

%
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and their

~e

~

~

we obtain all possible pairs

’

generation of words of Qeight= n+1;

selection of pairs, satisfying
condition:
element, second subword does not
satisfy the Hall conditions

Y, i=car x,,

{ Q =[x 11’x12] [XJ1'[Y1‘Y2]]}

first subword is basis.

Iy

‘algebra system.

Comment : Att;tep 3 we obtainAequatione in 'coefficientsrci and basis
elements of L. Their analysis and solving are' carried out in the block

{...} .

the leading word is“selected and then it is expressed in terms of the

It is realized in the following way: the basic element with

remaining element of the phrase. It .could not be done if all monomials

/

in the. equation contain‘coefficients c; or they do/ not beleng to the

row with weight n+1.; -

Outputl: R .

'n+1 IR

n+1| % contents of row with welght n+1 ;

1n+1‘= )
0 and its length ’ . H
Output2: "key phrase"

Comment: Further analysis of a key phrase and rows are done "by hand";

end of algorithm.

We have implemented the above algorithm in the REDUCE computer
The interactive regime is assumed. In the process: of
collection of the row éontegts and key phrases analysis a user applies
‘ to make it for

that. information to restore algebra L. For example,

solution- 3. (§3), the knowledge of twelve rows is necessafy. The
following table gives compqting time on-an IBM PC.AT (12 Mhz):
row number time in secs conment
4 10 before the-key phrase
5 17 o is produced
6 25
4 10 : after substltutlng the;
5 13 ' conditions
"6 18 :
Y 5 2250 c,i=C,= 0
" 8 32 3 4. .
-9 o 40 o ~from solution -3:
10 S .51 in initial data
11 o 62
12 ) 77
Our program includes two main proEedures timkkl and timkk2, which
form the ways of by- pa551ng throughout the list  of data. along the

rows and inside them.

L3
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. . The procedure timkkl produces also adding an ordinal number and
trahsposition of subwords, differentiating subwords by means of the
procedure dim2. ’

The., procedure timkk2 calls for the procedure lied of subword
transposition at the second by-passing throughout the list of data as
weli4as the procedure liep for differentiating of the right-hand side
of number pairs. The procedure dfsu serves to extract the equations
and analyze the solutions to expose‘g'key phrase. _

‘To -.use. the  procedures dfsu2, liep, lied it 1s necessary to
transform number pairs to some canonical form. That transformation is
produced by the procedure nsm. '

The program starts with loading of 1n1t1a1 data and 1nd1cat1ng of
gowvwelght to be obtained. For instance, after calling the procedure
tstart(nl, jobname) the rows with weight less than nl will be loaded
correspondingly to the problem with jobname. The present version’ of
the program is oriented to the class of Lie algebras. In particular,
it allows verification of Jacobi’ identities for a concrete Lie
algebra- and also construction of the Hall basis for any finite nunmber

of generators.
§5. Conclusion

The above algorithm does not pretend to be complete and effective
for any problem of Lie algebra restoring by - a given subset of
generators and determining relations. The reasons for such a
conclusion are following: )

’ 1) "The key phrases obtained in the computation process in
contrast to eq. (5) considered in §3 may . lead to complicated systems
of nonlinear algebraic equations in big number of scalar variables. To
sblye.them the Groebner basis technique [1,2] has to be uEed. It is
remarkable that one can apply to these problems the same computer

algebra methods as to. investigation of integrability of polynomial-

nonlinear cvolution equations with arbitrary scalar coefficients [14].

2) oOur algorithm (§4) possesses only a few facilities given by
the Hall basis definition (§2) . The third point of that definition has
been enhanced by the condition [m n1] > m, for Vﬁm)+V(m2) > V(m).
That = concrete ch01ce may restrict possibility of optimizing

computational process. ‘ e

.3)‘Possib1e fast growing of the basis elements number mentioned
above (§3) makes serious difficultie;Ain(aaalysis of the results of
computation by induction. : ) ‘ . - 4

In. future we suppose to weaken the restrictions 1)?3) bY'means of
extension ‘of the algorithm with a special fool for , analyzing and
solving algebraic equations similar to those presented in {12]..‘ ’
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