


1. INTRODUCTION

In this note we put away the investigations of our
generalized charge transfer model studied in [1,2] which is
defined as follows. In bH = lf(R"), n z 1, we consider the

Schrodinger equation

.du - _ ’
i3 T HOU = (g F VU, ul g = v, (1.1 )

where Ho is the free Hamiltonian given as usual, i.e. Ho =

—% , and {V(t)}temx is a time-dependent perturbation of the

form

N v
V(t) = F V(1) (1.2 )
j=1 9 '

where the time-dependent perturbations {Vj(t)}T—v t e R,

arise from time-dependent potentials qj as feollows:

(V{0 () = q5t,x - x,(t)), feb, te Rr*, (1.3 )

xj(.)zua‘—‘.ua“, j=1,2,...,N. '

In the following, by ctoc(uz'“) and ctoc(uz'“,uz"), mk = 1,
we denote the sets of all functions defined on R™ with values
in R' and Rk, respectively, whose first derivatives exist and

are continuous.

ASSUMPTION P. - The potentials qj, j=1,2,...,N, belong
to Ct (R™") and satisfy the properties

oC

la;Ct, 0| < Mj(1+|x|)’1‘€, (t,x) e ™™, &> 0, (1.4)
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[x119g,] & L2(®™Y), lim x9q.(t,x) = 0, t = R, (1.5 )
J [x]oc 9
g. e L2®R™), sup 14.(t,x) | « LYRYH, (1.6 )
J xeR"™ J
j=1,2,...,N, where we have used the rotation qj = %— qj.

In the =sequel, we are interested in the <cattering
theory and, therefore, in the behavior of the potentials at
infinity. Consequently, we have omitted local singularities
of the potentials. But it seems to us gquite possible to
include local singularities.

The function xj(.): R' — R" can be regarded as a
trajectory along which the potentials qj move. Concerning the

trajectories we assume the following.

ASSUMPTION T. - The trajectories x.(.), j = 1,2,...,N,
belong to ctoc(m‘,m“) such that

t

+ .
lim L x (t) =+v5, j=1,2,...,N, (1.7 )
totmw J J

exist and, moreover,

+
sup {x.(t) -~ vit| < 4w, j = 1,2,...,N, (1.8 )
tt20 I J

. . .
sup {tXx:(t) - vit] < 4w, j = 1,2,...,N. (1.9 )
#t>0 0 J

n+i n+i

1 [N 3 ]
If qj = CLC(R ), qj, |qu] and qj e LT(R ) as well

[=]
toc(m‘,m“), j =1,2,...,N, by Proposition 2.2 and

Remark 2.1 of [1] with Eg. (1.1) we can associate a unique

as xj(.) e C

propagator {U(t,s)} 2 consisting of unitary operators

(t,s)eR
and obeying the properties of Proposition 2.2 of [1]. Using

this propagator the scattering states are defined as follows.

DEFINITION 1.1. - The state f belongs to the scattering

subspace bfc(s), s <= R‘, if for every R > 0O we have

=+T
lim & [at arOx) < e3P e, o0 = o, (1.10)
Ts*w ~
s
* . +
j=1,2,...,N, and if for every sj > O there exist n3 > 0 and
+
13 » 0 such that
+ + +
sup , IFC|P - v7| < pdUCt,s)fll < €7, (1.11)
rt>TT ’ J J
i
j= 1,2, ,N
REMARK 1.2. - We note that for the Cesaro mean it is

unessential whether the function under the integral is taken
by power two or one provided the function is bounded. Thus,
it is possible to replace #...1% in (1.10) by I...1.

In accordance with Enss [3] by F(.) we denote the
spectral projection of the self-adjoint operator to the part

of the spectrum as indicated in the parenthesis. By X and P

we denote the commuting n-tuples X = (X_,X_, ,X } and P =
a a 9 1’72 n
{—1521,—15§é, ...,—15;5) = -iV of position and impulse

operators, respectively.

