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1. Introduction and stating of the problem 
The method of separation of variables in solving linear 

partial differential equations has been already known in XIX th 
Century. From that time on different aspects of this problem arise 
many times in different contexts. One of the most widely explored 
one is connected with the solutions space symmetries that occur 
when solving LPDE (See e.g.'1"4' and papers quoted therein.) 
Unfortunately the general setting of the problem is missing 
hitherto. Even in the low-dimensional cases (two variables) there 
are no general theorems but rather a collection of computable 
examples (see e.g.'*1). In this paper we are formulating and prov
ing, as far as we know for the first time, general assertions 
concerning the interrelations between the symmetry of the equati
ons and the separation of variables. Partly these results have 
been manifested in numerous examples treated independently up to 
now. 

Let us introduce some notions and necessary notations. The 
homogeneous partial differential equation: 

Q (x , ...x )* = 0, x.e R, Vi (1) 
• I n 1 

will be the main object of our considerations, where the operator 
Q in some given coordinate system У has the general form 
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л • n 
QAx.,x,, • ••*)=У Т f. . . ( х , , . . . . х ) Э (2) 

" * г n k&o i^=i 1 1 1 г " 1 к 1 n x i •'• xi • 
к I k 

Definition 1 A linear operator S : ""^u") —. W'JR") is called 
symmetry for the set of solutions of equation (1) if [S,Q]= PQ, P 
being some op'erator with im(P)t Jcer(Q). In what follows we shall 
consider differential symmetry operators only. All assertions 
should be only of local validity excluding some zero-measure sets 
from definition domain of the coefficients. 

It is noteworthy that in physical literature the 
operators S are known as dynamical symmetry (See e.g ) , since S 
and Q commute on the solution of Eq.(1). However in the greatest 
part of examples this notion tacitly presumes that all symmetries 
lie into the enveloping algebra of some Lie algebra. But sometimes 
it may happen (see Sec. 4 and the example therein) that the 
symmetry operators S doesn't belong to the enveloping of the first 
order (Lie) vector fields algebra , so an operator of this type 
should provide a nontrivial generalization of the standard symmet-
ry. Moreover, these S's, when apply for the Schroedinger operator 
Q= ia/at-H, would lead to dynamical invariant which might have 
no obvious group- theoretical meaning. In order to argue this an 
important factorization of the enveloping algebra is needed. From 
this end assume that the class of functions to which belong the 
solutions of Eq. (1) is some Lp(Rn,<r) the measure <r being unfixed. 
The enveloping vector field algebra {V)ff symmetric with respect to 
the measure <r should differ from the enveloping algebra {V}*1 (ц*<т) 
by terms induced (in local coordinates I) by the replacement a —• 
3+ aiog(oyu). Henceforth all higher-order formal symmetries have 
to be necessarily tested for with respect to this equivalence.(See 
e.g.'6 where this factorization might change substantially some 
of the announced results.) 

For sake of brevity let us denote by x,y,z the first three 
variables x , x , x respectively. Consider the elements of the 
equivalence class Q= {Q,Q'IQ=e"RQ'eR), R being a real function. 
This factorization corresponds to trivial R gauge invariance of 
Eq.(l). 

Definition 2,. One says that the variable x is linearly 
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splitted from the rest of variables in the coordinate system У if 
there exists function R and representative Q e Q such that 

Q» =Ф(-)(6"(х)+6"(у,г,..) J, ̂  „, ,s .; max-(k,i)=. (3) 
and 

*(-)=*1(x)*2(y,z,...). 
Here *(•) is an arbitrary function depending on all 

variables. It is an elementary exercise to check that Q is a 
symmetry in the sense of Definition 1. 

Problem 1. Let for Eq. (1) be known the dif feomorphism <p: 
(x ,x ,...,¥) > (u,v, . .eR<u'v,">*(u,v/. . .) ) such that a complete 
separation of variables is valid in the new coordinates. What are 
the symmetries for this case and is it possible to find the 
solution of Eq.(1) making use of them? 

