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1. INTRODUCTION 

In this note we put away the investigations of our

gener-alized char-ge tr-ansfer- model studied in [1,2) which is 

defined as follows. In l) = L2
([Rn), n ~. 1, we consider- the 

Schr-odinger- equation 

H(t)u - (H 
0 

+ V(t))u, ( 1. 1 ) 

wher-e H
0 

is the free Hamiltonian given as usual, i.e. H
0 

= 

-~.t,. 2 , and {V(t)}te!Rt is a time-dependent per-turbation of the 

form 

N 

V(t) = E V.(t), 
J=l J 

where the time-dependent 

ar-ise from time-dependent 

( 1. 2 ) 

per-turbations {V.(t)}N , 
J j =i 

t 

potentials q. as follows: 
J 

( 1. 3 ) 

X j ( . ) : [Rt ...:..+ [Rn, j .= 1, 2, ... : N. m m I: 

In the following, by Cloc([R ) and C~
0
/!R ,IR ) , m,k ~ 1, 

we denote the sets of all functions defined on (Rm with values 

in IR
1 and [R1:, respectively, whose fir-st der-ivatives exist and 

are continuous. 

ASSUMPTION P. - The potentials qj, j = 1,2, ... ,N, belong 

to C1 
(!Rni-:1.) and satisfy the properties 

toe 

(t,x) e (Rni-:1., e > O, 

Ob11.e.anllt'u1i~n HHcnrr;1 \ 
nn~11:sJx ur.c .:5ia:no111imi 

6MSJl~!(;T!KA _. ---- -

( 1. 4 ) 



IX I lv'q • I € L'X)([RnH), 
J 

lim xv'q.(t,x) = 0, t E IR 1
, 

!xl .. oo J 

q. E L oo(IRn·H J ) , sup I q . ( t, x) I E L 1c CR:1.) , 
XECRn J 

( 1. 5 ) 

( 1. 6 ) 

j 1,2, ... ,N, where we have used the notation qj = a at qj • 

In the sequel, we are interested in the scattering 

theory and, therefore, in the behavior of the potentials at 

infinity. Consequently, we have omitted local singularities 

of the potentials. But it seems to us quite possible to 

include local singularities. 

The function x j ( . ) : IR:1. -+ [Rn can be regarded as a 

trajectory along which the potentials q. move. Concerning the 
J 

trajectories we assume the following. 

ASSUMPTION T. - The trajectories x.(.), j 
:I. :I. n J 

belong to C CIR ,IR) such that 
loc 

1,2, ... ,N, 

1 . 1 ( ± im t X. t) = V., 
t➔±oo J J 

j = 1,2, ... ,N, ( 1. 7 ) 

exist and, moreover, 

+ 
sup Ix. ( t) - v:tl < +oo, j = 1,2, ... ,N, 
±t2:0 J J 

( 1. 8 ) 

+ 
sup I tx, < t> 
.±t>O. J 

- v:tl 
J 

< +oo, j = 1,2, ... ,N. ( 1. g ) 

If q. E C:1. (IRn+:1.), q ., lv'q. I and q. <= L 00 (1Rn+:1.) as well 
J loc J J J 

as x.(.) E C:1. (IR:1.,IRn), j = 1,2, ... ,N, by Proposition 2.2 and 
J loc 

Remark 2.1 of [1] with Eq. (1.1) we can associate a unique 

propagator {U(t,s)}(t,s)EIR2 consisting of unitary operators 

and obeying the properties of Proposition 2.2 of [1]. Using 

2 

~his propagator the scattering states are defined as follows. 

DEFINITION 1.1. - The state f belongs to the scattering 
SC subspace t)± ( s), 

s+T 

s E IR:l, if for every R > 0 we have 

lim i J dt IIFC IXI < R)eixj(t)P tict,s)fll 2 = 0, 
T➔±oo. 

( 1. 10) 

s 

+ + 
j = 1,2, ... ,N, and if for every s: > O there exist ~-J > O and 

+ J 
r: >Osuch that 

J 

+ + + 
sup+ IIFC!P -.v~I < ~:)U(t,s)fll < s:, 
±t>r: ~ J J 

(1.11) 

J 

j = 1,2, ... ,N. 

REMARK 1.2. We note that for the Cesaro mean it is 

unessential whether the function under the integral is taken 

by power two or one provided the function is bounded. Thus, 

it is possible to replace II ... 11 2 in ( 1. 10) by II ... II. 

In accordance with Enss [3] by F(.) we denote the 

spectral projection of the self-adjoint operator to the part 

of the spectrum as indicated in the parenthesis. By X and P 

we denote the 

{ ./J ./J 
- i-:.,- , - i-:.,- , ux

1 
uX

2 

commuting n-tuples X = 

... ,-i!x} = -iv' of 
n 

{X1,_X2' 
position 

,X ) and P = . n 
and impulse 

operators, respectively. 

