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1. INTRODUCTJOH 

Symmetry analysis is one of the douins in the theory ot (in 
particular partial) differential equations to which coaputer algebra 
can be applied successfully [1]. The aost general approach to solve 
these equations is based on the knowledge of their classic or Lie 
symmetries which are connected with the one-parametric group of 
transformation. Apart from very simple cases, these symmetries cannot 
be found in practice without a computer. In recent years, great. 
attention has been paid also to thE:: problem of finding the so-called 
generalized or h1ghgx infinitesimal (Lie-Backlund) symmetries [2] by 
computer [3,4]. These symmetries reveal important internal properties 
of the equations under consideration 
construction of the exact solution 
investigation. 

and are very useful for the 
and for their qualitative 

Amongst the partial differential equations of physical interest, an 
important role is played by the class of integrable nonlinear 
evolution equations (NLEE). These equations possess a number of 
remarkable properties, for example, soliton solutions. Their 
integrability is closely connected with the existence of higher 
symmetries and conservation laws (5-7). The symmetry approach to the 
investigation of integrability of NLEE is developed mainly [5] for 
equations in one-temporal and o~e-spatial dimensions. For instance, 
this approach can be applied effectively [6] to the systems of NLEE of 
the following form 

ut=l(x,u, ••• u.,)=.4u
1
+F(x,u, ••• u._

1
), N2::2 

lr. lr.• t • 1 _.. U"'"U(t,x), u
11 =B U/Bx, u=(u , ••• u ), F-(F , ••• ~· ), ( 1) 

A=diag(.S 1, ••• &K), B1EC, B
1
-0, .S

1
11l& 1 (tiiiiJ). 

It should be noted that not only those NLEE which can be integrated by 
the inverse spectral transform but also equations which can be 
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equation, satisfy the linearized, 

conditions 

like 

arising 

Burger's 

in the symmetry approach. These 

integrability 

conditions are 
necessary for the existence 
laws. This fact plays 

of the higher symmetries and conservation 
an important role in the problem of 

classification of integrable NLEE, i.e., in obtaining a complete list 
of integrable equations of a given form, for example, some subset of 
(1), and in finding the invertible transforms connecting the equations 
in the obtained list (5]. 

In [6), algorithms are described 
integrability conditions for nonlinear 

for verifying the neces·sar,y 
evolution systems (1) and tor 

finding higher symmetries and conservation laws. These algorithms have 
been implemented on a computer by using the algebra system FORMAC. 

In the present paper we consider an important subclass of (1),. 
namely ''the case when F is a polynomial. This subclass includes in 
particular the NLEE with uniform rank for which in the scalar case 
(M=1 in (1)) packages in REDUCE for finding symmetries and 
conservation law densities have been developed [8]. The restriction 
for F being a polynomial has given us the possibility to establish an 
efficient program which uses REDUCE internal representation and 
built-in facilities for polynomial manipulations [9]. This program 
makes it possible to verify the necessary integrability conditions for 
{1), in the case where the r.h.s. in (1) has arbitrary parameters as 
coefficients, and to generate an equivalent system of algebraic 
equations for these parameters. 

2. BASIC DEFINITIONS AND FORMULAS 

We recall some definitions of the symmetry approach 
essential set of the necessary formulas (for more 
[5, 6]). 

and give an 

details see 

A vector function f=(f1
, ••• t") of a finite number of dynamical 

variables taken from an infinite set x,u,u
1

, ••• is a (generator of 
infinitesimal) symmetry of the system (1) if it leaves (1) invariant 
under the transformation t'=t, x'=x, u'=u+'t"f(x,u,u

1
, ••• ) within order 

't". This means that f satisfies 
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df 
dt = o~~.{f), (2) 

where ~. is a matrix differential operator 

•. [. l .•. 
ui kJ = auJ (3) 

' 
and where djdt and ID=djdx are the total differentiation operators with 
respect to t and x, respectively, 

Equation (2) is equivalent to the operator relation 

Lt - [~,.,L) = (oi>,.)L, 

where 

• L=f,.=fu+fu ID+ ••• =£: fu ID, 
k= 0 k 

deg(L)=n, 

(4) 

(5) 

( 6) 

is the operator series (compare with ( 3) ) of degree n and djd't" is 

defined by (4) with f instead of~. i.e. d/dL=d/dtl~~f . 