Problem 2. Whether the splitting of variables may have 
place all symmetries {S} being known ? 

Problem 3. Let the set of symmetries {S} of Eq (1) be 
known and suppose that the linear splitting of variables is hold
ing in some coordinates.Is it possible to find these coordinates 
(i.e. the dif feomorphism <p) ? 

The structure of the rest of the paper is the following. 
In Sec.2 we state and prove some general lemmas for n-dimensional 
m order LPDE admitting a separation of variables. Sec.3 contains 
a constructive way of checking the stipulations which the coeff
icients of the LPDE (for m=2,n=2) and the symmetry operator must 
to comply with. Moreover,an algorithm for finding the diffeomor
phism <p is proposed too. In Sec.4 we deal with two examples: the 
two- dimensional Schroedinger's equation with barrier potential 
provides an illustration for general method and notions introduc
ed, while in the second example we demonstrate the symmetry 
operator S not belonging to the linear enveloping of the first 
order symmetries. 

2. General theorems 
First of all let us consider the complete splitting of 

three variables in order to get some hint for the general case. 
According to the formula (3) each element Q R can recast into the 
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form1 

QR(x,y,z) = »(x,y,z){Qm (x) + a (y.z)^ (Y)+% (z))}. (4) 
1 2 3 

When seeking for a complete splitting of variables one sees by 
direct check that the operators S =0 and S =Q (y)+f(y)Q (x) are 

1 l "г "i 
symmetries together with the representation a (y,z)=[f (y)+<p(z) ]") 
f and <p being arbitrary functions. 

Note that the operator S= Q (z)+y>(z)Q (x), although being 
a symmetry, in fact coincides with S , since the operator algebra 
(according to the Definition 1) is defined mod(0 ) , i.e. on the 
solutions of (1). Note also that restrictions on the function a 
results due to nonzero integration constant coming still at the 
first step of x-splitting. 

Now it is not difficult to anticipate the general formula 
for n-variables complete splitting. The following algebraic lemma 
holds: 

A 
Lemma 1 The general n-variables additively splitted operator Q can 
be represented in the form 

Q=*C)( 6 m (x i > + a2(X2,..Xn)(Qln (х2)+о<3(хз X n)(Q m + ... 
1 * A 2 3 

+ c ( „ . < * „ i ' x J < Q m < x „ , > + Q™ < x „> > > • • > ' < 5 ) 

n-i n-i n in n -1 m n n - 1 n 
where the coefficients a depend on n-k+1 arbitrary functions 
(P!(X )) and recurrently on the next {a } m>k by the following way 
1/a = p"(x)+a (pk (x )+a lp" (x ) + ... 

к r k ' It' b l r k t l k*l kt2 l^k*2 % к»2' 
a „ , < ? ! ! , < x „ . ) + P ! ! ( X ) > . . } . ( 6 ) 
n-l n-1 n - I n n 

The proof is inductive and by direct inspection after 
solving some elementary functional equations. Everywhere the union of the subsets К =(x|a =0} where the division by a's fails 'are m ' m 
to be excluded from the domain of definition. 

Now all symmetry operators for the equation (1) admitting 
full separation of variables are constructed by the following 

Whenever possible ve shall omit superscript я or replace it by 
tilde. 
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Lemma 2. . The Eq. (1) admitting a complete separation of variables, 
in the sense of Definition 2, is weakly invariant in the sense of 
Definition 1 and possesses only n-1 commuting symmetries {S.)V 
given by the following simple recurrence : 

к 
S = Q + У p 1 + 1(x )S ;k=0,..,n-2. (5') k»l ktl L ^ k * l 4 k+l' I ' ' v ' 1 
The proof of this formula is a little bit tedious but 

straightforward one. The completeness of the set {S } of commuting 
differential symmetries defined on the functions WTOC.3 ttSSjJU —> 
К results from the local integrability of (1) < 6 

These two lemmas give one constructive answer to the first 
part of Problem 1, excluding perhaps the cases when the complete
ness of commutative symmetries breaks down. Moreover the solutions 
of Eq (1) appear as eigenfunctions of the symmetry algebra. In 
the next section we shall demonstrate that the presence of 
symmetry is only a necessary condition for the variable splitting, 
whilst the existence of a restricted class of symmetries gives the 
sufficient condition too. 
3. Construction theorem for two dimensions 

The common features and technical difficulties arising in 
the general situation emerge still in the simplest case m=2,n=2 we 
shall discuss in some details here. 