REMARK 1.3. - ( i) If the potentials q., j = 1,2, ... , N, 
. J 

are nonmoving, i.e. X. ( t) - 0, j = 1,2, ... ,N, and 
·J 

time-independent, i.e qJ't,x) = q J' x), j = 1,2, ... ,N, then 

condition ( 1. 10) coincides with those of Ruelle [4] and 

Amrein-Georgescu [ 5). Moreover, condition ( 1. 11) is a 

consequence of (1.10) and Assumption P, as can be ~een from 

[3]. 

(ii) If the potentials q., j = 1,2, ... ,N, are nonmoving .· J 

3 



but time-dependent, our definition of.the scattering subspace 

coincides with Definition 5.1 of Kitada and Yajima [6). See 

also [7,8,9). As it has been pointed out by Kitada and Yajima· 

the condition (1.11) is essential by a counter example· given 

by Yafaev [10,11). The same takes place in our case despite 

the fact that we have a slightly stronger condition (1.6) 

than Kitada and Yajima. 

Therefore, it seems to us that Definition 1. 1 is a. 

natural generalization of the definition of the scattering 

subspace to moving time-dependent potentials. 

The goal of the paper is to show the existence of the 

wave operators W±(s), 

w±·( s) = s~lim U(t s)* e-i(t-s)H , . 0 
t~±oo I 

( 1. 12) 

and to establish the completeness of them, i.e. 

'.R(W±(s)) _ SC( 
- 'f)± s) . ( 1. 13) 

REMARK 1.4. - ( i) If the potentials qj' j = 1,2, ... ,N, 

are nonmoving and time-independent on account of Remark 1. 3 

( i), t.he 

completeness 

solved. 

problem 

problem 

coincides 

for short 

with 

range 

the existence 

potentials which 

and 

is 

(iii If the potentials q., j = 1,2, ... ,N, are nonmoving 
J 

but time-dependent, the problem was solved by Kitada and 

Yajima [6,12] even for long range potentials. 

(iii) If the potentials are moving but time-independent 

a stronger asymptotic completeness result than ( 1. 13) was 

proved by Yaj ima [ 13 J , Graf [ 14 J , Hagedorn [ 15) and Wul ler 

[16,17). It can be shown that the relation (1.13) follows for 

time-independent sho1't range potentials from [13) or [16,17) 

but under stronger assumptions concerning the trajectories 

x.(.), j = 1,2, ... ,N, and the behavior of the potentials q., 
J J 

j = 1,2, ... ,N, at infinity. 

The proof of (1.13) relies on a P.hase space analysis, in 

particular, on tho=. f.=,n,ous paper of Enss (18) on the 

j-'r·apagating _properties of quantum observables. We consider 

only .the short-range case. The long-range case will be the 

contents of a forthcoming paper. 

In the following we need the notation C00
([Rn), n ~ 1, 

denoting the set of bounded functions on [Rn which are 

infinitely often differentiable. By C~(IRn) we denote the 

subset of functions with compact supports of C00(1Rn)_ If .Al. is 

a closed subset of [Rn we set c00(1Rn'.AI.) = {f e C00(1Rn): fl.Al.= 0) 

and, similarly, C00
(!Rn\:~) =· {f e c00

(!Rn): fl.Al.= O}. 
o o 

2. TECHNICAL PRELIMINARIES 

For simplicity and since it will be unessential in the 

following that the trajectories XJ'.) have different 

asymptotics for past and future we assume throughout this 

section that v; = vj = vj, j = 1,2, ... ,N. This agreement has 

the advantage that instead of (1.8) we have now 

sup I x . ( t) - v . t I < +oo, j 
te!Rt. J J 

= 1~2, ... ,N. (2. 1 ) 

Basic in the sequel will be the following proposition of 

Enss. 

PROPOSITION 2.1 (18). Let g e c00
(1R

1
) such that g• e 

C~(IR1
). If supp g c (v

0
,+oo], then for any k e IN there is a 

constant ck such that 

4 5 



-itH -k IIF(X
1

<R+v
0
t)e o g(P

1
)F(X

1
>R)II S Ck(l+t) -, (2.2) 

t ~ 0. If supp g c [-oo,v
0
), then 

-itH -k 
IIF(X

1
>R+v

0
t)e o g(P

1
)F(X

1
<R) II S Ck(l+t) ', (2.3) 

t ~ o. The constants Ck depend on the shape of g and on 

dist ( v , supp g) , but are independent of v and R e IRi. 
0 0 

Furthermore, in the fol lowing we assume that the 

velocities vj = {v1 j,v2 j•··. ,vnj}, j = 1,2, ... ,N, are ordered 

by 

V 11 S V12 S S vlN" (2.4) 