REMARK 1.3. - (i) If the potentials qj, j=1,2,..., N,
are nonmoving, i.e. xj(t) = O, J = 1,2,...,N, and
time-independent, i.e qj(t,x) = qj(x), j'= 1,2,...,N, then

condition (1.10) coincides with those of Ruelle [4] and
Amrein-Georgescu ([5]. Moreover, condition (1.11) is a
consequence ©of (1.10) and Assumption P, as can be sgen from
{37.

(1i) If the potentials qj, J = 1,2,...,N, are nonmoving



- but time-dependent, our definiticon of the scattering subspace

coincides with Definition 5.1 of Kitada and Yajima [&]. See

also [7,8,9). As it has been pointed out by Kitada and Yajima

the conditien (1.11) is essential by a counter example given
by Yafaev {10,11]. The same takes place in our case despite
the fact that we have a slightly stronger condition (1.6)

than Kitada and Yajima.

Therefore, it seems to us that Definitioen 1.1 is a.

natural generalization of the definition of the scattering
subspace to moving time-dependent potentials.
The goal of the paper is to show the existence of the

wave operators W, (=),

-i(t-s)H
o

- _ . ) * *
Ht(s) = g-lim U(t,s) e 5 (1.12)

tatw

and to establish the completeness of them, i.e.

R(W, () = bi‘:(s). (1.13)

REMARK 1.4. - (i) If the potentials q;, 3 = 1,2, .0,
are nonmoving and time-independent on account of Remark 1.3
(i), the preblem coincides with the existence and
completeness problem for short range ‘potentials which is
solved.

(ii) If the potentials qj, J=1,2,...,N, are nonmoving
but time-dependent, the problem was solved by Kitada and
Yajima [6,12] even for long range potentials.

(iii) If the potentials are moving but time-independent
a stronger asymptotic completeness result than (1.13) was
proved by Yajima {13), Graf (141, Hagedorn [15] and Willer
{16,17]. It can be shown that the relation (1.13) follows for

time-independent short range potentials from [13] or [16,17]

but under stronger assumptions concerning the trajectories
xj(.), jJ =1,2,...,N, and the behavior of the potentials qj,
Jj = 1,2,...,H, at infinity.

The proof of (1.13) relies on a phase space analysis, in
pmarticular, on the {awmous paper of Enss ({18)] on the
propagating properties of quantum observables. We consider
only .the short-range case. The long-range case will be the
contents of a forthcoming paper.

In the following we need the notation Cm(R"), n z 1,
denoting the set of bounded functions on R" which are
infinitely often differentiable. By C?(R") we denote the
subset of functions with compact supports of CP(R™ . If M is
a closed subset of R" we set CP(R™MM) = (f € CP(R™): f|4 = 0)
and, similarly, cz(uz“\m = {f e cz(ua“): flM = 0},

2. TECHNICAL PRELIMINARIES

For simplicity and since it will be unessential in the
following that the trajectories x;(.) have different
asymptotics for past and future we assume throughout this
section that v = v, = Vis 3= 1,2,0,N. This agreement has

J
the advantage that instead of (1.8) we have now

sup, |x,(t) = vit] < +a, j = 1,2,...,N. (2.1 )
teR :

Basic in the sequel will be the following proposition of

Enss.

PROPOSITION 2.1 [18). - lLet g e C®(R') such that g’ e

twl, then for any k € N there is a

C?(R‘). If supp g < (VQ,

constant Ck such that



itH k

IF (X, <R+v_t)e o g(PF(X ORI £ C (1+t) 7, (2.2
t = 0. If supp g < [—m,vo), then
~itH . —k P,
nF(X1>R+vot)e o g(Pi)F(XixR)H < ck(1+t) , (2.3 )

t = 0. The constants Ck depend on the shape of g and on

dist(vo,supp g), but -are independent of Vo and R « R'.

Furthebmore, in the following we assume that the

velocities VJ = {Vij’vaj""’vnj}’ j=1,2,...,N, are ordered
by

< < < (@
v11 TV, = = ViN' (2.4 )

Proposition 2.1 allow= cone to establish the following

LEMMA 2.2. - [If the conditions (1.4) and (1.7) are
. N
satisfied and if g € cm(m“\lJ{vlj}), g’ e~c§(m‘), then for
j=1
gvery 1 = 1,2,...,N and every a,b e R' we have

Hvl(t)e_ltHo g(P )F(a < X, < )l e L'(R},at), (2.