л 
Let Q(x,y)*=0 be a homogeneous second-order real PDE that 

admits splitting of variables in some coordinates system У with 
2 

coordinate functions у .у and fixed R,transformation (i.e. when 
the so called R-separation holds 4 ). In order to cover the gener-

A 

ic case we shall always assume that the operator Q is not factori-
sable, which by definition means that any decompositions in the 

A A A 

form Q= Q -Q should have a zero-order multiplier . 
According to the Lemma 1 the general form of the equation 

(1) doesn't contain unknown structure function a, namely 
Note that up to nov R remains an arbitrary (real) function. But 

in fact it will be fixed by taking the operators Q in Eq. (5) in 
i 

standard form. 
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«(yi,y2)>(Qm(Y1)+Qm(Y2>)* = 0, max(mi,m2)=m, (7) 
where the last condition on m's implies that one of the operators 
A 

Q's in (7) must to be a second order symmetry operator . 
Here some comments are in order. For parabolic type LPDE 

(namely when one of the m's equals unity) every separation of 
variables generates some first order symmetry operator that can be 
represented in the standard form 3 +f(u) reducing this way the 
separation of variables to problem simpler than the generic one 
m = m = 2 we are going to deal with. 
Assertion .1. If in some coordinate system V there exists a 
separation of variables in the sense of Lemma 1 the corresponding 

A 
second-order symmetry operator S being known, then: 

i) there should exist a diffeo S that transforms the 
A 

symmetry S into the following canonical form: 
S*S S = о-ацц+^(и), (<г=±1), (8) 

the sign cr depending on whether the diffeo 9 is an orientation 
preserving map or not (See e.g.'7 ,u stands for у or у ; 

ii) the same 5 should transform the operator QR(x,y) into 
the form given by Eq(7). 

The proof is constructive, allowing an 'explicite' finding 
of the У-coordinates. Beginning with a general form for symmetry 

A 
operator S in X-variables: 

S = a e x x + 2 b a x y + C 8 Y y + d V e V f
 A < 9> 

and performing the R-transformation S —• eBSe"R we obtain for the 
A modified S 

л S= S+(-2аЭ R-2b3 R)3 +(-2ЬЭ R-2c3 R)д -d3 R-efl R-x y x x У У * У 
- с а

У у к - 2 Ь э х у к -aa x xR+a(a xR) 2+c(s yR) 2+2ba xR3 yR. (Ю) 
Going back in Eq.(8) to X-coordinate system and comparing with 
(10) we get a set of equations for v's ,R and f to be determined: 

In fact always in our constructions a little bit more general 
diffeomorphism (or shortly diffeos) 5 = 4> (<P (u),<p (v) ) are to be 

1 1 1 2 
used, where { <p );R —> R stand for local one-dimensional 

I 1 о с 1 о с 
diffeos. 
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a=<r(vx)2/u2 , b=-(rvxvy/A2, c= <r(vy)2/u2, (11) 
V V 

d-2aaxR-2b3yR= <r< - ^ 3x(vx/A) jp Sy(vy/A)), 
V V 

(12) 

e-2baxR-2cayR=o-{ - ^ a y(v x/A)- -J- a x(v y/A)>, (13) 
f2= f-da xR-ea yR+c(a yR) 2-ca y yR-2ba x yR-aa x xR+a(6 xR) 2+2be xRa yR 