Proposition 2.1 allows one to establish the following 

LEMMA 2.2. - If the conditions ( 1. 4) and ( 1. 7) are 
N 

satisfied and if g e c00c !Ri, U { v 
1 

. } ) , g' e· c00c IR1
) , then for 

j =i J 0 

every 1 = 1,2, ... ,N and every a,b e IRi we have 

-itH i i 
IIVl(t)e O g(Pl)F(a ( xl < b)II € L (IR+,dt). (2. 5 ) 

. 1 
Proof. - Fixing 1 and introducing 6 1 = ~ist(v11 ,supp g) 

we have to distinguish the following two cases: 

( i) supp g c (v
11 

+ 6
1

, +oo) 

(ii) supp g c [-oo,v
11 

- 6
1
). 

Assuming (i) and applying (2.2) we get 

-itH IIF(X 1<a+(v11+6
1
)t)e o g(P 1 )F(a<X

1
<b)II 

(2.6) 

6 

e Li C IRi, d t) . 

Taking into account the estimate 

-itH UV
1
(t)e o g(P

1
)F(a < X

1 
< b)II S 

UV
1

(t)F(X
1 

>a+ Cv
11 

+ 6
1

)t)II llg(P
1

511 + (2.7) 

-itH 
IIVl(t)II IIF(Xl<a+(vll+ 6l)t)e O g(Pl)F(a< xl <b)U 

and sup nv
1

(t)II S M
1 

< +oo (see (1.4)) the relation (2.5) 
te!Rt . 

follows if we show that 

IIV
1

(t)FCX
1 

>a+ (v
11 

+ 6
1

)t)II 1 i 
o: L (IR+,dt). (2.8) 

By (1.4) we get 

UV
1

(t)F(X
1 

>a+ Cv
11 

+ 6
1

)t)II S 

(2.9) 

-1-s 
M

1 
sup ( 1 + I x

1 
- x 11 ( t) I) 

x
1

>a+(v
11

+6
1
)t 

X ( t) 

Since lim -i-~-
t ➔+oo 

= v
11 

we find a t
0 

> Osuch that 1x
11

ct) -

6 v
11

tl < 2 t. Therefore, we get 

1x
1

+a+(v
11

+6
1
)t - x

11
(t) I ~ x 1+ a+ }51t, (2.10) 

t > t, x
1 

~ 0, which immediately yields the estimate 
0 . 

7 



IIV 1 (t)F(X1>a+(vi 1+ 6 1)t)II < 1 -1-s _ M
1

(1+a+ 2 6
1
t) , 

t > max(t ,-~a)_ But (2.11) proves (2.8). 
o ,_, l 

(2. 11) 

The proof for the case ( ii) can be done in the same 

manner using instead of (2.2) the estimate (2.3). ■ 

Lemma 2. 2 al lows a further refinement. To this end we 

introduce the intervals li
0 

= [-oo,v11 ), 11j = (v1 j,vl(j+l)), j 

= 1,2, ... ,N-1, and /iN = (vlN'+oo]. 

LEMMA 2 . 3. - If the condi ti ons ( 1. 4) , ( 1. 7) and ( 1. 8) 

are satisfied and. if g e C
00

(1R
1
), g• e C

00
(1R

1
), supp g c li., j 

0 J 
= 0, 1,2, ... ,N, then for ever<.) 1 = 1,2, ... ,N we have 

-isH xl 
sup II V l ( t + s) e o g (Pl) F ( t € 11 . ) II 
t>O J 

1 1 -= L (IR+,ds). ( 2. 12) 

Proof. - Let us introduce the multiplication operator 

v1(t) defined by 

cv
1 
(t) fl ( x) q 1 (t,~ + v 1t - x

1
(t))f(x), x "= IRn, 

f Et). Since the formula 

Xl ei(t+s)vlP e-isHO g(Pl)F(t E /ij) 
. 1 2 l•s2v

1 = e X 

(2.13) 

(2.14) 

iv x -isH Xl -iv x itv P 
x e l 1 e o g(Pl + vll)F(t + vll E /ij)e l e l 

holds, we find 

-isH xl 
IIVl(t+s)e O g(Pl)F(t E /ij)II = 

(2. 15) 

8 

- -isH Xl 
11\'i(t+s)e o g(P 1 + v 11)F(t + v

11 
e /ij)II. 