L
~

. 1
Proof. - Fixing 1 and introducing 61 = édist(vil,supp g)

we have to distinguish the following two cases:

( 1) supp g < (v11 + & +w)

l)
11 ~ %1~
Assuming (1) and applying (2.2) we get

(ii) supp g < [-w,V

, —-itH ,
HF(h1<a+(V11+61)t)e o g(Pi)F(a<k1<b)H

(2.6 )

s LYR', dt) .

Taking into account the estimate

itH

uvl(t)e" o g(P)F(a < X, < B)Il =

HVl(t)F‘(X1 > a + (v1

uvl(t)u HF(X1<a+(V11+ 6l)t)e o g(Pi)F(a< X

telR

1

Lt eI IgR N +

itH
1

1

follows if we show that

IV (LF(X, > a + (v,

_ .1 i
1 + dl)t)ﬂ e L (R+,dt).

By (1.4) we get

Since 1lim

viltl

<
Hvl(t)F(X1 > a + (v11 + 6l)t)ﬂ <
~-1-g
M1 sup (1 + lxl - xil(t)[) .
Xgratlvyrépt
X L(t)
: = Vv we find a t_ > O such that |
11 Q
tatw
< g t. Therefore, we get
1
- >
|x1+a+(v11+61)t xil(t)l z x,+ a + §61t,
o® ¥y ¥ 0, which immediately yields the estimate

(2.7 )

<bit

and supiﬂvl(t)u = M < +w (see (1.4)) the relation (2.5)

(2.8 )

(2.9 )

xil(t)‘~

(2.10)



1 leg
+ < +a+ =
6l)t)“ = Ml(l a 5 &

"

HVl(t)F(kl)a+(vll 1

_2a
S

The proof for the case (ii) can be deone in the same

t > max(to, }. But (2.11) proves (2.8).

manner using instead of (2.2) the estimate (2.3).m

Lemma 2.2 allows a further refinement. To this end we

i t i = [~ s = . : j
introduce the intervals Ao [ w,vil), AJ (ViJ’vi(J+1))’ J
=1,2,...,N-1, and AN = (viN,+w].
LEMMA 2.3. =~ If the conditions (1.4), (1.7) and (1.8)
are satisfied arnd if g < cm(m‘), g’ = cz(m‘), supp g < Aj’ J
= 0,1,2,...,N, then for every 1 = 1,2,...,N we have
—-isH hi _ i, 1 -~
sup V. (t+s)e - o g(P JIF(— = A ) = L (R ,ds). (2.12)
t 1 1 t J + .
>0
Proof. - Let us introduce the multiplication operator
ﬁl(t) defined by '
(Vl(t)f)(x) = ql(t,x’+ vlt - xl(t))f(x), x e R", (2.13)
f = H. Since the formula
X isiv2
el(t+S)le e_lsHo g(Pl)F‘(El = Aj) = e 21 %
(2.14)
iv,.x —isH x1 —-iv.x ditv.P
x e 171 e o g(F‘1 + vil)F(E— t vy, s Aj)e 17 e 1
helds, we find
~isH X1
Hvl(t+s)e (e} g(Pl)F(E— < Aj)ﬂ =
’ (2.15)

ty , (2.11) -

~ ~isH X
7 —
ﬂ\l(t+s)e (o] g(P1 + vll)F‘(t +. v

1] € Aj)ﬂ.

