

объединенный
 йститут
 ядерных
 исследований
 дубна

H. Neidhardt*

MOVING POTENTIALS AND COMPLETENESS
OF WAVE OPERATORS
Existence and Completeness

Submitted to "Annales de L'I.H.P., Physique Theorique"
*On leave of absence from Karl-Weierstrass-Institut für Mathematik, AdW der DDR, 1086 Berlin, Mohrenstr. 39, DDR. 1

1. INTRODUCTION

In this note we put away the investigations of our generalized charge transfer model studied in [1,2] which is defined as follows. In $\mathfrak{H}=L^{2}\left(\mathbb{R}^{n}\right), n \geq 1$, we consider the Schrödinger equation

$$
\begin{equation*}
i \frac{\partial u}{\partial t}=H(t) u \equiv\left(H_{0}+V(t)\right) u,\left.\quad u\right|_{t=s}=u_{0}, \tag{1.1}
\end{equation*}
$$

where H_{o} is the free Hamiltonian given as usual, i.e. $H_{0}=$ $-\frac{1}{2} \Delta$, and $\{V(t)\} t \in \mathbb{R}^{1}$ is a $t i m e-d e p e n d e n t$ perturbation of the form

$$
\begin{equation*}
v(t)=\sum_{j=1}^{N} v_{j}(t), \tag{1.2}
\end{equation*}
$$

where the time-dependent perturbations $\left\{V_{j}(t)\right\}_{j=1}^{N}, \quad t \in \mathbb{R}^{i}$, arise from time-dependent potentials q_{j} as follows:

$$
\begin{equation*}
\left(v_{j}(t) f\right)(x)=q_{j}\left(t, x-x_{j}(t)\right), \quad f \in \mathscr{f}, t \in \mathbb{R}^{1} \tag{1.3}
\end{equation*}
$$

$x_{j}():. \mathbb{R}^{1} \rightarrow \mathbb{R}^{n}, j=1,2, \ldots, N$.
In the following, by $C_{\text {loc }}^{i}\left(\mathbb{R}^{m}\right)$ and $C_{\text {loc }}^{1}\left(\mathbb{R}^{m}, \mathbb{R}^{k}\right), m, k \geq 1$, we denote the sets of all functions defined on \mathbb{R}^{m} with values in \mathbb{R}^{i} and \mathbb{R}^{k}, respectively, whose first derivatives exist and are continuous.

ASSUMPTION P. - The potentials $q_{j}, j=1,2, \ldots, N$, belong to $C_{\text {loc }}^{1}\left(\mathbb{R}^{n+1}\right)$ and satisfy the properties

$$
\begin{equation*}
\left|q_{j}(t, x)\right| \leq M_{j}(1+|x|)^{-1-\epsilon},(t, x) \in \mathbb{R}^{n+1}, \varepsilon>0 \tag{1.4}
\end{equation*}
$$

$$
\begin{align*}
& |x|\left|\nabla q_{j}\right| \in L^{\infty}\left(\mathbb{R}^{n+1}\right), \quad \lim _{|x| \rightarrow \infty} x \nabla q_{j}(t, x)=0, t \in \mathbb{R}^{1}, \quad \text { (1.5) } \\
& \dot{q}_{j} \in L^{\infty}\left(\mathbb{R}^{n+1}\right), \sup _{x \in \mathbb{R}^{n}}\left|\dot{q}_{j}(t, x)\right| \in L^{1}\left(\mathbb{R}^{1}\right), \tag{1.6}
\end{align*}
$$

$j=1,2, \ldots, N$, where we have used the rotation $\dot{q}_{j}=\frac{\partial}{\partial t} q_{j}$.
In the sequel, we are interested in the scattering theory and, therefore, in the behavior of the potentials at infinity. Consequently, we have omitted local singularities of the potertials. But it seems to us quite possible to include local singularities.

The function $x_{j}():. \mathbb{R}^{1} \rightarrow \mathbb{R}^{n}$ can be regarded as a trajectory along which the potentials q_{j} move. Concerning the trajectories we assume the following.

ASSUMPTION T. - The trajectories $x_{j}(),. j=1,2, \ldots, N$, belong to $C_{\text {loc }}^{1}\left(\mathbb{R}^{\mathbf{1}}, \mathbb{R}^{n}\right)$ such that

$$
\begin{equation*}
\lim _{t \rightarrow \pm \infty} \frac{1}{t} x_{j}(t)=v_{j}^{ \pm}, \quad j=1,2, \ldots, N \tag{1.7}
\end{equation*}
$$

exist and, moreover,

$$
\begin{align*}
& \sup _{ \pm t \geq 0}\left|x_{j}(t)-v_{j}^{ \pm} t\right|<+\infty, \quad j=1,2, \ldots, N, \tag{1.8}\\
& \sup _{ \pm t>0}\left|t \dot{x}_{j}(t)-v_{j}^{ \pm} t\right|<+\infty, \quad j=1,2, \ldots, N . \tag{1.9}
\end{align*}
$$

If $q_{j} \in C_{l o c}^{1}\left(\mathbb{R}^{n+1}\right), q_{j},\left|\nabla q_{j}\right|$ and $\dot{q}_{j} \in L^{\infty}\left(\mathbb{R}^{n+1}\right)$ as well as $x_{j}()=.C_{\text {Loc }}^{1}\left(\mathbb{R}^{1}, \mathbb{R}^{n}\right), j=1,2, \ldots, N$, by Proposition 2.2 and Remark 2.1 of [1] with Eq. (1.1) we can associate a unique propagator $\{U(t, s)\}(t, s) \in \mathbb{R}^{2}$ consisting of unitary operators and obeying the properties of Proposition 2. 2 of [1]. Using
this propagator the scattering states are defined as follows.

DEFINITION 1.1. - The state f belongs to the scattering subspace $b_{ \pm}^{s c}(s), s \in \mathbb{R}^{1}$, if for every $R>0$ we have

$$
\begin{equation*}
\lim _{T \rightarrow \pm \infty} \frac{1}{\mathrm{~T}} \int_{s} d t\left\|F(|X|<R) e^{i x_{j}(t) P} u(t, s) f\right\|^{2}=0 \tag{1.10}
\end{equation*}
$$

$j=1,2, \ldots, N$, and if for every $\varepsilon_{j}^{ \pm}>0$ there exist $\eta_{j}^{ \pm}>0$ and $\tau_{j}^{ \pm}>0$ such that

$$
\begin{equation*}
\sup _{ \pm t>\tau}{ }_{j}^{ \pm}\left\|F\left(\left|F-v_{j}^{ \pm}\right|<\eta_{j}^{ \pm}\right) U(t, s) f\right\|<\varepsilon_{j}^{ \pm} \tag{1.11}
\end{equation*}
$$

$j=1,2, \ldots, N$.