If j ~ 1, then the problem (2.13) will be solved if we show 

that for supp g c (O,+oo] we have 

~ -isH ~ t t sup IIV 1 (t+s)e o g(P 1 )FCX 1~0)II e L (IR ,ds). 
t>O + 

(2.16) 

If j < 1, then we have to establish that for supp g c [-oo,O) 

the relation 

~ -isH ~ t t sup IIV 1 (t+s)e o g(P 1)F(X 1SO) II e L (IR ,ds) 
t>O + 

(2. 17) 

holds. 
' 1 ~ To prove (2.16) we set 6 = 2 dist(O,supp g) and e

1 
= 

suppjx 1 (t) - v 1tl which is finite by (2.1). Using Proposition 

telR
1 

2.1 we find 

-isH ~ IIF(X 1<6s)e o g(P 1 )F(X~>O)II e 1 1 
L (IR+ 1 ds). (2.18) 

Hence, on account of the estimate 

- -isH ~ IIV
1
(t+s)e o g(P 1 )F(X

1
~0)II S 

IIV 1 (t+s)F(X1>os)lllli(P 1 )11 + ( 2. 19) 

~ -isH ~ 
IIVl(t+s)UUF(Xl<os)e O g(Pl)F(Xl>O)II 

and sup IIV1 (t) II S M
1
< +oo the relation (2.16) follows if we 

telR
1 

show that 

9 



sup IIV1 (t+s)F(X1 >os)II 
t>O 

We have 

11v
1

ct+s)F(X
1

>6s)II s 

i 1 
EL (!R+,ds). 

-1-s M1 sup (1 + 1x1 + v 11 (t+s) - x 11 (t+s)) 
x 1~6s 

Ifs> Q
1
/6 we find the estimate 

sup IIV
1

(t+s)F(X
1

>6s)II 
t~O 

-l-s 
S M1 (1 + 6s - Ql) 

which obviously yields (2.20). 

(2:20) 

(2.21) 

(2.22) 

The relation (2.17) can be proved in the same manner.a 

Furthermore, in the fallowing we need a modification of 

Lemma 2.3. 

LEMMA 2.4. - Let (1.4), (1.7) and (1.8) be satisfied and 

Let g E c00 (!Ri) and g• E c00(!Ri). 
a 

If supp g c AN, then for every 1 = 1,2, ... ,N we have 

-isH 1 1 sup IIV
1 
(t+s)e o g(P 1 )F(X1 < v 11 t) II E L (!R_,ds). (2.23) 

t>O 

If supp g c A
0

, then for every 1 = 1,2, .... ,N we have 

-isH i i sup IIV
1
(t+s)e o g(P 1)F1 (X 1>v1Nt)II EL (!R_,ds). (2.24) 

t>o 

Proof. - On account of (2.14) we get 

10 

_;~H 
ttv1 ct+s)e ·- a g(P

1
)FCX

1
< v

11
t)U 

(2.25) 

~ -isH 
11v 1 ct+sle a g(P

1
+ v 11 lF(X

1 
+ v

11
t < v

11
t)II. 

Hence, we will prove (2.23) if we show that 

:-. -isH --~ sup llv
1

ct+s)e o g(P
1

lF(X
1 

< 
t>O 

0) II e L1 (!R~,ds) (2.26) 

with supp g c (O,+w]. From (2.3) we obtain the estimate 

IIF(X
1

> 6s)e-isHo gJP
1

lF(X
1 

< OJ II . -k 
S Ck( 1-s) , (2.27) 

s < 0, where 6 = ½ dist(O,supp g). Using this estimate and 

repeating previous proof arguments, we immediately prove 

(2.26). Similarly, we establish (2.24). ■ 

At the end we establish a simple fact. 

LEMMA 2.5. - If supp g c (v
0

,+oo], then 

-itH s-lim FCX
1

< v
0
t)e o g(P

1
) = 0. 

t ... +oo 
(2.28) 

If supp g c [-oo,v
0
), then 

-itH s-lim F(X1> v
0
t)e a g(P

1
) = 0. 

t ➔+OO 
(2.29) 

Proof. - Since supp g c (v
0

,+oo] there is av~> v
0 

such 

that supp g c (v~,+oo]. Applying (2.2) we obviously find 

11 



lim F(X
1

< a+ v;t)e-itHo g(P
1

)F(a <X
1
< b)f = 0, 

t ➔+OO 

f e g. Since v') '\ 
0 , V 

0 
there is at 

0 
such that 

F(X
1

< v
0

t)FCX
1 

< a+ v' t) 
0 

F(X
1

< v
0
t) 

fort> t
0 

which yields 

-itH 
lim F(X

1
< v

0
t)e a g(P

1
)F(a<X

1
< b)f = 0. 

t ➔+OO 

(2. 30) 

(2. 31) 

(2.32) 

But {F(a<X
1

< b)f: f e g, a,b e lR
1

} is a dense subset oft. 