If j 2 1, then the problem (2.13) will be solved if we show

that for supp E < (0,+w] we have

sup nGl(t+s)e’15”o §(P1)F(x120)n e LY(R?,ds). (2.16)
t>0 * :

If j < 1, then we have to establish that for supp § < [-00,0)
the relation '
isH

sup IV, (t+s)e

o g(P F(X, =00 e L'(R},ds) (2.17)
>0 . .

heolds.
To prove (2.16) we set & = % dist (0, supp §) and e, =
supplxl(t) - vltl which is finite by (2.1). Using Proposition

teR?
2.1 we find

isH

IF(X,<&s)e "~ o §(P1)F(x1>0)u P L‘(mi,ds). ‘ (2.18)

Hence, on account of the estimate

isH

HVl(t+s)e o g(Pi)F(Xilo)H =

uvl(t+s)F(x1>as)nn§(P1)u + S (2.19)

isH

HVl(t+s)ﬂHF(X1<6s)e o) g(Pl)F(X1>0)ﬂ

and sup, ugl(t)ﬂ = Ml< +w the relation (2.16) follows if we
teR :
show that



sup IV, (t+)F(X >890 1 = LY}, ds) . (2:20)
t>0 »

We have

1 (L+S)F(X >8s) 1 <

1
(z.21)
) _ RS B

Ml sup (1 + ;xl + vll(t+s) xll(t+“)) .

%8s

1
If s > 91/6 we find the estimate

sup WV, (t+s)F(X. >6s)l £ M (1 + &8s - o) +7% (2.22)
£>0 1 1 1 1

which obviously yields (2.20).

The relation (2.17) can be proved in the same manner.sa

Furthermore, in the following we need a modification of

Lemma 2.3.

LEMMA 2.4, - Let (1.4), (1.7) ard (1.8) be satisfied and
tet g €« CURY and g* = cz(m‘).
If supp g < AN, then for every 1 = 1,2,...,N we have

sup IV, (t+s)e 1SHg g(P IF(X < v 1)1l e LY(R*,ds). (2.23)

o !
If supp g < AD, then for every 1 = 1,2,....,H we have
sup V. (t+s)e  SHg gp )R (X >v. )t e LYRY,ds). (2.24)
1 1 1 1 1N -
t>0
Proof. - On account of (2.14) we get

10

~isH
IV, (t+s s ¢ =
e o g(Pl)F(X1\ Vllt)"

1
(2.25)
1V ct+sie  SHe gP 4+ v F(X, 4 vt < vty
1 1t V1 1 11 11°° "
Hence, we will prove (2.23) if we show that
~isH_ ~
sup nvl(t+s)e SHs g(F IF(X, < Ol & L'(R*,ds) (2.26)
£>0 -
with supp 5 < (0,+w]. From (2.3) we obtain fhé estimate
1F(x,> os)e 1SHg gFOF(X, < 01 < ¢, (1-:) 7K, (2.27)

; 1 s ~
s < 0, where & = 5 dist(O,supp g). Using this estimate and
repeating previous proof arguments, we immediately prove

(2.26). Similarly, we establish (2.24).ms

At the'end we establish a simple fact.

LEMMA 2.5. - If supp g < (vo,+m], then
s-lim Fx < v tie o gp ) = o, (2.28)
t+tw © 1 :
- :
If supp g < [—m,vo), then
: -itH
s—ilm F(X1> vot)e o S(Pl) = 0. (2.29)
++m .
Froof. - Since supp g < (vo,+m] there is a vé > Vo such

that supp g < (vé,+m]. Applying (2.2) we obviously find

11



itH

lim F(X_ < a + v’t)e ~ "o g(P_)F(a <X_< b)f = 0 (2.30)
1 o 1 1 ’
t+tw
f eb. Since v} > v, there is a t, such that
v g £ = st = S £ - E
F(Al. Vot)F(kl < at vo_) F(hlx Jot) (2.31)
for t > tO which yields
. . -itH ,
lim F(A1< vot)e o g(Pl)F(a<k1< b)f = O. (2.32)

t++w

But (F(a<X,< B)f: f e b, a,b = ®'} is a dense subset of b.
Consequently, (2.32) implies (2.28).

Similarly we prove (2.29).m

3. EXISTENCE
We start with some general remarks which allow the

existence and completeness problem to be simplified.

REMARK 3.1. - Introducing the family U(t) = U(t,0), t <
1

K, and. using for the propagator of Eg.(1..1) the

representation

1i

Ult,s) = WU ™, t,s e R, (3.1 )

it is not hard to see that it is enough to consider the case

= = 0.