REMARK 1.2. - We note that for the Cesaro mean it is unessential whether the function under the integral is taken by power two or one provided the function is bounded. Thus, it is possible to replace $\|. .\|^{2}$ in (1.10) by $\|. .$.$\| .$

In accordance with Enss [3] by $F($.$) we denote the$ spectral projection of the self-adjoint operator to the part of the spectrum as indicated in the parenthesis: By X and P we denote the commuting n-tuples $X=\left\{X_{1}, X_{2}, \quad, X_{n}\right\}$ and $P=$ $\left\{-i \frac{\partial}{\partial x_{1}},-i \frac{\partial}{\partial x_{2}}, \ldots,-i \frac{\partial}{\partial x_{n}}\right\}=-i \nabla$ of position and impulse operators, respectively.

REMARK 1.3: - (i) If the potentials $\mathrm{q}_{\mathrm{j}}, \mathrm{j}=1,2, \ldots, \mathrm{~N}$, are nonmoving, i.e. $x_{j}(t) \equiv 0, j=1,2, \ldots, N$, and time-independent, i.e $q_{j}(t, x)=q_{j}(x), j=1,2, \ldots, N$, then condition (1.10) coincides with those of Ruelle [4] and Amrein-Georgescu [5]. Moreover, condition (1.11) is a consequence of (1.10) and Assumption P, as can be seen from [3].
(ii) If the potentials $q_{j}, j=1,2, \ldots, N$, are nonmoving
but time-dependent, our definition of the scattering subspace coincides with Definition 5. 1 of Kitada and Yajima [6]. See also [7,8,9]. As it has been pointed out by Kitada and Yajima the condition (1.11) is essential by a counter example given by Yafiev $[10,11]$. The same takes place in our case despite the fact that we have a slightly stronger condition (1.6) than Kitada and Yajima.

Therefore, it seems to us that Definition 1.1 is a natural generalization of the definition of the scattering subspace to moving time-dependent potentials.

The goal of the paper is to show the existence of the wave operators $H_{ \pm}(s)$,

$$
\begin{equation*}
H_{ \pm}(s)=s-\lim _{t \rightarrow \pm \infty} U(t, s)^{*} e^{-i(t-s) H_{o}} \tag{1.12}
\end{equation*}
$$

and to establish the completeness of them, i.e.

$$
\begin{equation*}
\mathfrak{R}\left(W_{ \pm}(s)\right)=G_{ \pm}^{s c}(s) \tag{1.13}
\end{equation*}
$$

REMARK 1.4.-(i) If the potentials $q_{j}, j=1,2, \ldots, N$, are nonmoving and time-independent on account of kemark 1.3 (i), the problem coincides with the existence and completeness problem for short range potentials which is solved.
(ii) If the potentials $\mathrm{q}_{\mathrm{j}}, \mathrm{j}=1,2, \ldots$, , are nonmoving but time-dependent, the problem was solved by kitada and Yajima $[6,12]$ even for long range potentials.
(iii) If the potentials are moving but time-independent a stronger asymptotic completeness result than (1.13) was proved by Yajima [13], Graf [14], Hagedorr [15] and wüller [16, 17]. It can be shown that the relation (1.13) follows for time-independent short range potentials from [13] or [16, 17]
but under stronger assumptions concerning the trajectories $x_{j}(),. j=1,2, \ldots, N$, and the behavior of the potentials q_{j}, $j=1,2, \ldots, N$, at infinity.

The proof of (1.13) relies on a phase space analysis, in particular, on the timbus paper of Enss [18] on the Fopagating properties of quantum observables. We consider only the short-range case. The long-range case will be the contents of a forthcoming paper.

In the following we need the notation $C^{\infty}\left(\mathbb{R}^{n}\right), n \geq 1$, denoting the set of bounded functions on \mathbb{R}^{n} which are infinitely often differentiable. By $c_{o}^{\infty}\left(\mathbb{R}^{n}\right)$ we denote the subset of functions with compact supports of $C^{\infty}\left(\mathbb{R}^{n}\right)$. If \mathcal{H} is a closed subset of \mathbb{R}^{n} we set $C^{\infty}\left(\mathbb{R}^{n} \backslash \mathcal{H}\right)=\left\{f \in C^{\infty}\left(\mathbb{R}^{n}\right): f(\mathcal{H}=0)\right.$ and, similarly, $C_{o}^{\infty}\left(\mathbb{R}^{n}(\mathcal{H})=\left\{f \in C_{o}^{\infty}\left(\mathbb{R}^{n}\right): f \mid \mathcal{H}=0\right\}\right.$.

2. TECHNICAL PRELIMINARIES

For simplicity and since it will be unessential in the following that the trajectories $x_{j}($.$) have different$ asymptotics for past and future we assume throughout this section that $v_{j}^{+}=v_{j}^{-}=v_{j}, j=1,2, \ldots, N$. This agreement has the advantage that instead of (1.8) we have now

$$
\begin{equation*}
\sup _{t \in \mathbb{R}^{1}}\left|x_{j}(t)-v_{j} t\right|<+\infty, j=1,2, \ldots, N \tag{2.1}
\end{equation*}
$$

Basic in the sequel will be the following proposition of Enss.

PROPOSITION 2.1 [18]. - Let $g \in C^{\infty}\left(\mathbb{R}^{1}\right)$ such that g ' E $C_{0}^{\infty}\left(\mathbb{R}^{1}\right)$. If supp $g \in\left(v_{0},+\infty\right\}$, then for any $k \in \mathbb{N}$ there is a constant C_{k} such that
$\epsilon L^{1}\left(\mathbb{R}^{1}, d t\right)$.

$$
\begin{equation*}
\left\|F\left(X_{1}<R+v_{0} t\right) e^{-i t H_{o}} g\left(P_{1}\right) F\left(X_{1}>R\right)\right\| \leq c_{k}(1+t)^{-k} \tag{2.2}
\end{equation*}
$$

$\mathrm{t} \geq 0$. If supp $\mathrm{g} \subset\left[-\infty, \mathrm{v}_{0}\right)$, then

$$
\left\|F\left(X_{1}>R+v_{o} t\right) e^{-i t H_{o}} g\left(P_{1}\right) F\left(X_{1}<R\right)\right\| \leq c_{k}(1+t)^{-k}
$$

$$
(2.3)
$$

$t \geq 0$. The constants c_{k} depend on the shape of g and an dist(v_{0}, supp g), out are independent of v_{0} and $R E \mathbb{R}^{1}$.

Furthermore, in the following we assume that the velocities $v_{j}=\left\{v_{1 j}, v_{2 j}, \ldots, v_{n j}\right\}, j=1,2, \ldots, N$, are ordered by

$$
\begin{equation*}
v_{11} \leq v_{12} \leq \cdots \leq v_{1 N} \tag{2.4}
\end{equation*}
$$

Proposition 2.1 allows one to establish the following

LEMMA 2.2. - If the conditions (1.4) and (1.7) are satisfied and if $g \in C^{\infty}\left(\mathbb{R}^{1} \backslash \mathrm{U}_{j=1}^{N}\left(v_{1 j}\right\}\right), g^{*} \in C_{0}^{\infty}\left(\mathbb{R}^{1}\right)$, then for every $1=1,2, \ldots, N$ and every $a, b \in \mathbb{R}^{1}$ we have
$\left\|V_{1}(t) e^{-i t H_{0}} g\left(P_{1}\right) F\left(a<X_{1}<b\right)\right\| \in L^{1}\left(\mathbb{R}_{+}^{1}, d t\right)$.