^ e B(s-e- R), (14) 
the quantity Д being the Jacobian u v -u v , <r=±l. First we find 

x у у x 
that b -ас =0 (parabolicitv condition). Second for the components v , v Eqs (11) gives v =± Деиста , v =± Дв/ас ,where the signs в,с x у x у 
are to be fixed by the relation containing b. Comparing (12),(15) 
we obtain a necessary condition for existing of diffeo ip 
e+ce(c/a)1/ad=cr<vx/A3y(vx/A)-vy/Aax(vx/A) ) + 

+ce<r(c/a),/2 <vy/uax(vy/A)-vx/Aay(vy/A) }. (15) 
Here the replacement of the expressions in the curly brackets by 
the solution of Eqs (11) leads to a PDE for the coefficients of 

A 

the symmetry operator S. Moreover, starting with R satisfying say 
(12) R have to be selected in such a way to get the right 
u-dependence of the function f, , namely: 

u= F(f 2). (16) 
Furthermore from Eqs.(11),(15) ,using the definition of Д, 

we find 
F'(f 2)=[e(o-a) , / 2a xf 2-e(o-c) , / 2a yf 2]" 1, (17) 

which immediately leads to another necessary condition 

=0 (18) 
a x F ' a y F ' 
V * ay f

2 

for the validity of representation (16). This condition is also to 
be imposed on tho solution R of Eq (12) or (13) since f and F' 
has been still determined via Eqs.(14) and (17) respectively. Note 
that when Eq (17) holds the determinant of the system 

vy=c(<ra)1/2(uxvy-uyvx) ; ^^(«"^'^(«yy-u v x) 
identically vanishes hence no matter which one to take for 
finding the coordinate function v(x,y). Now in order to reconst
ruct the coordinates functions u, v in diffeo p it is also 
necessary to demand the total separation of variables, which 
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according to formula (7), implies that the operator: 
S2= 4 - Q"-SR (19) 

must have the standard form too (See Eq (8)): 
^ 2 = p f l w + f3(v),(0=±l). (20) 
Proceeding in complete analogy with the previous case 

instead of Eqs (11)-(14) one gets the following system of 
equations: 

2 u u 
a+qA=f3(uv)2/u2, 2b+2qB=-<3 ^ , c+qC=£(u )2/Д2, (H') 

У д 2 x 

d+qD-(2a+2Aq)S xR-(2b+2qB)6 yR=P(u y/Aa x(u y/u)-u x/u3 y(u y/u)), (12') 

e+qE-(2b+2qB)3xR-(2c+2qC)r?yR=|3{Ux/Aay(ux/A)-uy/Aax(u3c/A)), (13') 

f 3=f+qF- (d+qD) 8xR- (e+qE) 3 yR+ (c+qC) (9yR) 2- (c+qC) 3 y yR-(2b+2qB) 3 x yR-

-(a+qA)9xxR+(a+qA) (3xR) 2+(2b+2qB)3xR3yR= 

=eRr(S+qQ)e-R 1. (14') 
Note that the 'parabolic condition' emerges again: 

(c+qC) (a+qA) = (b+qB)2. (21) 
Here some explanations are in order. The capital letters 

A,B,..F stand for the coefficients of the Q in X-coordinates. '.p'e 
function q replaces the arbitrary factor 1/Ф. Proceeding within 
the general scheme previously sketched in Sec.3 one obtains the 
equations: 

u x/u=7H0(c+qC)]" 2; u y/A=«[0(a+qA)]" 2; r,fi=±l (22) 
and a necessary self-consistency condition for the coefficients 

e+qE+jr 6 [ (с+qc) / (a+qA) ] w z (d+qD) = 
0[и х/ЛЭ у(и х/Д)-и у/ДЭ х(и х/Д) ] + 

T6/3[ (c+qC)/(a+qA) ] 1 / г[и у/ДЗ х(и у/Д)-и х/ДЗ у (иу/Д) ] . (23) 
Let us remind again that f =f (v) , or equivalently v = 

Ф ^ (x,у)).Then after replacement derivatives of v and u into the 
Jacobian Д=и v- -u v one gets -1' x у у х 