REMARK 3.2.- Defining the family H(t) = H(-t), t e [R',

and denoting by {U(t,s)}(t s) eR? the corresponding
propagator, one can prove that the propagators
12

i S

‘{U(t,s)}(

2 and (a(t,s)} 2 are related by

t,=)eR (t,s)eR

JUCt,s) = U(-t,-)J, t,s e R, (3.2 ).

where J denotes the operator of complex conjugation, i.e
(JE)(x) = T(xX), f € b. On account of (3.2) now it is easy to

carry over the existence and completeness. problem for W_=

W_(0) to w+ = s-lim U(t)*e_ltHo = W_ where, of course, we
~ ta+w . '
have set U(t) = U(t,0), t « R'. Hence, it is encugh to

consider the time direction t -+ +w.

REMARK 3.3. - Since The Schriodinger equation (1.1) is a
local one, it= propagator {U(t’s)}(t,s)emi iz not influenced
for t = = by the behavior of {H(t)}temt for t = s.

~

Consequently, having other trajectories xj(.) 1= Ctoc(mi,R“)

such that
% (L) = x.(t), t = 0, (3.3 )
¢ J

and denoting by (G(t,'s.)}(t s) <lR? the propagator of the

Schrodinger equation whose potentials qj move along the
t:ajectorles xj(.), the propagators {U(t,s)}(t,s)ema and
(U(t,s:)}(\t s) eR
Uct) = U(t) for t = oO.

trajectories xj(.) for t £ 0 have no influence on the wave

2 coincide for t,s = 0, in particular, we have

Therefore, modifications of the

operators W,. Hence, it is quite possible to modify the

trajectories xj(.) in such a manner that the wave operators

w+ are not influenced and the conditions 1lim % xj(t) = v} =
te+—w0
v;, j=1,2,...,N, are fulfilled.

Now we are going to show the existence of the wave

operators.

13



PROPOSITION 3.4. - If the conditions a; = ¢t kY,

w0 +4 toe
Iva;1,4; « LY@®™,
(1.7) are satisfied, then for every = € k' the wave operators

¥,(s) exist and obey

R(W,(s)) € BI%(). (3.4 )
Proof. - On account of the previous remarks we consider
only  the case s = 0, t — +w, and v; = v} = vj, J =
1,2,...,N. Furthermecre, we assume that the set (VJ}T—1is
ordered by (2.4).
Obviously, the set {g(Pi)F(a<x1< b)f: g =
N
RN U vy M, & € CARY, a,b « B, £ < b) is dense in b.
j=1

Moreover, we have

Uty *e 1, (P, )F(acX <b)f = g(P )F(acX <b)f +
(3.5 )
Nt * —-isH
i z'f ds U(s) V,(s)e o g(P )F(a<X, <b)f.
j=10

Applying Lemma 2.2 we immediately get the existence of W, . It

remains to show (3.4). Since w+ = 8-1im U(t)*e—ltHo we have
tatom ’
1 F ~itH 2
lim T f dt HU(t)w+f - e o i1~ = 0 : (3.6 )
T
O .
which yields
1 o F ix,(L)P -itH 2 _ -
lim T I dtlIF(|X|<R)e ] (U(t)w+f—e o f3it" = 0, (3.7 )
T -
.0
f b, for every j = 1,2,;..,N and every R > 0. Consequently,

condition (1.10) is satisfied if we can prove the relation

14

J = 1,2,...,N, as well as (1.4) and.