Proof. - Fixing 1 and introducing $\delta_{1}=\frac{1}{2} d i s t\left(v_{11}\right.$, supp g) we have to distinguish the following two cases:
(i) $\operatorname{supp} g \subset\left(v_{11}+\delta_{1},+\infty\right]$
(ii) supp $g \subset\left[-\infty, v_{11}-\delta_{1}\right)$.

Assuming (i) and applying (2.2) we get

$$
\begin{equation*}
\left\|F\left(X_{1}<a+\left(v_{11}+\delta_{1}\right) t\right) e^{-i t H_{0}} g\left(P_{1}\right) F\left(a<X_{1}<b\right)\right\| \tag{2.6}
\end{equation*}
$$

Taking into account the estimate

$$
\| V_{1}(t) e^{-i t H_{o} g\left(P_{1}\right) F\left(a<x_{1}<b\right) \| \leq}
$$

$$
\begin{equation*}
\left\|V_{1}(t) F\left(X_{1}>a+\left(v_{11}+\delta_{1}\right) t\right)\right\|\left\|g\left(P_{1}\right)\right\|+ \tag{2.7}
\end{equation*}
$$

$$
\left\|v_{1}(t)\right\| \| F\left(X_{1}<a+\left(v_{11}+\delta_{1}\right) t\right) e^{-i t H_{o} g\left(P_{1}\right) F\left(a<x_{1}<b\right) \|}
$$

and $\sup _{t \in \mathbb{R}^{1}}\left\|V_{1}(t)\right\| \leq M_{1}<+\infty$ (see (1.4)) the relation (2.5) follows if we show that

$$
\begin{equation*}
\left\|v_{1}(t) F\left(X_{1}>a+\left(v_{11}+\delta_{1}\right) t\right)\right\| \in L^{1}\left(\mathbb{R}_{+}^{1}, d t\right) \tag{2.8}
\end{equation*}
$$

By (1.4) we get

$$
\begin{equation*}
\left\|V_{1}(t) F\left(X_{1}>a+\left(v_{11}+\delta_{1}\right) t\right)\right\| \leq \tag{2.9}
\end{equation*}
$$

$$
M_{1} \sup _{x_{1}>a+\left(v_{11}+\delta_{1}\right) t}\left(1+\left|x_{1}-x_{11}(t)\right|\right)^{-1-\varepsilon}
$$

Since $\lim _{t \rightarrow+\infty} \frac{x_{11}(t)}{t}=v_{11}$ we find a $t_{a}>0$ such that $\mid x_{11}(t)-$ $v_{11} t \left\lvert\,<\frac{\delta}{2} t\right.$. Therefore, we get

$$
\begin{equation*}
\left|x_{1}+a+\left(v_{11}+\delta_{1}\right) t-x_{11}(t)\right| \geq x_{1}+a+\frac{1}{2} \delta_{1} t \tag{2.10}
\end{equation*}
$$

$t>t_{0}, x_{1} \geq 0$, which immediately yields the estimate
$\left\|V_{1}(t) F\left(x_{1}>a+\left(v_{11}+\delta_{1}\right) t\right)\right\| \leq M_{1}\left(1+a+\frac{1}{2} \delta_{1} t\right)^{-1-\varepsilon}$,
$t>\max \left(t_{0},-\frac{2 a}{\delta_{1}}\right\}$. But (2.11) proves (2.8).
The proof for the case (ii) can be done in the same manner using instead of (2.2) the estimate (2.3).

Lemma 2.2 allows a further refinement. To this end we introduce the intervals $\Delta_{0}=\left[-\infty, v_{11}\right), \Delta_{j}=\left(v_{1 j}, v_{1(j+1)}\right), j$ $=1,2, \ldots, \mathrm{~N}-1$, and $\Delta_{\mathrm{N}}=\left(\mathrm{v}_{1 \mathrm{~N}},+\infty\right]$.

LEMMA 2.3. - If the conditions (1.4), (1.7) and (1.8) are satisfied and if $g \in C^{\infty}\left(\mathbb{R}^{1}\right), E \in \in C_{o}^{\infty}\left(\mathbb{R}^{1}\right)$, supp $g=\Delta_{j}$, j $=0,1,2, \ldots, N$, then for every $1=1,2, \ldots, N$ we have

Proof. - Let us introduce the multiplication operator $\breve{v}_{1}(t)$ defined by

$$
\left(\stackrel{v}{v}_{1}(t) f\right)(x)=q_{1}\left(t, x+v_{1} t-x_{1}(t)\right) f(x), x \in \mathbb{R}^{n}, \quad(2 \cdot 13)
$$

$f \in t$. Since the formula

$$
\begin{aligned}
& e^{i(t+s) v_{1} P} e^{-i s H_{o} g\left(P_{1}\right) F\left(\frac{X_{1}}{t} \in \Delta_{j}\right)=e^{i s \frac{1}{2} v_{1}^{2}} \times} \\
& \times e^{i v_{1} x_{1}} e^{-i s H_{o} g\left(F_{1}+v_{11}\right) F\left(\frac{X_{1}}{t}+v_{11} \in \Delta_{j}\right) e^{-i v_{1} x} e^{i t v_{1} P}} \begin{array}{l}
\text { (2.14) }
\end{array} l
\end{aligned}
$$

holds, we find

$$
\| \bar{v}_{1}(t+s) e^{-i s H_{o g} g\left(P_{1}+v_{11}\right) F\left(\frac{X_{1}}{t}+v_{11} \in \Delta_{j}\right) \| ~ . ~}
$$

If $j \geq 1$, then the problem (2.13) will be solved if we show that for supp $\widetilde{\mathrm{E}} \subset(0,+\infty)$ we have

$$
\begin{equation*}
\sup _{t>0}\left\|\tilde{v}_{1}(t+s) e^{-i s H_{o}} \ddot{g}_{g}\left(P_{1}\right) F\left(X_{1} \geq 0\right)\right\| \in L^{i}\left(\mathbb{R}_{+}^{1}, d s\right) \tag{2.16}
\end{equation*}
$$