Theorem 1 ( [ 5, 6 J) • The existence of an n
1 
-order symmetry with 

n
1
>N=deg(i?) implies the existence of an n-order formal symmetry with 

n
1
0!:n>N. Thi~ is a formal series of degree m with matrix coefficients 

Ak depending on a finite set of dynamical variables x,u1: 

with 

deg{Lt- [i1.,LJ) ~ m+N-n. o 

From (1),(7),(8) it follows that 

ll eC. 
' 

(7) 

(B) 

(9) 

A formal symmet-.-v is called non-degenerated if detA = n ll ;!:Q and 
-o~ m k k 

degenerated otherwise. It is easy to see that formal symmetry is 

defined up to the addition of an arbitrary diagonal matrix (this can 

be eliminated by the normalization diagA
0
=0). 

From (5)-(B) it is evident "that (3) is not only the N-order 
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symmetry but also the N-order formal symmetry. The conditions for the 

existence of formal symmetries of higher order are given by a theorem 

which is of importance in our computations: 

Theorem 2 ([5,6]). Suppose that a non-generated formal symmetry of 

order n=N+i, ii!:O exists. Then a formal symmetry of order n=N+i+1 

exists iff 

~t(R(i,j) )elm[), j=1,2, •.. M, (10) 

where 

j ::, ._, 
"" F- trace(res(L)) 

~, 

,i=O 

R(i,j) (11) 

,i>O. 

L is a formal symmetry of order i+2 and degree. i with the leading 

coefficient (7) depending on M arbitrary parameters JL
1

,JL
2

, ••• JLH, and 

res L ;;;: A .o _, 
Condition (10) means that the l.h.s. is a total derivative with 

respect to x of some function in a finite number of dynamical 

variables. In other words the expressions 

conservation law densities of the system (1). 

R(i,j) in ( 11) are 

For integrable NLEEs, 

formula (11) determines the algorithm for constructing the infinite 

series of the conservation law densities, which is called the 

canonical series. The coefficients Ak of (7) are calculated from the 

following recur~ence relations which can be obtained [6] from 

(1) 1 (3) 1 (7) 1 (8): 

P2l . . . + .,I ,l.'"'], 

where JJ.
1 
,.,tee are arbitrary constants_, and w:Q.ere C

1 
are the 

coefficients of the- :Coiiunutator [t,. ;_L] = L c--10 1
• 
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3. ALGORITHMS AND IMPLEMENTATION 

According to Theorems 1, 2 of Sect. 2 the algorithm for verifying 
necessary integrability 'conditions, i.e., the existence of higher 
order symmetries, is reduced to the · successive computation (for 
i=0,1,2 ... ) of the expressions R(i,j..) from (11) and to the test 
whether they fulfill the conditions (10). One starts by testing the M 
conditions (10) for i=O (first integrability conditions). These 
conditioOs are e~ivalent (Theorem 2) to the existence of a N+l-order 
non-degenerated formal symmetry. Then one constructs the formal 
symmetry of order 1 and degree 3 and tests the M conditions (10) for 
i=1 (second integrability conditions). If these conditions are 
satisfied then the N+2-order formal symmetry also exists and so on. 
The elements of the matrix coefficients Ak for the m-th degree formal 
symmetry (7) are found from (12). 

The above algorithm for the computation of the canonical law 
densities and for verifying the integrability cOnditioris has been 
implemented using the symbolic mode of REDUCE (version 3. 2) . The 
implementation is based on the built-in recursive representation for 
polynomials in "standard form" (s.f.) and effectively uses the 
following ordering rule for variables ("kernels") 

u(Lj+l) < u(i+l,k), i,j,k~0,1,2, ... , I 13 I v < u(i,j) < 

where the kernel u(i,j) represents the dynamical variable u: and v can 

be any other variable. The statement 

ALGEBRAIC KORDER u$ 

defines the ordering for polynomials in accordance with (13). 
Algebraic operations over polynomials and their derivatives are 

realized in symbolic mode by calls to the corresponding buil t-;;in 
procedures acting at s.f. and "standard quotients" (s.q.). 

The most laborious step in the above computational scheme is the 
application of the operator ID-1

, i.e., the integration with respect to 
the spatial variable x in (12) . The problem is to find Q as a solution 
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of the equation 

C(Q) = S, (14) 

wher~ S, in general, is a polynomial in the variables u(i,j) with a 

finite number of arbitrary parameters. From (14) it follows [6] that 

as 
au' 

a's 
= O,k=O; -,--

a~au; 
-
a's __ 

O, k>O (i,j=l,2, .. M). 

If these conditions are satisfied, then S can be rewritten as 

S = Vq + S, ord(S) < ord(S). (15) 

After having determined q we can represent the solution of ( 14) as 

Q=q+Q, where Q satisfies the equation D(Q) = S. Thus the condition 

SeimiD is reduced to the condition SeimiD with the order of S lower than 

the order of S. 