Consequently, (2.32) implies (2.28). 

Similarly we prove (2.29). ■ 

3. EXISTENCE 

We start with some general remarks which allow the 

existence and completeness problem to be simplified. 

REMARK 3.1. - Introducing the family U(t) = U(t,O), t e 
[R:I., and using for 

representation 

* U(t,s) = U(t)U(s) 

the propagator of Eq. ( 1 .. 1) the 

t, s e [R:1., (3. 1 ) 

it is not hard to see that it is enough to consider the case 

s = 0. 

REMARK 3.2.- Defining the family H(t) = HC-t), t e [R:1., 

and denoting 

propagator, 

by 

one 

{U(t,s)}(t,s)EIR2 

can prove that 

12 

the 

the 

corresponding 

propagators 

I 

j 
\, 

'{U(t,s)}(t,s)EIR2 and {U(t,s)}(t,s)EIR2 are related by 

JU(t,s) U(-t,-_s)J, t, s e [R:1., (3. 2 ) . 

where J denotes the operator of complex conjugation, i.e 

(Jf)(x) = f(x), f e g. On account of (3.2) now it is easy to 

carry over the existence and completeness problem for w = 
A 

A * -itH w ( O) to w+ = s-lim U(t) e 0 = w where, of course, we -t;;_>+OO 
have set U( t) = U(t,O), t E [R:I.. Hence, it is enough to 

consider the time direction t ➔ +oo. 

REMARK 3.3. - Since The Schrodinger equation (1.1) is a 

local one, its propagator {U(t,s)}(t,s)EIR:1. is not influenced 

for t ~ s by the behavior of {H(t)}te!R:1. for t ~ s. 

Consequently, having other trajectories ; .(.) e c:1. ([R:1.,!R") 
J loc 

such that 

x/t) = x/tl, t ~ 0, (3.3) 

A 

and denoting by {U(t,s)}(t,s)EIR2 the propagator of the 

Schrodinger equation whose potentials q. move along the 
J 

trajectories x.(.), 
A J 

the 

(U(t,s)}lt,s)e!R2 coincide 

U(t) = U(t) for t ~ 0. 

propagators 

for t,s ~ 0, 

Therefore, 

{U(t,s))(t,s)e!R2 and 

in particular, we have 

modifications of the 

trajectories x. (.) for t ~ o have no influence on the wave 
J 

operators W+. Hence, it is quite possible to modify the 

trajectories x.(.) 
J 

in such a manner that the wave operators 
. 1 -1 l.m t X • ( t) = V. = 

t ➔-OO J J 
W+ are not influenced and the conditions 

v;, j = 1,2, ... ,N, are fulfilled. 

Now we 

operators. 

are going to show the existence of the wave 

13 



PROPOSITION 3.4. 
• 00 l"l+:I. 

j 

If the conditions q. 
J 

1 , 2 , ... , N, as we i i as 

E 

I v'q j I , q j e L ( CR ) , 

(1.7) are satisfied, 

W±(s) exist and obey 

then for euery s e CR
1 the waue 

~(W±(s)) S 't);c(s). 

C:1. ([R:1.)' 
loc 

(1.4) and 

operators 

(3.4) 

Proof. - On account of the previous remarks we consider 

only the case s = o, 
1,2, ... ,N. Furthermore, 

ordered by (2.4). 

t -+ 

we 

Obviously, the set 
N 

001 , 00:1. 
C ([R, U{v

1
.}), g ,e C

0
([R ), 

j =:I. J 
Moreover, we have 

+ 
+oo, and vj 

assume that the 

{g(P
1

)F(a<X
1

< 

a, b e CR
1

, f e 't)} 

v. -
J 
set 

b) f: 

V., j = 
J N 

{v.} is J. j =:I. 

g E 

is dense in 't). 

· * -itH U(t) e o g(P
1

)F(a<X
1
<b)f = g(P

1
)F(a<X

1
<b)f + 

(3.5) 

N t * -isH 
i EJ ds U(s) V1 (s)e o g(P 1 )F(a<X1<b)f. 

j =to 

Applying Lemma 2.2 we immediately get the existence of W. It 
. + 

remains to show (3.4). Since W+ = s-lim U(t)*e-itHo we have 
t ➔+OO 

1 T 
lim T J dt IIU(t)W+f -
T➔OO 

0 

which yields 

-itH e o fll 2 = 0 (3.6) 

lim !:_ JTdtllF( IXl<R)eixj(t)P{U(t)W f-e-itHo f}ll 2 = 
T T + 0, (3.7) 
➔00 

0 

f e 't), for every j = 1,2, ... ,N and every R > 0. Consequently, 

condition (1.10) is satisfied if we can prove the relation 

14 

T 

lim ½ J-dtllF( IXl<Rleix.(t)P 
~00 J 

0 

-itH e o ftt
2 

0, (3.8) 

f e b, for every j 

account the formulas 

1,2, ... ,N and every R > 0. Taking into 

2 
X. ( t) 

. J 
ix.(t)P -itH 1 

2t 
e J e o=e 

and 

-i~ 
s-lim e t xj(t)X 

t ➔OO 

if x.(t)X -itH -if x.(t)X 
e J e o e J 

-iv.X 
e J 

(3.9) 