If $j<1$, then we have to establish that for supp $\tilde{g} \subset[-\infty, 0)$ the relation

$$
\begin{equation*}
\sup _{t>0}\left\|\tilde{\mathrm{~V}}_{l}(\mathrm{t}+s) e^{-i s H_{0}} \tilde{g}_{\mathrm{g}}\left(\mathrm{P}_{1}\right) F\left(X_{1} \leq 0\right)\right\| \in L^{1}\left(\mathbb{R}_{+}^{1}, d s\right) \tag{2.17}
\end{equation*}
$$

holds.
To prove (2.16) we set $\delta=\frac{1}{2}$ dist(0 , supp \tilde{g}) and $Q_{1}=$ $\operatorname{supp}\left|x_{1}(t)-v_{1} t\right|$ which is finite by (2.1). Using Proposition $t \in \mathbb{R}^{1}$
2. 1 we find

$$
\begin{equation*}
\left\|F\left(X_{1}<\delta s\right) e^{-i s H_{o}} \tilde{g}\left(P_{1}\right) F\left(X_{1}>0\right)\right\| \in L^{1}\left(\mathbb{R}_{+}^{1}, d s\right) \tag{2.18}
\end{equation*}
$$

Hence, on account of the estimate

$$
\begin{align*}
& \| \tilde{V}_{1}(t+s) e^{-i s H} \circ \tilde{g}^{\left(P_{1}\right) F\left(X_{1} \geq 0\right) \| \leq} \\
& \left\|\tilde{V}_{1}(t+s) F\left(X_{1}>\delta s\right)\right\|\left\|\tilde{g}_{1}\left(P_{1}\right)\right\|+ \tag{2.19}
\end{align*}
$$

$$
\left\|\tilde{v}_{1}(t+s)\right\| \| F\left(X_{1}\langle\delta s) e^{-i s H_{0}} \circ \tilde{g}\left(P_{1}\right) F\left(X_{1}>0\right) \|\right.
$$

and $\sup _{t \in \mathbb{R}^{1}}\left\|\tilde{V}_{l}(t)\right\| \leq M_{1}<+\infty$ the relation (2.16) follows if we
show that
$\sup _{t>0}\left\|\hat{V}_{1}(t+s) F\left(X_{1}>\delta s\right)\right\| \in L^{1}\left(\mathbb{R}_{+}^{1}, d s\right)$.

We have

$$
\begin{equation*}
\left\|\tilde{V}_{1}(t+s) F\left(X_{1}>\delta s\right)\right\| \leq \tag{2.21}
\end{equation*}
$$

$M_{1} \sup _{x_{1} \geq \delta s}\left(1+\mid x_{1}+v_{11}(t+s)-x_{11}(t+s)\right)^{-1-s}$.
If $s>e_{1} / \delta$ we find the estimate

$$
\begin{equation*}
\sup _{t \geq 0}\left\|\tilde{v}_{1}(t+s) F\left(X_{1}>\delta s\right)\right\| \leq M_{1}\left(1+\delta s-e_{1}\right)^{-1-s} \tag{2.22}
\end{equation*}
$$

which obviously yields (2.20).
The relation (2.17) can be proved in the same manner.a
Furthermore, in the following we need a modification of Lemma 2.3.

LEMMA 2.4. - Let (1.4), (1.7) and (1.8) be satisfied and let $g \in C^{\infty}\left(\mathbb{R}^{1}\right)$ and $g, \in C_{0}^{\infty}\left(\mathbb{R}^{1}\right)$.
If supp $g \subset \Delta_{\mathrm{N}}$, then for every $1=1,2, \ldots, \mathrm{~N}$ we have
$\sup _{t>0} \| V_{1}(t+s) e^{-i s H_{o} g\left(P_{1}\right) F\left(X_{1}<v_{11} t\right) \| \in L^{1}\left(\mathbb{R}_{-}^{1}, d s\right) .(2.23)}$ $t>0$

If supp $g \subset \Delta_{0}$, then for every $1=1,2, \ldots$. , $1=$ we have
$\sup _{t \rightarrow 0} \| V_{1}(t+s) e^{-i s H_{o} g\left(P_{1}\right) F_{1}\left(X_{1}>V_{1 N} t\right) \| \in L^{1}\left(\mathbb{R}_{-}^{1}, d s\right) .(2.24), ~(2)}$

Proof. - On account of (2.14) we get.

$$
\begin{align*}
& \left\|v_{1}(t+s) e^{-i s H_{0}} g\left(F_{1}\right) F\left(X_{1}<v_{11} t\right)\right\|= \tag{2.25}\\
& \left\|\widetilde{v}_{1}(t+s) e^{-i s H_{o}} g\left(P_{1}+v_{11}\right) F\left(x_{1}+v_{11} t<v_{11} t\right)\right\|
\end{align*}
$$

Hence, we will prove (2.23) if we show that

$$
\begin{equation*}
\sup _{t>0} \| \hat{V}_{1}(t+s) e^{-i s H_{0}}{\underset{g}{ }\left(F_{1}\right) F\left(X_{1} \leqslant 0\right) \| \in L^{1}\left(\mathbb{R}_{-}^{1}, d s\right)}^{d} \tag{2.26}
\end{equation*}
$$

with supp $\tilde{g} \in(0,+\infty]$. From (2.3) we obtain the estimate

$$
\begin{equation*}
\left\|F\left(X_{1}>\delta s\right) e^{-i s H} \circ g\left(F_{1}\right) F\left(X_{1}<0\right)\right\| \leq c_{k}(1-s)^{-k} \tag{2.27}
\end{equation*}
$$

$s<0$, where $s=\frac{1}{2}$ dist $(0, \operatorname{supp} g)$. Using this estimate and repeating previous proof arguments, we immediately prove (2.26). Similarly, we establish (2.24).

At the end we establish a simple fact.

LEMMA 2.5. $-I f \operatorname{supp} g \varepsilon\left(v_{0},+\infty\right]$, then

$$
\begin{equation*}
s-\lim _{t \rightarrow+\infty} F\left(X_{1}<v_{0} t\right) e^{-i t H_{0}} g\left(P_{1}\right)=0 . \tag{2.28}
\end{equation*}
$$

If supp $g \subset\left[-\infty, v_{0}\right)$, then

$$
\begin{equation*}
s-\lim _{t \rightarrow+\infty} F\left(X_{1}>v_{0} t\right) e^{-i t H_{o}} g\left(P_{1}\right)=0 \tag{2.29}
\end{equation*}
$$

Froof. - Since supp $g \subset\left(v_{0},+\infty\right]$ there is a $\left.v_{0}^{\prime}\right\rangle v_{0}$ such that supp $\varepsilon\left(v_{0}^{\prime},+\infty\right]$. Applying (2.2) we obviously find
$\lim _{t \rightarrow+\infty} F\left(X_{1}<a+v_{0}^{\prime} t\right) e^{-i t H_{O}} g\left(P_{1}\right) F\left(a<X_{1}<b\right) f=0$,
$f \in \mathfrak{h}$. Since $v_{o}^{\prime}>v_{o}$ theré is a t_{o} such that

$$
\begin{equation*}
F\left(X_{1}<v_{0} t\right) F\left(X_{1}<a+v_{0}^{0}\right)=F\left(X_{1}<v_{0}^{t}\right) \tag{2.31}
\end{equation*}
$$

for $t>t_{0}$ which yields

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} F\left(X_{1}<v_{0} t\right) e^{-i t H_{o}} g\left(P_{1}\right) F\left(a<x_{1}<b\right) f=0 \tag{2.32}
\end{equation*}
$$

But $\left\{F\left(a<X_{1}<b\right) f: f \in b, a, b \equiv F^{1}\right\}$ is a dense subset of b. Consequently, (2.32) implies (2.28).