Ф' = [Г VP (c+qC) 3 yf 3-5v73 (a+qA) 3 xf з ] \ (17') 
which in addition to Eq.(18) gives another necessary condition: 

8 



a f a f x з у з 
а Ф' а Ф' x у 

0 . (18') 

Here we recognize the requirement <t>'=<J>'(f ). This way from the 
definition of Д we obtain two equations for the coordinate maps: 

u x=T^(c+qC) (" xv y-u yv x) , 
v x= - eVFBT [u yv x- u x v y ] , 

which together with definitions of F,0,f give 
1 / 2 , v x/u x= e(<7-c)"-73V((3(c+qC) ] . 

8 f [e(cra)1/23 f -е(<гс)1/2Э f ] _, ,1/2 
» 3 L x г у z J _ в(сгс) _ ( 2 4 ) 

3 xf 2[rVP(c+qC)a yf 3- av^T^+qATa^f^ jrV/3(c+qC) 
Let us resume this construction in a condensed form: the 

separation of variables gives the general form of the operators 
Q^and Q" as well as the symmetry S Fin ^-system. The pullback 5 Q?? 
and ? S3 compared with a prescribed form of the operators S and 
л 
Q.'s give the necessary conditions for variables splitting: there 

A 

should exist a symmetry operator S related with a diffeo (p, 
satisfying the parabolicity condition and equations (15), (18), 
(23), (18'), (24), together with specific gauge fixing imposed on 
function R (Eqs (12) and (12')). 

For general 2 n d-order LPDE the realization of all steps 
performed in the theorem is a problem of the same complexity as 
the solution of initial equation, but our analysis in principle 
gives an answers to the Problen 2 Sec.l. Moreover the following 
corollary gives the necessary and sufficient condition for 
splitting of variables: 

A 

Corollary Let the set {Pj> span a basis of vector fields 
in some domain D not containing ^ m - Then the splitting of 
variables in the sense of definition 1 holds iff the conditions 
imposed by the Assertion 1 could be satisfied by the choice of 

A 
constants (a ) appearing in decomposition of symmetry operator S: 

S = I аЛ + <*5 • 
This corollary simply follows from the constructive proof 

of our assertion giving a positive reply to the third problem 
stated in Sec.l. 
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A generalization of the method for higher dimensions (n>2) 
does not involve additional difficulties, while its implementation 
for the higher order (m>2) LPDE,leads in general case to new dif
ficulties. 

The results announced in Sec 3 can be easily extended 
(in some sense minimally) to the complex case too. Namely we shall 
consider a 2-dimensional second-order LPDE with complex coeffi
cients : 

Q2(x,y)*=0 
looking for complex solutions *. Again if there exists splitting 
of variables and consequently - a symmetry S with canonical form 

e i 9 ( u ) a + [<p+i<p ] 
UU l M * 2 J

 A 

one can r epea t a l l s t e p s by S e c . 3 , t ak ing i n t o account t h a t S i s 
now parameter ized as follows 

S = ( a + i a )Э +2(b +ib )a + ( c + i c )Э + ( d + i d )3 + 
1 2' XX 1 2 ХУ 1 2' yy v 1 2' X 

+(e +ie )3 + 1 +il . 
* 1 2' у 1 2 

Besides that the R gauge have to be replaced by C-gauge, since 
function R becomes complex one, whilst the coordinate part of 
the diffeos p remains real one. 
4 Examples 

I)Consider one simple example illustrating the notions and 
general constructions developed in Sees.2,3 :one dimensional non-
stationary Schroedinger equation with centrifugal barrier poten
tial 

(i3t+3xx-A/x2)* =0 ,Q* =0, A=const. (25) 
In this simple example we have to deal with the complex 

equation case ( Sec.3 ) the class of basis vector fields Pi being 
first order one (due to the parabolicity of equation (25). In this 
section we shall only re-obtain and interpret the main results of 

4' in our notations . In fact starting with the operators 
K_ 2=a t, K 2=-t aa t-txa x-t/2+ix 2/4. K o=2ta t+xa x+i/2, 

according to the general prescription, the symmetry operator S a s 
should have the form 