T L s
lim % Jatir(xcriet ¥ (VF o7y 12 o o, (3.8 )
T ’
(o}
f =&, for every j = 1,2,...,N and every R > ¢. Taking into
account the formulas
x.(t)a
P 01 1
- . lgpr— I x (L)X _. -1z x. (L)X
elxj(t)Pe 1tHQ=e ct_ e t 7] e 1tHo a t (2.9 )
and
il x ox
s-lime © J = e V¥ (3.10)
tLaw
we immediately see that (3.8) is fulfilled if
1 F —itH_ _-iv ¥ _ 2
lim T f dtiF({X]|<R)e o e j“f1T =0, feb, (3.11)
Ta@
o
holds for every j = 1,2,...,N and every R > 0. But the last
fact is obvious for the free Hamiltonian Ho = —%A.
Since W, = s—-1im U(t)*e“ltHo for every . > 0 and every
+ J
ta+w
nj > O there are rj > O such that
” _ _—itH L1 -
HF(IP—VJICDJ){U(t)ﬂ+f e o £t < 5 €5 f=b, (3.12)
for j = 1,2,...,N and t > t.. Furthermore, there is a nj > 0
such that WF(|P - le < nj)fn < aj/z for every t & Rr*. Hence,
by the estimate
IF(IP - v.| < U)W £t =
| J| 5 (V)W
(3.13)

15



-itH

IFCIF-v . 1< 7. 3{U(L)wW, f - e o L6 + WFC|IF-v .12 )il
J J + J 3
we get sup IF(JF - v. | < goUMIW fIl < ., j = 1,2, N,
LT, J J * J
J

which proves (1.11).m

4. COMPLETENESS

In this section we show that the inclusion (3.4) can be

replaced by an equality.

THEOREM 4.1. - If the Assumptions P and T are satisfied,
then

R(W,(s)) = b2%s), s e R (4.1 )

Proof. - Again in accordance with the previous remarks
we restrict the considerations to s = 0, t — +w and v} = v}
= Vj’ j=1,2,...,N.

Let wus assume that (4.1) iz violated. Consequently,
there is a nontrivial f « 3% o R(W,), b:° = b:°(0). The aim
will be to show that necessarily f = 0. In order to show this

we establish that

. .
lim % [ dtiuco £ = 0. (4.2 )
T 0

Let v < v and let the intervals Aj, J =

< v < ... =<
11 - 12 — iN
0,1,...,N, be defined as before. At first, we assume that g
Cm(Ri), g’ = C:(Rt) and supp g < Aj for some j = 0,1,2,...,N.

Since w:f = 0 the representation

16

X
1
F(— = t)f =
(t = Aj)g(Pl)U( {

(4.3 )
o TitHy ey Uty - Wis, btz o0
Flg = Aj)g(Pl)e o (e o . S5 = 0,
holds. A simple computation proves the formula
itH itH Xy
* - —_—
(utr)*e o - W ret o g(PIF(g= € aph =
(4.4 )
X
N © .
* —isH 1
-i £ f ds Ut+s) Vv, (t+s)e o g(PIF(g= € ah,
L=1o

. h = bH. Applying Lemma 2.3 we see that the integrals of the

right-hand side of (4.4) converges 1in the operator norm

uniformly in t > 0. Since

X .
IF (e < A.)g(Pi)elsHo V, (L+S)UCE+S) £ S
’ (4.5 )
—-isH X1
w e *Mo g(PF(E e apuafy, feb,
® X

the integral éasur(gl P Aj)g(Pi)elSHo v, (t+s)UCt+s) flids

conver—- ges and by (4.3) we have the estimate

X
1
" <
"F(E_ < Aj)g(Pl)U(t)f =

(4.6 )
=l ! isH JUCt+s) £l ds, t > O
'E.f dsﬂF(E— e Aj)g(Pi)e o] Vl(t+s) s .
1=1
el
1 isH £l e LYRY,ds)
Since sup ﬂF(f_ = Aj)g(Pl)e o Vl(t+s)U(t+s) = o
t>0
we obtain the estimate
17



(P UL <

1 1
% j dt IF(z= € Aj
o (4.7 )
N o0 1 X1 sH
in j ds ¥ j IF(;— € &, )g(P yelsHy v, (t+s)UCt+s) £l
** 0 o