Similarly we prove (2.29).

3. EXISTENCE

He start with some general remarks which allow the existence and completeness problem to be simplified.

FEMARK 3.1. - Introducing the family $U(t)=U(t, 0), t \in$ \mathbb{R}^{1}, and using for the propagator of Eq.(1..1) the representation

$$
\begin{equation*}
U(t, s)=U(t) U(s)^{*}, \quad t, s E \mathbb{R}^{1} \tag{3.1}
\end{equation*}
$$

it is not hard to see that it is enough to consider the case $s=0$.

REMARK 3.2.- Defining the family $\hat{H}(t)=H(-t), t \in \mathbb{R}^{1}$, and derioting by $\{\hat{U}(t, s)\}(t, s) \in \mathbb{R}^{2}$ the corresponding propagator, one can prove that the propagators
${ }^{\prime}(U(t, s)\}(t, s) \in \mathbb{R}^{2}$ and $\{\hat{U}(t, s)\}(t, s) \in \mathbb{R}^{2}$ are related by

$$
\begin{equation*}
J U(t, s)=\widehat{U}(-t,-s) J, \quad t, s \in \mathbb{R}^{1} \tag{3.2}
\end{equation*}
$$

where J denotes the operator of complex conjugation, i-e $(J f)(x)=\overline{f(x)}, f \in \mathfrak{f}$. On account of (3.2) now it is easy to carry over the existence and completeness problem. for $W_{-}=$ $H_{-}(0)$ to $\hat{W}_{+}=s-1 i m \hat{U}(t){ }^{*} e^{-i t H_{o}}=W_{-}$where, of course, we have set $\hat{U}(t)=\hat{U}(t, 0), t \in \mathbb{R}^{1}$. Hence, it is enough to consider the time direction $t \rightarrow+\infty$.

REMARK 3.3. - Since The Schrödinger equation (1.1) is a local one, its propagator $\{U(t, s)\}(t, s) \in \mathbb{R}^{1}$ is not influenced for $t \geq s$ by the behavior of $\{H(t)\}_{t \in \mathbb{R}^{2}}$ for $t \leq s$. Consequently, having other trajectories $\hat{x}_{j}(.) \in \mathcal{C}_{\text {loc }}^{1}\left(\mathbb{R}^{1}, \mathbb{R}^{n}\right)$ such that

$$
\begin{equation*}
x_{j}(t)=\hat{x}_{j}(t), t \geq 0 \tag{3.3}
\end{equation*}
$$

and denoting by $\{\hat{U}(t, s)\}(t, s) \in \mathbb{R}^{2}$ the propagator of the Schrödinger equation whose potentials q_{j} move along the trajectories $\hat{x}_{j}($.$) , the propagators \{U(t, s)\}(t, s) \in \mathbb{R}^{2}$ and $(\hat{U}(t, s))(t, s) \in \mathbb{R}^{2}$ coincide for $t, s \geq 0$, in particular, we have $U(t)=U(t)$ for $t \geq 0$. Therefore, modifications of the trajectories $x_{j}($.$) for t \leq 0$ have no influence on the wave operators W_{+}. Hence, it is quite possible to modify the trajectories $x_{j}($.$) in such a manner that the wave operators$ W_{+}are not influenced and the conditions $\lim _{t \rightarrow-\infty} \frac{1}{t} x_{j}(t)=v_{j}^{-}=$ $v_{j}^{+}, j=1,2, \ldots, N$, are fulfilled.

Now we are going to show the existence of the wave operators.

PROPOSITION 3.4. - If the conditions $q_{j} \in C_{\text {loc }}^{\text {(}}{ }^{1}$), $\left|\nabla q_{j}\right|, \dot{q}_{j} \in L^{\infty}\left(\mathbb{R}^{n+1}\right), j=1,2, \ldots, N$, as well as (1.4) and (1.7) are satisfied, then for every $s \in \mathbb{R}^{1}$ the wave operators $\psi_{ \pm}(s)$ exist and obey

$$
\begin{equation*}
\mathfrak{R}\left(W_{ \pm}(s)\right) \subseteq G_{ \pm}^{s c}(s) \tag{3.4}
\end{equation*}
$$

Proof. - On account of the previous remarks we consider only the case $s=0, t \rightarrow+\infty, \quad$ and $v_{j}^{+}=v_{j}^{-} \equiv v_{j}, j_{j}=$ $1,2, \ldots, N$. Furthermore, we assume that the set $\left\{v_{j}\right\}_{j=1}^{N} i s$ ordered by (2.4).

Obviously, the set $\left\{g\left(P_{1}\right) F\left(a<X_{1}<b\right) f: \quad E \quad E\right.$ $\left.c^{\infty}\left(\mathbb{R}^{1} \backslash \mathrm{U}_{\mathrm{j}=1}^{\mathrm{N}}\left(\mathrm{V}_{1 j}\right\}\right), g^{\prime} \in C_{0}^{\infty}\left(\mathbb{R}^{1}\right), a ; b \in \mathbb{R}^{1}, f \in \mathfrak{f}\right\}$ is dense in \mathfrak{b}. Moreover, we have

$$
\begin{equation*}
\dot{U}(t)^{*} e^{-i t H_{o}} g\left(P_{1}\right) F\left(a<X_{1}<b\right) f=g\left(P_{1}\right) F\left(a<X_{1}<b\right) f+ \tag{3.5}
\end{equation*}
$$

$$
i \sum_{j=10}^{N} \int_{0}^{t} d s U(s)^{*} V_{1}(s) e^{-i s H_{o} g\left(P_{1}\right) F\left(a<X_{1}<b\right) f .}
$$

Applying Lemma 2.2 we immediately get the existence of W_{+}. It remains to show (3.4). Since $H_{+}=s-\lim _{t \rightarrow+\infty} U(t){ }^{*} e^{-i t H_{o}}$ we have

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} d t\left\|U(t) w_{+} f-e^{-i t H_{o}} f\right\|^{2}=0 \tag{3.6}
\end{equation*}
$$

which yields

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} d t \| F\left(| X | \langle R) e ^ { i x _ { j } (t) P ^ { \prime } } \left\{U(t) H_{+} f-e^{\left.-i t H_{o} f\right\} \|^{2}=0,(3.7)}\right.\right.
$$

$f \in \mathfrak{b}$, for every $\mathfrak{j}=1,2, \ldots, N$ and every $R>0$. Consequently, condition (1.10) is satisfied if we can prove the relation