(3.10) 

we immediately see that (3.8) is fulfilled if 

0 

1 T "tH . " 2 
lim T f dtllF( IXl<R)e- 1

" o e- 1 VjA fll 
T->00 

0, f E 't), (3. 11) 

holds for every j = 1, 2, ... , N and every R > 0. But the last 

fact is obvious for the free Hamiltonian H = -¼~-
. . * -itH o 

T) j 

Since W = s-l1m U(t) e o for every s. > 0 and every 
+ t ... +oo J 

0 there are r. > 0 such that 
J 

IIF(IP-v.1<11.HU(t)W f -
J J + 

-itH e o f}II 1 _ f E ( 2 c j, 't), (3.12) 

for j = 1 , 2 , ... , N and t > T' j . 

such that IIF(IP v.l < ry.)fll 
J J 

Furthermore, there is a Ti-> 0 
:I. J. 

< s ./2 for every t E [R . Hence, 
J 

by the estimate 

IIF(IP - v.l < ry.)U(t)W fll s 
J J + 

(3. 13) 
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IIF'(IP·-v.l< 
J' 

,..., ' 'Uft)'' f • t j J \. ~ - ·,'\' + 
-itH - e o f} Ii + ll F ( I P-v. I < n . } f II 

J 'J 

we get sup II F ( IP - v . I 
t.>r. J 

7t.)U(UW fll 
J + 

c- J·-·1? N ..... j' - J.- ,-, - - • , , 

J 
which proves (1.11). ■ 

4. COMPLETENESS 

In this section we shaw that the inclusion (3.4) can be 

replaced by an equality. 

THEOREM 4.1. - If the Assumptions P and Tare satisfied, 

then 

!R(W:!:(s)) - h'-C - 'J:t ( s) , S E (Rt. ( 4. 1 ) 

Proof. - Again in accordance with the previous remarks 

we restrict the considerations ta s = o, t - +oo and v~ = v~ 
J J 

_ vj, j = 1,2, ... ,N. 

Let us assume that (4.1) is violated. Consequently, 

there is a nontrivial f e t.):c e !R(W+), t:c = t.):c(O). The aim 

will be to shaw that necessarily f = 0. In order ta shaw this 

we establish that 

T 
lim ½ f dtllU(t)fll 
T~oo 

0 

o. (4.2) 

Let v 11 ~ v 12 ~ ... ~ v 1N and let the intervals aj, j = 

0,1, ... ,N, be defined as before. At first, we assume that g e 

C
00

(1R
1
), g' e c00

(1Rt) and supp g c A. far same j = 0,1,2, ... ,N. 
a J 

Since w*f = O the representation 
+ 

16 

Xl 
F(t E Aj)g(P 1 )U(t)f = 

(4.3) 

Xl -itH itH * 
F(t e t.j)g(Pl)e a {e a U(t) .- W+}f, t ~ 0, 

holds. A simple computation proves the formula 

* -itH itH Xl 
{U(t) e a - W+}e a g(P 1)F(t e t.j)h 

(4.4) 

N 00 * -isH x1 
-i EJ ds U(t+s) v

1
ct+s)e a g(P 1 )F(t E t..)h, 

l -t J 
- 0 

h e t.). Applying Lemma 2.3 we see that the integrals of the 

right-hand side of (4.4) 

uniformly int> 0. Since 

converges in the 

xi isH 
IIF(t e t.j)g(P

1
)e a V1 (t+s)U(t+s)fll ~ 

X 

operator 

-isH 1 IIV l (t+s)e a g(P l)F(t e t.j)II llfll, f e t.), 

norm 

(4.5) 

the integral 

conver- ges and 

oo X 
[dsllF(t 

1 

by (4.3) 

e t.j)g(P
1
)eisHo V

1
(t+s)U(t+s)fllds 

we have the estimate 

Xl 
IIF(t E Aj)g(P 1 )U(t)fll ~ 

(4.6) 

N oo X
1 E J dsllF(t e 

t::;t
0 

isH t.j)g(P
1
)e o v

1
(t+s)U(t+s)fU ds, t > 0. 