The transformation (15) is the basis of our algorithm INTX which 

performs the operation [1-
1

• As a. result we obtain either the explicit 

form of the integral in x, possibly together with an additional set cit 

equations in arbitrary parameters which represent conditions for the 

existence of the integral, or the message 11 non-integrable expression'' 

which means that the input expression cannot be pepresented as a 

total derivative with respect to x of another expression. As an 

example for the first case, the expression 

a:*u(O,l)*u(2,2) + f3*u(l,l)*u(2,1) 

can be represented as a total derivative ID(a*u(O,l)*u(l,2)) only' if 

a=(3. 

When describing the algorithm INTX, we use the following internal 

REDUCE notations [9]: 

- mvar (main variable), 

- ldeg (leading degree), 

- lt (leading term), 

- lc (leading coefficient), 

- red (reductum) . 

Indices i,j of u(i,j) can be arbitrary non-negative integers. 
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Algorithm: INTX 

Input :S % polynomial in ll(i,j} and possibly in some parameters 
Output:either D-

1
(5) and equations in the parameters, 

or the message 'non-integrable expression' (S ~ ImiD) 
r:=O; % r accumulates the value of D-1 (5) 
while s,.,o do 

begin 

end; 

while {mvar S=u(i,j) and ldeg S>l) or mvar S=u(O,j) do 

begin 

end; 

split lt S; 

S:=red S; 

if mvar S*U{i,j) then return S; 
% below rnvar S"=U:( i, j) , i>O 

C:=lc S; 

s:=red S; 
while rnvar C>u{i-l,j) do 

begin 

end; 

split lt c; 

c:=red C; 

q:=int(C,u(i-1,j)); 

r:=r+q; 

S:=S+C*u(i-l,j)-ID(q); % lowering of order of s 

Algorithm INTX requires only derivation and elementary operations 
on polynomial. It calls two procedures: 
(i) int performs the polynomial integration J'(as;au1 )du1 

which is 
k k-t 

needed for finding the function q in (15). We note that int integrates 
in a variable which has at least the order of the main variable of the 
integrand. It requires the list processing only at the highest list 
level and does not use the REDUCE integrator. 
(ii) split (<expression polynomial in u(i,j}>) picks out the 
coefficients of the different combinations of u(i,j) and sets them 
equal to zero. If a numerical coefficient different from zero remains, 

then the message "non-integrable expression" appear.s. 
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4, SOME APPLICATIONS. CONCLUSION 

We have uS9d ou~ program to comput~ s~veral first conservation law 

densities (11) and to generate, from (10), the necessary ~ntegrability 

conditions in the form of algebr~ic equations for the following NLEEs 

[10) (all A
1
eC are parameters): 

1.The seventh order scalar NLEE of KdV type (M=1,N=7 in (1)) 

(16) 

For (16) we have computed the densities (11) for i=0,2,4,6 (odd i do 

not lead to any restrictions on \) and have obtained a system of 

thirteen algebraic equations in seven variables. A
1

• 

2.The seventh order scalar ;NLEE of a modified KdV (MKdV) type 

(M=1,N=7 in (1)) 

ut =u7 +A1 (u1 u 5 +Ju
2
u'4 +2u~) +A

2 
( u

2
u5 +6uu1 u 4 +10uu

2
u

3 
+6u~u3 +7u1 u~) +A

3 
( 2u1 u~+ 

u 2u )+A (Ju~ u +12uu2u +Ju2u 2+2u4)+A (u4u +8u3u u +6u2u 3)+A u 6u. (S) 
13 4. 13 12 2 1 5 3 12 1 6 1 

The densities for i=0,2,4 (odd i. give no restrictions) lead to a 

system of nine algebraic equations in six variables. 

J,The system of two coupled nonlinear equations of KdV type (M=2, 

N=J in (1)) which satisfies to conditions (10) for i=0,1,2,3 (10] 

v t = ( A1 -1) v 3 +A2uu
1 
+A3vu1 +A 4 uv 1• 

(18) 

The conditions (10) for i=4,5,6,7; j=1,2 generate a system of four 

algebraic equations in five variables. 

The comparison with our previous (more general-purpose) program 

[6], written in FORMAC, which has been used for the classification of 

eqs. (16)-(XB:) in· previous work (see [6),[10] and refs. therein), 

shows that our present implementation. in REDUCE is almost ten times 

faster, which is in contrast ,to the sometimes reported opinion that 

FORMAC is much more effective than REDUCE ('see, for example, (J]). 

Moreover, all our (rather cumbersome) computations have, been carried 

out on an IBM PC AT-like computer. 
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The algebraic equations which are generated as integrability 
conditions appear to be complicated and have in general infinitely 
many solutions [10,11]. However, for the equations (16)-(18) and in 
other cases they can be solved [11] by using the technique of Groebner 
basis [12]. Hence, besides their importance for applications, they are 
very useful for testing other computer algebra methods. 
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