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{o}^{T} d t\left\|F(|X|<R) e^{i x_{j}(t) F} e^{-i t H_{o}} f\right\|^{2}=0 \tag{3.8}
\end{equation*}
$$

$f \Leftrightarrow G$, for every $j=1,2, \ldots, N$ and every $R>0$. Taking into account the formulas
and

$$
\begin{equation*}
\underset{\substack{-\lim _{t \rightarrow \infty}}}{ } e^{-i \frac{1}{t} x_{j}(t) x}=e^{-i v_{j} x} \tag{3.10}
\end{equation*}
$$

we immediately see that (3.8) is fulfilled if

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} d t\left\|F(|X|<R) e^{-i t H_{o}} e^{-i v_{j} X^{\prime}} f\right\|^{2}=0, f \in \mathfrak{b}, \text { (3.11) }
$$

holds for every $j=1,2, \ldots, N$ and every $R>0$. But the last fact is obvious for the free Hamiltonian $H_{o}=-\frac{1}{2} \Delta$.

Since $H_{+}=s-1 i m u(t) * e^{-i t H_{0}}$ o for every $s_{j}>0$ and every $r_{\mathbf{j}}>0$ there are $\tau_{j}>0$ such that

$$
\left\|F\left(\left|P-V_{j}\right|<r_{j}\right)\left\{U(t) H_{+} f-e^{-i t H_{o}} f\right\}\right\|<\frac{1}{2} E_{j}, f \equiv b,(3.12)
$$

for $j=1,2, \ldots, N$ and $t \geqslant \tau j$. Furthermore, there is $\left.\mathfrak{j} \eta_{j}\right\rangle 0$ such that $\left\|F\left(\left|P-v_{j}\right|<\eta_{j}\right) f\right\|<E_{j} / Z$ for every $t \in \mathbb{R}^{1}$. Hence, by the estimate

$$
\begin{equation*}
\left\|F\left(\left|F-v_{j}\right|<r_{j}\right) U(t) H_{+} f\right\| \leq \tag{3.13}
\end{equation*}
$$

$$
\left\|F\left(\left|F-v_{j}\right|<T_{j}\right)\left(U(t) W_{+} f-e^{-i t H_{o}} f\right\}\right\|+\left\|F\left(\left|F-v_{j}\right| \eta_{j}\right) f\right\|
$$

we get $\sup _{t>\tau_{j}}\left\|F\left(\left|F-v_{j}\right|<\eta_{j}\right) U(t) H_{+} f\right\|<\varepsilon_{j}, j=1,2, \ldots, N$, which proves (1.11).

4. COMPLETENESS

In this section we show that the inclusion (3.4) can be replaced by an equality.

THEOREM 4.1. - If the Assumptions P and T are satisfied, then

$$
\begin{equation*}
\mathfrak{R}\left(\psi_{ \pm}(s)\right)=\mathfrak{b}_{ \pm}^{2 c}(s), \quad s \in \mathbb{R}^{1} \tag{4.1}
\end{equation*}
$$

Proof. - Again in accordance with the previous remarks we restrict the considerations to $s=0, t \rightarrow+\infty$ and $v_{j}^{+}=v_{j}^{-}$ $\equiv \mathrm{v}_{\mathrm{j}}, \mathrm{j}=1,2, \ldots, \mathrm{~N}$.

Let us assume that (4.1) is violated. Consequently, there is a nontrivial $f \in \mathfrak{b}_{+}^{i c} \theta \mathfrak{R}\left(\boldsymbol{W}_{+}\right), \mathfrak{b}_{+}^{s \in} \equiv \mathfrak{b}_{+}^{s c}(0)$. The aim will be to show that necessarily $f=0$. In order to show this we establish that

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} d t\|U(t) f\|=0 \tag{4.2}
\end{equation*}
$$

Let $v_{11} \leq v_{12} \leq \ldots \leq v_{1 N}$ and let the intervals $\Delta_{j}, j=$ $0,1, \ldots, N$, be defined as before. At first, we assume that $g \in$ $C^{\infty}\left(\mathbb{R}^{1}\right), g^{\prime} \in C_{o}^{\infty}\left(\mathbb{R}^{1}\right)$ and supp $g \subset \Delta_{j}$ for some $j=0,1,2, \ldots, N$. Since $W_{+}^{*} f=0$ the representation

$$
\begin{align*}
& F\left(\frac{X_{1}}{t} \in \Delta_{j}\right) g\left(P_{1}\right) U(t) f= \tag{4.3}\\
& F\left(\frac{X_{1}}{t} \in \Delta_{j}\right) g\left(P_{1}\right) e^{-i t H_{o}}\left\{e^{i t H_{o}} U(t) *-H_{+}^{*}\right\} f, \quad t \geq 0,
\end{align*}
$$

holds. A simple computation proves the formula

$$
\begin{align*}
& \left(U(t)^{*} e^{\left.-i t H_{o}-W_{+}\right\} e^{i t H_{0}} g\left(P_{1}\right) F\left(\frac{X_{1}}{t} \in \Delta_{j}\right) h=}\right. \tag{4.4}\\
& -i \sum_{i=1}^{N} \int_{0}^{\infty} d s U(t+s)^{*} V_{1}(t+s) e^{-i s H_{o}} g\left(P_{1}\right) F\left(\frac{X_{1}}{t} \in \Delta_{j}\right) h,
\end{align*}
$$

$h \in 6$. Applying Lemna 2.3 we see that the integrals of the right-hand side of (4.4) converges in the operator norm uniformly in $t>0$. Since

$$
\begin{equation*}
\left\|F\left(\frac{X_{1}}{t} \in \Delta_{j}\right) g\left(P_{1}\right) e^{i s H_{o}} V_{1}(t+s) U(t+s) f\right\| \leq \tag{4.5}
\end{equation*}
$$

$$
\left\|V_{1}(t+s) e^{-i s H_{0}} g\left(P_{1}\right) F\left(\frac{X_{1}}{t} \in \Delta_{j}\right)\right\|\|f\|, \quad f \in \mathfrak{V}
$$

the integral $\int_{0}^{\infty} d \operatorname{dsf}\left(\frac{X_{1}}{t} \in \Delta_{j}\right) g\left(P_{1}\right) e^{i s H_{o}} V_{1}(t+s) U(t+s) f \| d s$ conver- ges and by (4.3) we have the estimate

$$
\begin{equation*}
\left\|F\left(\frac{X_{1}}{t} \in \Delta_{j}\right) g\left(P_{1}\right) U(t) f\right\| \leq \tag{4.6}
\end{equation*}
$$

$$
\begin{aligned}
& \sum_{i=1}^{N} \int_{0}^{\infty} d s\left\|F\left(\frac{X_{1}}{t} \in \Delta_{j}\right) g\left(P_{1}\right) e^{i s H_{o}} V_{l}(t+s) U(t+s) f\right\| d s, t>0 . \\
& \text { Since } \sup _{t>0}\left\|F\left(\frac{X_{1}}{t} \in \Delta_{j}\right) g\left(P_{1}\right) e^{i s H_{o}} V_{1}(t+s) U(t+s) f\right\| \in L^{1}\left(\mathbb{R}_{+}^{1}, d s\right)
\end{aligned}
$$ we obtain the estimate