. xl isH t t 
Since sup UF(t e A.)g(P

1
)e o V

1
(t+s)U(t+s)fU e L (IR ,ds) 

t>0 J + 
we obtain the estimate 

17 



1 T X1 
T J dt IIF(t e Aj)g(P 1)U(t)fll:,; 

0 (4.7 

N 00 1 T x1 isH 
E J ds T J dt IIF(t e Aj)g(P 1)e o v1 (t+s)U(t+s)fll. 

t=i O 0 

On account of ( 1. 4) for every s > O there is a R > O such 

that 

sup IIV
1
(t)e-ixl(t)P F(IXl>R)II < s/2. 

t>O 

Taking into consideration Definition 1.1 we find 

T , 
lim ½ J dt IIF( IXl<R)eixj(t+s)P U(t+s)fll 
T➔OO 

0 

0, 

s > o. Therefore, by the estimate 

1 T x1 isH 
T J dt IIF(t e Aj)g(P 1 )e o V1 (t+s)U(t+s)fll::; 

0 

llg(P
1

)11 llfll sup IIV
1
(t)e-ixl(t+s)P F(IXl>R)II + 

t>O 

(4.8) 

(4.9) 

(4. 10) 

llg(P
1

)11 supllV
1

(t)II ½JTdtllF(IXl<R)eixl(t+s)P U(t+s)fll, 
t>O O 

s >~.and the relations (4.8) and (4.9) we .find 

1 T X1 
lim TJdtllF(t e 
T➔OO O 

isH Aj)g(P
1
)e o v1 (t+s)U(t+s)fll = 0 (4. 11) 

for every l = 1,2, ... ,N and j = 0,1,2, ... ,N. Lemma 2.3 allows 

one to apply the dominated convergence theorem which yields 
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1 T X1 
limTJdt IIF(tet..)g(P

1
)U(t)fll = 0 

T➔OO J 
0 

for supp g c t;.j and every j = 0,1,2, ... ·,N. 

We note that on account of ( 1. 7) 

trajectories have the properties 

sup I;,,: . ct) - x . < t) t I < +oo, j = 1, 2, ... , N. 
te!Ri J J 

(4.12) 

( 1. 9) the 

(4. 13) 

If j = 1,2, ... ,N-1 and supp g c ti., then obviously we have g 
Cl) 1 J 

E C
0

([R) and, consequently, g has a summable Fourier 

transform. Applying Cor9llary 4.5 of [2] we find 

1 T Xl 
lim T J dtll{g(t) - g(P 1 ) }U(t)fll = 0. 
T➔OO 

0 

(4. 14) 

t"otice that the Assumptions T and P are stronger than the 

corresponding ones of [2]. Using (4.14) we immediately get 

1 T Xl 
lim T J dtllF(t e [R

1 \.ti.)g(P 1 )U(t)fll 
T➔OO J 

(4. 15) 0 

1 T Xl Xl 
lim 'f J dtllF(t E [R

1 \.ti.){g(P 1 ) - g(t) }U( t) fl! = 0, 
T➔oo J 

0 

j 1,2, ... ,N-1. Summarizing (4.12) and (4.15) we find 

1 T . 
lim ~ J dtllg(P 1 )U(t)fll = 0 
T➔oo. 

(4.16) 

0 

for supp g c Aj, j = 1,2, ... ,N-1. 

In order to extend (4.16) to j = O and j = N we have to 

use a different method. Our first aim will be to show that 

supp g CAN yields 
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1 T X1 
lim T J dtllF(t e Li.

0
)g(P 1 )U(t)fll 

T➔OO O 

and that supp g c Ll.
0 

implies 

1 T X1 
lim T J dtllF(t e ¾)g(P 1 )U(t)fll 
T➔OO O 

Proving (4.17) we use the representation 

x1 
F(t e Ll.

0
)g(P

1
)U(t)f = 

0 

0. 

X1 -itH itH * F(t e Ll.
0

)g(P
1
)e o{e o U(t) - W_}f + 

X1 -itH * F(t e Ll.
0

)e o g(P 1 )W_f. 

(4.17) 

(4.18) 

(4. 19) 

On account of Lemma 2. 5 the last summand of the right-hand 

side tends to zero as t - +oo. Furthermore, we have the 

formula 

* -itH itH X1 {U(t) e o - W_}e o g(P 1)F(t e Ll.
0

)h = 

(4.20) 

N ° * -isH x1 
i EJ ds U(t+s) v

1
(t+s)e o g(P 1)F(t e Ll.