S = (a-;-2ct-bt2) at+ (cx-btx) ax+ (ibx2/4-bt/2+c/2) 
the unknown constant a,b,c to be defined by the self consistency 
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conditions imposed in Sec.3. 
Reminding the C- invariance of the Eq.(1) we introduce the 

A 

'tilded' function * and operator Q (In what follows we shall omit 
the tilde whenever possible ) 

e Qe e Ф =0=Q*; Q =e Qe , Ф =е Ф. 
The operator S transforms to the form 
S ==» eRSe"R=(a+?ct-bt2) at+(cx-btx) 3x+(ibx2/4-bt/2+c/2-

-(a+2ct-btZ)3tR-(cx-btx)д R. (26) 
Let us introduce the coordinate part of the diffeomorphism 4 

<p, namely v=v(t), u=u(t,x) . Then, one obtains 
§ =e i e< v( tl'(u t/A) 8 x-e i e( v< t»)(« x/A)e t +»(v(t))-

=e i e(u t/A)a x-e i e(u x/u)8 i +f(t), (26') 
Д being the quantity Д=-и v . 

Combining (26) and (26') we have 
e10(ut/A)=cx-btX, (27) 

e l 8(u/A)=a+2ct-bt z, (28) 

f (t) = ibx 2 / 4 -b t /2+c /2 - (a+2ct-bt 2 ) a tR- (cx-btx) a xR. (29) 

Now el iminating v,. from (27): v =e' / ( a+2c t -b t 2 ) the 
л. С t 

operator Q changes its form 
Q =eRQe""=x a t + a x x ~ A / x 2 _ i 3 t R ~ 2 3 x R 3 x + ( 3 x R ) 2" 3xx R' 

while for the symmetry S. from one side we have to have 
S2=q(t,x)Q-i = 
=qa x x+ (iq-a-2ct+bt2) afc+ (btx-cx-2qaxR) 3 x+q (axR) 2-
-qa R-iqa R-qA/x2-ibx2/4+bt/2-c/2+(a+2ct-bt2) Э. R+ (cx-btx) Э R . xx ъ А t x 

From other side S is to be of the form 

Remind that for the second-order parabolic equations the 
symmetry operator S is of the form 
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С, being an appropriate function. I.e. one obtains: 
S 2=(e i c t ( u )/u')a x x+((e i 0 C/u )Эх(1/их) +Сг(и). 

Comparing the both expressions we get the equalities: 
eia/Ux=4' (30) 
iq-a-2ct+bt2=0, (31) 
btx-cx-2qaxR = (ela/ux) 3^(1/1^), (32) 
C 2

=4( s
x
R) 2-q 3

x x
R _ i4 9t R~4 A/x 2-ibx 2/4+bt/2-c/2+(a+2ct-

-bt2)3 R+(cx-btx)3 R. (33) 
The simplest choice of R satisfying Eq. (29) is R=x2»>(t) 
1) Consider first a trivial splitting: R=0 <=> <p=0. From Eq 

(29) one has that f(t) = ibxz/4-bt/2+c/2 which leads to b=0. 
The choice a=l, b=0, c=0 satisfying all relations 

(27)-(33), leads to S=3 , v=t, u=x. 
For the less restrictive choice: a=0 ,8=0 one has 

obviously u/u = -x/2t,u=kxp(t) , where P(t) = t" . From (31) we 
deduce that q= -2ict. Substituting into (30) we obtain elat/k = 
-2ict. Take c=l, then a=-n/2, k=l/\/2 and for v,u we have 

v=ln (t) /2, u=2~1/2xt~1/2, 
Eqs (32), (33) being identically satisfied.Then: t=e2* x=2l/2ut'/2. 
Going back to the old notations namely e2"-» v, 2 / 2u =» u the 
final form of the new variables becomes t=v, x=uv 