$\frac{1}{T} \int_{0}^{T} d t\left\|F\left(\frac{X_{1}}{t} \in \Delta_{j}\right) g\left(P_{1}\right) U(t) f\right\| \leq$
$\sum_{L=1}^{N} \int_{0}^{\infty} d s \frac{1}{T} \int_{0}^{T} d t\left\|F\left(\frac{X_{1}}{t} \in \Delta_{j}\right) g\left(P_{1}\right) e^{i s H_{0}} V_{1}(t+s) U(t+s) f\right\|$.
On account of (1.4) for every $\varepsilon>0$ there is a $R>0$ such that

$$
\sup _{t>0}\left\|V_{1}(t) e^{-i x_{1}(t) P} F(|X|>R)\right\|<\varepsilon / 2 .
$$

Taking into consideration Definition 1.1 we find

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} d t\left\|F(|X|<R) e^{i x_{j}(t+s) P} U(t+s) f\right\|=0 \tag{4.9}
\end{equation*}
$$

$s \geqslant 0$. Therefore, by the estimate

$$
\begin{aligned}
& \frac{1}{T} \int_{0}^{T} d t\left\|F\left(\frac{X_{1}}{t} \in \Delta_{j}\right) g\left(P_{1}\right) e^{i s H_{0}} \circ V_{1}(t+s) U(t+s) f\right\| \leq \\
& \left.\left\|g\left(P_{1}\right)\right\|\|f\| \sup _{t\rangle 0} \| V_{1}(t) e^{-i x_{1}(t+s) P} F(|X|\rangle R\right) \|+\quad(4.10) \\
& \left\|g\left(P_{1}\right)\right\| \sup _{t>0}\left\|V_{1}(t)\right\| \frac{1}{T} \int_{0}^{T} d t \| F\left(|X|\langle R) e^{i X_{1}(t+s) P} U(t+s) f \|,\right.
\end{aligned}
$$

$s>0$, and the relations (4.8) and (4.9) we find

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} d t\left\|F\left(\frac{X_{1}}{t} \in \Delta_{j}\right) g\left(P_{1}\right) e^{i s H_{o}} V_{1}(t+s) U(t+s) f\right\|=0(4.11)
$$

for every $1=1,2, \ldots, N$ and $j=0,1,2, \ldots, N$. Lemma 2.3 allows one to apply the dominated convergence theorem which yields

$$
\begin{equation*}
\lim _{\mathrm{T} \rightarrow \infty} \frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}} d t\left\|F\left(\frac{X_{1}}{t} \in \Delta_{j}\right) g\left(F_{1}\right) U(t) f\right\|=0 \tag{4.12}
\end{equation*}
$$

for supp $g \subset \Delta_{j}$ and every $j=0,1,2, \ldots, N$.
We note that on account of (1.7)- (1.9) the
trajectories have the properties

$$
\begin{equation*}
\sup _{t \in \mathbb{R}^{1}}\left|x_{j}(t)-\dot{x}_{j}(t) t\right|<+\infty, j=1,2, \ldots, N . \tag{4.13}
\end{equation*}
$$

If $j=1,2, \ldots, H-1$ and supp $B \subset \Delta_{j}$, then obviously we have g $E C_{o}^{\infty}\left(\mathbb{R}^{1}\right)$ and, consequently, g has a summable Fourier transform. Applying Corollary 4.5 of $[2]$ we find

$$
\begin{equation*}
\lim _{\mathrm{T} \rightarrow \infty} \frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}} \mathrm{dt}\left\|\left(g\left(\frac{X_{1}}{\mathrm{t}}\right)-g\left(P_{1}\right)\right\} U(\mathrm{t}) \mathrm{f}\right\|=0 . \tag{4.14}
\end{equation*}
$$

Notice that the Assumptions T and P are stronger than the corresponding ones of [2]. Using (4.14) we immediately get

$$
\begin{aligned}
& \lim _{T \rightarrow \infty} \frac{1}{T} \cdot \int_{0}^{T} d t\left\|F\left(\frac{X_{1}}{t} \in \mathbb{R}^{1} \backslash \Delta_{j}\right) g\left(P_{1}\right) U(t) f\right\|= \\
& \lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} d t\left\|F\left(\frac{X}{t} \in \mathbb{R}^{1} \backslash \Delta_{j}\right)\left\{g\left(P_{1}\right)-g\left(\frac{X_{1}}{t}\right)\right\} U(t) f\right\|=0,
\end{aligned}
$$

$$
j=1,2, \ldots, N-1 . \text { Summarizing (4.12) and (4.15) we find }
$$

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} d t\left\|g\left(P_{1}\right) U(t) f\right\|=0 \tag{4.16}
\end{equation*}
$$

for $\operatorname{supp} E \subset \Delta_{j}, j=1,2, \ldots, N-1$.
In order to extend (4.16) to $j=0$ and $j=N$ we have to use a different method. Our first aim will be to show that supp $g \subset \Delta_{N}$ yields

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} d t\left\|F\left(\frac{X_{1}}{t} \in \Delta_{0}\right) g\left(P_{1}\right) U(t) f\right\|=0 \tag{4.17}
\end{equation*}
$$

and that supp $g \subset \Delta_{0}$ implies

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} d t\left\|F\left(\frac{X_{1}}{t} \in A_{N}\right) g\left(P_{1}\right) U(t) f\right\|=0 \tag{4.18}
\end{equation*}
$$

Proving (4.17) we use the representation

$$
\begin{align*}
& F\left(\frac{X_{1}}{t} \in \Delta_{0}\right) g\left(P_{1}\right) U(t) r= \\
& F\left(\frac{X_{1}}{t} \in \Delta_{0}\right) g\left(P_{1}\right) e^{-i t H_{o}}\left(e^{i t H_{O}} U(t)-H_{-}^{*}\right\} f+ \tag{4.19}\\
& F\left(\frac{X_{1}}{t} \in \Delta_{0}\right) e^{-i t H_{0}} g\left(P_{1}\right) H_{-}^{*} f .
\end{align*}
$$

On account of Lemma 2.5 the last summand of the right-hand side tends to zero as $t \rightarrow+\infty$. Furthermore, we have the formula

$$
\begin{align*}
& \left\{U(t)^{*} e^{\left.-i t H_{o}-H_{-}\right\} e^{i t H_{o}} g\left(P_{1}\right) F\left(\frac{X_{1}}{t} \in \Delta_{0}\right) h=}\right. \tag{4.20}\\
& i \sum_{L=1}^{N} \int_{-\infty}^{o} d s U(t+s)^{*} V_{1}(t+s) e^{-i s H_{O}} g_{0}\left(P_{1}\right) F\left(\frac{X_{1}}{t} \in \Delta_{0}\right) h
\end{align*}
$$