on account of (1.4) for every € > O there is a R > 0 such
that

sup v, (tre X (WP

1 F(IXP>PRYIE < er2. (4.8 )
t>0o '

Taking into consideration Definition 1.1 we find

T .
lim % L[ at iF(xi<Re 3P yirasy 1 = o, (4.9 )
T-om
o
s > 0. Therefore, by the estimate
1 X isH
—_— <
F j IF(y= = Aj)g(Pl)e o V (t+s)U(t+s) Il =
0
Ig(P O £l sup 1V, (t)e X1 HSP oy isryn + (4.10)
1 1
>0
1g(P )1 SupllV, ()1 =) dtuF(IX|<R)elx (B+8)P eersy o,
>0
o
s > 0, and the relations (4.8) and (4.9) we find
T X, <H ‘
1im TJdtuF(—— < 88(P, yelsHy V) (t+s)UCt+s) Il = 0 (4.11)
T-»00 :
o
for every 1 = 1,2, ,N and j = 6,1,2,...,N. Lemma 2.3 allows -

one to apply thé dominated convergence thecorem which yields
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1 T X1
lim = [ dt #F(z= € A g(P HUCLIfI = 0O (4.12)
: T : t j 1
Taw
]
for supp g < Aj and every j = 0,1, 2,..;,N;
we note that on account of (1.7) - (1.9) the

trajectorles have the properties

SUp }x (1) - R L] < v, § o= 1,2, N (4.13)
ter' Y ]
If j = 1,2,...,Hd-1 and supp g < Aj’ then obviocusly we have g
< C (Ri) and, consequently, g€ has a summable Fourier

tran:form. Applying Corollary 4.5 of [2] we find

T Xy
lim < j dtu{g(——) - (P )TN = O. (4.14)
T-OUJ O B

Notice that the Assumptions T and F are stronger than the

corresponding ones of [2]. Using (4.14) we immediately get

. T Xy .
lim T'f dtiF(z— € R \Aj)g(Pl)U(t)fu =
Tro = (4.15)
1 T Xy 1 Xy
lim = j dtliF(;—= « RN\NA D {g(P ) - g(==))XU(t)fll = O,
T t J 1 t
T-»w o .
j=1,2,...,N-1. Summarizing (4.12) and (4.15) we find
., T :
lim 5 [ dtlg(P UL = 0 (4.16)
Tac ~ 0
for supp g < Aj’ j=1,2,...,N-1.

In order to extend (4.16) to j = 0 and j = N we have to
use a different method. Our first aim will be to show that

supp € < AN yields
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1 T X4
lim % j dtiIF (g € Ao)g(Pi)U(t)fﬂ =0 . (4.17)
T-»w 0

and that supp g < Ao implies
T X

" _ .
f dtﬂF(E— € AN)g(Pl)U(t)fH = 0. (4.18)
o]

lim
T

i

Proving (4.17) we use the representation

Xy
F(z> & A)8(PULIE =

X

1 -—
F(E_ = Ao)g(Pl)e

TtH, o1ty ueey - whr + (4.19)

Xl _
F(f_ IS Ao)e

1o gpwts

Oon account of Lemma 2.5 the last summand of the right-hand

side tends to zero as t -— +w. Furthermore, we have the

formula
% -itH itH Xy
{U(t) e o - W_le o S(Pl)F(E_ = Ao)h =
(4.20)
N O . : X, -
: * ~-isH 1
i E.I ds U(t+s) Vl(t+s)e o g(P IF(g— € s 0h,
L=1—0 .
h = &, t » 0. Taking into account. Lemma 2.4 the
representation (4.20) immediately yields the estimate
T X . .
1 1 -itH itH gt <
= f dtiF(g— € a)g(P e ofe” "o Ugt) W Il = |
0 (4.21)
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No o T Xy isH
[ ds T J dtlF(¢= e A )g(P )e” "o V, (t+s)U(t+s) Tl ds,
L=1—
0
t > 0. As beforé, we get
1 T x1 isH
lim Tf dtiF (<A )g(P )e o V (t+s)Ult+s) fll = 0, (4.22)

Taw 0

= < ¢. On account of Lemma 2.4 we can apply the dominated
convergence thecorem. Thus, we find (4.17). Similarly we prove
(4.18).