2) <p(t)*0. In this case for c=0 we have 
ib/4-(a-bt )at<p+2bt<p=0. (34) 
>m (31) am1 (30) one obtains q=i (bt2-a) , e 1 /u2=i (bt2-a) , 

having solution of the form u=x?(t), ot=sgn(bt -a)ir/2, 8=0. Then 
r(t) = 
find: 

Now from (31) ant1 (30) one obtains q=i (bt2-a) , e-1 VuVi (bt"-a) , 
form 

r(t)= (sgn(bt2-a) (bt2-a)) - 1 / 2. For the unknown function <; we 

С =4q»>2x2-2q^-iqx (p-qA/x2+bt/2. 
In order to satisfy the requirement C,=C (u) w e are choosing 
p=-ibt/(4bt2-4a) . Then for the functions C_,=C2(u) , the Eq. (34) 
being satisfied identically. 

Now replacing t by v in the coordinate expressions: 
u=x(sgn(bt2-a) (bt2-a)) ~1/2,vt=l/(a-bt2) , R=-ibtx2/(4(bt2-a)), 

which define the diffeomorphism if. we re-obtain all coordinate 
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s y s t e m s l i s t e d i n t h e M i l l e r ' s t e x t b o o k : 
i ) t = v , i i ) t = v i i i ) t - v 

x = u ( s g n ( b v 2 - a ) ( b t 2 - a ) ) 1 / 2 x=u x = u v l / 2 

R = - i s g n ( b v 2 - a ) b u 2 v / 4 , (R»0) H=0 R=0 

S= аК_г+ ЬК S= К г S = K Q . 

II. As we announced in the Introduction it may happen that 
A. 

the second order symmetry operator S (even m £he case or 2-nd 
order LPDE with two variables) should not belong to the enveloping 
algebra of the first order symmetry operators. One of the simplest 
example is the two-dimensional oscillator with 'imaginary frequen
cies' : 

Q*=o, Q=suu+u2+avv+v2. 
We shall seek for the first order symmetry operators S 

satisfying the commutation relations 
[S,Q]=pQ, (35) 

the arbitrary p being necessarily a function. Writing S in the 
form S= ad +bd +c and replacing into (35) it is elementary to find 
the following set of equations for the unknown functions a,b,c,p: 

23ua=p, (36) 
23vb=p, (37) 
a ub+a va=o, (38) 
3 u u a + a w a + 2 a u c = 0 ' ( 3 9 ) 

a u u b + a w b + 2 a v o = 0 ' { 4 0 ) 

auuc+avvc-2au-2bv=p(uz+v2). (41) 
From (36) and (37) , (38) we have Зца=ЗуЬ and ауа=-8цЬ 

together with the integrability conditions 
a u u a + a w a = 0 ; a u u b + a w b = 0 ' ( 4 2 ) 

which imply Э c=0, a c=0 =» c=const. Without solving the equations 
for a and b it is obvious that if the first-ordar symmetry opera
tors S exist they should be of the form aau+bav+const, and the 
second order symmetry operator corresponding to the splitting of 
variables 

a u u +u 2 (43) 
(or in the same footing Э^+ v2) vill not belong to the enveloping 
algebra of such S , since otherwise, instead of (43), it should 
have the form 
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S» 2*<4 8<Ч + XB-I ei +COtlSt • 
These two o p e r a t o r s e q u a l s o n l y on t h e s p a c e o f f u n c t i o n s 

L P ( R 2 , M ) where t h e n e a s u r e ц ought t o be appropriately choosen 
a f t e r t h e s t r u c t u r e o f c o e f f i c i e n t s { A . . } , ( B . } h a s been r e s t o r e d 
s o l v i n g t h e s y s t e m o f E q n s . ( 3 6 ) - ( 4 1 ) . 

In o t h e r t erms f o r t h e r i g h t c h o i c e o f t h e symmetr ies one 

a lways n e e d s an a c c u r a t e d e f i n i t i o n o f t h e s o l u t i o n s p a c e c o n t a i n 

ed i n t h e range o f Q. 
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