0
)h, 

t=1-oo 

h e £), t > 0. 

representation (4.20) 

Taking into account Lemma 2. 4 

immediately yields the esti~ate 

the 

1 T Xl 
'f J dtllF(t e 

Ll.
0

)g(P
1

)e-itHo{eitHo U(t)-W:}fll S 

·o (4.21) 

20 

N O l T x·
1 EJ ds T J dtllFCt e 

isH Ll.
0

)g(P
1
)e o V

1
(t+s)U(t+s)fll ds, 

l = 1-00 
0 

t 0. As before, we get 

1 T xl isH 
lim TJ dtllF(~

0
)g(P

1
)e o v

1
ct+s)U(t+s)fll = 0, (4.22) 

T➔OO O 

s <. 0. On account of Lemma 2. 4 we can apply the dominated 

convergence theorem. Thus, we find (4.17). Similarly we prove 

(4. 18). 

Taking into account (4.12) the relations (4.17) and 

(4.18) can be summarized as follows: 

1 T Xi 
lim 'ff dtllF(t e Li.

0 
u Ll.N)g(P 1 )U(t)fll = 0 

T➔OO 0 

(4.23) 

for supp g c Ll.
0 

u Ll.N. Choosing g so that it equals one in a 

neighbourhood of +oo and -oo (g' e ci([R
1

) ! ) we obviously have 

1-g e c 00 ([R
1
). Hence, 1-g possesses a summable Fourier 

0 

transform. Applying again Corollary 4.5 of [2] we obtain 

1 T Xi 
lim 'f J dtll{g(t) - g(P

1
)}U(t)fll = 

T➔OO O (4.24) 

1 T Xi 
lim 'f J dt II { ( 1 - g ( t)) - (1 - g(P

1
))}U(t)fll = 0. 

T➔OO O 

But (4.24) immediately yields 

1 T Xi 
lim TJ dtllF(t e [R

1
\.Ll.

0
ut.N)g(P 1 )U(t)fll = 0. 

T➔OO O 

(4.25) 

But from (4.23) and (4.25) we obtain 
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T 
lim ½f dtllg(P 1 )U(t)fll = 0 
T➔OO O 

(4.26) 

for supp g c A
0 

u AN and g = 1 in a neighbourhood of +oo and 

-oo. 

Summing up (4.16) and (4.26) we get 

1 T 
lim TJ dtllg(P 1)U(t)fll 
T➔OO O 

0 

N 
00 i for g e C ([R \. U { v 

1 
. } ) , g' 

j =i J 
neighbourhoods of +oo and -oo. 

E c':x\[R1) 
0 

(4.27) 

and g 1 in 

Obviously, the same can be done for all other axes 

x2 ,x3 , ... ,xn. Doing so, we find 

1 T 
lim TJ dtllg(P)U(t)fll = o 
T➔OO O 

(4.28) 

N 

for g e c 00
(!Ri\. U {v .}) and g = 1 in a neighbourhood of 

j =i J 
infinity. Since the relation (4.28) holds for every such a g, 

we get that for every T) > 0 we have 

1 T 
lim TJ dtllF( IP - v - I ~ T))U(t) fll = O, 
T➔OO J 

0 

(4.29) 

j = 1,2, ... ,N. But on account of (1.11) for every f e ~:c and 

every e > 0 there is a T) > 0 and a T > 0 such that 

IIF( IP - vj I < T))U(t)fll < s, j = 1,2, ... ,N, (4. 30) 

fort> T. Taking into account (4.29) and (4.30) we obviously 

obtain 
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1 T 
lirn sup T f dtllU(t)fll :s 
T➔OO 

0 

1 T 
lirn "ff dtllF( IP - v. I ~ T))U(t)fll + (4.31) 
T➔OO J 

0 

1 T 
lirn "ff dtllF( IP - v - I < T))U(t)fll < s, 
T➔OO J 

0 

j = 1,2, ... ,N. Hence (4.2) is fulfilled which immediately 

yields f = O. ■ 

COROLLARY 4.2. - If the Assumption P is satisfied and 

the trajectories x.(.)·-= Ct ([R\[Rn) obey 
J loc 

sup I x . ( t) I < +oo, j = 1, 2, ... , N, 
te!Ri J 

(4.32) 

(which yields v; = vj = o, j 1,2, ... ,N), then (4.1) holds. 

Proof. - We note that in this case it is not necessary 

to use Corollary 4.5 of [2]. Hence it is not necessary to 

satisfy condition (4. 13) which allows one to drop condition 

(1.9). ■ 
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noTeH~HanoB~ noKa3aHo cy~ecTBOBaHHe H nonHOTa BOnHOBblX 

onepaTopoB, KOTopaH onpegenHeTcH nogxogH~M o6pa30M. 

Pa6oTa BhlnonHeHa B fla6opaTOpHH TeopeTHqecKOH tH3HKH 
OIDIH. 
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moving and time-dependent short range potentials the exis 
tence and completeness, defined in a suitable manner, of 
the wave operators are shown. 
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