Taking into account (4.12) the relations (4.17) and

(4.18) can be summarized as follows:

T X
: 1 1 _
lim TI dt“F(E—— < AO v} AN)g(Pl)U(;)fll =0 (4.23)
T-w 6

for =upp g < Ao U A Choosing g so that it equals one in a

N
neighbourhood of +w and -w (g’ < C?(R‘)!i we obviously have
1-g = cz(m‘). Hence, 1-g possesses a summable Fourier

transform. Applying again Corollary 4.5 of [2] we obtain

. T X, .
lim & j dti{g(y=) - g(PIUCIfi =
Trw g . (4.24)
1 7 Xy
lim = Jatid(1 - g(g=)) = (1 - g(P ))UC) Ll = O.
T 0
But (4.24) immediately yields
1 T x1 1
lim Tf dtlIF(g= & RN uag(P ULl = 0. (4.25)
T+ 0

But from (4.23) and (4.25) we obtain
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T

lim &[ dtlg(P HULIfI = 0 (4.26)
T. 1
T
o}
for supp g < Ao U AN and g = 1 in a neighbourhood of +w and
—0.
Summing up (4.16) and (4.26&) we get
1 T
lim -j dtlig(P YU(LIEH = 0O (4.27)
. T. 1
o T
. [¢]
o, 4 w, i
for g e C (R‘\IJ{vlj}), g' = co(m ) and g = 1 in

i=1
neighbourhoods of +® and -—w.

Obviously, the same can be done for all other axes
xe,x3,...,xn. Doing so, we find
1 T
lim TI dtig(P)UC) fll = 0 (4.28)
T+
[¢]
0, 4 :
for g € C (RN UA{v.,}) and g = 1 in a neighbourhocod of
i=1

infinity. Since the relation (4.28) holds for every such a g,

we get that for every n > 0 we have

T
lim lf dtiF(|P - v.|] 2 muUtYfit = o, (4.29)
T : J
T
[¢]
j=1,2,...,N. But on account of (1.11) for every f & b:c and
every € > 0 there is a n > 0 and a vt > 0 such that
YF(IP - vjl < MULIEN < &, J = 1,2,...,N, (4.30)

for t > r. Taking into account (4.29) and (4.30) we cobviously

obtain
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T
. 1
lim sup =
T
T
O

T
lim Tf dtWF({P - vjl
T o

"~

N
lim Tf dtiF(|F - vjl

Herice (4.

j dtiuct) £ =<

> MUt L + (4.31)

< MULITI < g,

2) 1is fulfilled which immediately

COROLLARY 4.2. - If the Assumption P is satisfied and

the trajectories x.(.) = ¢' (R',R™) obey
J loc .

Sup % (t)] < +w, j = 1,2,...,N, . (a.32)

teR' I
(which vields vi = v, =0, j = 1,2,...,N), then (4.1) holds.

J J ) .
FProof. - We note that in this case it is not necessary

to

uze Corollary 4.5 of

satisfy condition (4.13)
(1.9).m
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Hatinxapnr X, .
ABuxyillHecs morTeHuuans X NOJHOTA BOJHOBBX
oneparopos. CymecTpoBaHHE H IIOJIHOTA

E5-90-370

Ona o6o6mennoro sapafa nepeHocsimeHd MOAENH, TOuYHEe,
O ABHXYWMXCA H BPEMEHHO 33BHCAMHX KOPOTKOALHCT B YIONHX
NOTEHINAN0B, nokKasaHo CYWecTBOBaHHE H IMOJIHOTA BOMHOBHIX
ONepaToOpoB, KOTOPAas ONpenelieTcs MOAXOIANWHM O6pAasoM.

OHHPaﬁoTa BrIoJIHeHa B JlaopaToOpHH TeopeTHYecKON (GHU3IUKH
7

TIpenpunT OGBEMHeHHOtO HHCTMTYTA AAEPHLIX HectegoBaduit, Hy6ua 1990

Neidhardt H.
Moving Potentials and Completeness of Wave
Operators. Existence and Completeness

E5-90-370

For the g?neralized charge transfer model, i.e, for
moving and time-dependent short range potentials the exis-
tence and completeness, defined in a suitable manner, of
the wave operators are shown,

The inv?stigation has been performed at the Laboratory
of Theoretical Physics, JINR,

Preprint of the Joint Institute for Nuclear Research. Dubna 1990