$h \in t, t \geqslant 0$. Taking into account Lemma 2.4 the representation (4.20) immediately yields the estimate

$$
\begin{equation*}
\frac{1}{T} \int_{0}^{T} d t \| F\left(\frac{X_{1}}{t} \in \Delta_{o}\right) g\left(P_{1}\right) e^{-i t H_{o}\left(e^{i t H_{o}} U(t)-H_{-}^{*}\right) r \| \leq} \tag{4.21}
\end{equation*}
$$

$$
\sum_{i=1}^{N} \int_{-\infty}^{0} d s \frac{1}{T} \int_{0}^{T} d t \| F\left(\frac{X_{1}}{t} \in \Delta_{0}\right) g\left(P_{1}\right) e^{i s H_{o} v_{1}(t+s) U(t+s) f \| d s, ~}
$$

t, O. As before, we get

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} d t\left\|F\left(\frac{X_{1}}{t} \in \Delta_{o}\right) g\left(P_{1}\right) e^{i s H_{o}} V_{1}(t+s) U(t+s) f\right\|=0,(4.22)
$$

$s<0$. On account of Lemma 2.4 we can apply the dominated convergence theorem. Thus, we find (4.17). Similarly we prove (4.13)

Taking into account (4.12) the relations (4.17) and (4.18) can be summarized as follows:

$$
\begin{equation*}
\lim _{\mathrm{T} \rightarrow \infty} \frac{1}{\mathrm{~T}} \int_{\dot{O}}^{\mathrm{T}} d t\left\|F\left(\frac{X_{1}}{\mathrm{t}} \in \Delta_{0} \cup \Delta_{N}\right) g\left(P_{1}\right) U(t) f\right\|=0 \tag{4.23}
\end{equation*}
$$

for supp $E \subset \Delta_{0} \cup \Delta_{N}$. Choosing g so that it equals one in a neighbourhood of $+\infty$ and $-\infty\left(g\right.$, $\left.\Leftrightarrow C_{o}^{\infty}\left(\mathbb{R}^{1}\right)!\right)$ we obviously have $1-g \in C_{0}^{\infty}\left(\mathbb{R}^{1}\right)$. Hence, $1-g$ possesses a summable Fourier transform. Applying again Corollary 4.5 of [2] we obtain

$$
\begin{align*}
& \lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} d t\left\|\left\{g\left(\frac{X_{1}}{t}\right)-g\left(P_{1}\right)\right) U(t) f\right\|= \tag{4.24}\\
& \lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} d t\left\|\left(\left(1-g\left(\frac{X_{1}}{t}\right)\right)-\left(1-g\left(P_{1}\right)\right)\right\} U(t) f\right\|=0 .
\end{align*}
$$

But (4.24) immediately yields

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} d t\left\|F\left(\frac{X_{1}}{t} \in \mathbb{R}^{1} \backslash \Delta_{0} U \Delta_{N}\right) g\left(P_{1}\right) U(t) r\right\|=0 \tag{4.25}
\end{equation*}
$$

But from (4.23) and (4.25) we obtain

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} d t\left\|g\left(P_{1}\right) U(t) f\right\|=0 \tag{4.26}
\end{equation*}
$$

for supp $g \in \Delta_{0} \cup \Delta_{N}$ and $g=1$ in a neighbourhood of $+\infty$ and $-\infty$.

Summing up (4.16) and (4.26) we get
$\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} d t\left\|g\left(P_{1}\right) U(t) f\right\|=0$
for $g \in C^{\infty}\left(\mathbb{R}^{1} \backslash \underset{j=1}{\mathrm{U}}\left\{\mathrm{v}_{1 j}\right\}\right), \quad g^{\prime} \Leftrightarrow C_{o}^{\infty}\left(\mathbb{R}^{1}\right)$ and $g=1$ in neighbourhoods of $+\infty$ and $-\infty$.

Obviously, the same can be done for all other axes $x_{2}, x_{3}, \ldots, x_{n}$. Doing so, we find

$$
\begin{equation*}
\lim _{\mathrm{T} \rightarrow \infty} \frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}} \mathrm{dt}\|g(P) U(t) f\|=0 \tag{4.2日}
\end{equation*}
$$

for $g E C^{\infty}\left(\mathbb{R}^{1} \backslash \underset{j=1}{\mathrm{U}}\left\{v_{j}\right\}\right)$ and $g=1$ in a neighbourhood of infinity. Since the relation (4.2日) holds for every such ag, we get that for every $\eta>0$ we have

$$
\begin{equation*}
\lim _{\mathrm{T} \rightarrow \infty} \frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}} \mathrm{dt}\left\|F\left(\left|P-v_{j}\right| \geq \eta\right) U(\mathrm{t}) \mathrm{f}\right\|=0 \tag{4.29}
\end{equation*}
$$

$j=1,2, \ldots, N$. But on account of (1.11) for every $f \in b_{+}^{a c}$ and every $\varepsilon>0$ there is $a \eta \geqslant 0$ and $a \tau>0$ such that

$$
\begin{equation*}
\left\|F\left(\left|P-v_{j}\right|<\eta\right) U(t) f\right\|<\varepsilon, \quad j=1,2, \ldots, N \tag{4.30}
\end{equation*}
$$

for $t>\tau$. Taking into account (4.29) and (4.30) we obviously obtain

```
    \(\lim _{\mathrm{T} \rightarrow \infty} \sup \frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}} \mathrm{dt}\|U(\mathrm{t}) \mathrm{f}\| \leq\)
    \(\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} d t\left\|F\left(\left|P-V_{j}\right| \geq \eta\right) U(t) f\right\|+\)
    \(\lim _{\mathrm{T} \rightarrow \infty} \frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}} \mathrm{dt}\left\|F\left(\left|F-v_{j}\right|<\eta\right) U(t) f\right\|<\varepsilon\),
\(j=1,2, \ldots, N\) Hence (4.2) is fulfilled which immediately
yields \(f=0\).
```

COROLLARY 4.2. - If the Assumption P is satisfied and the trajectories $x_{j}(.) \in C_{\text {loc }}^{1}\left(\mathbb{R}^{1}, \mathbb{R}^{n}\right)$ obey
$\sup _{t \in \mathbb{R}^{1}}|x j(t)|<+\infty, j=1,2, \ldots, N$,
(which yields $\left.v_{j}^{+}=v_{j}^{-}=0, j=1,2, \ldots, N\right)$, ther (4.1) holds.
Proof. - We note that in this case it is not necessary to use Corollary 4.5 of [2]. Hence it is not necessary to satisfy condition (4.13) which allows one to drop condition (1.9) .

REFERENCES

[1] H.Neidhardt, Moving Fotentials and the completeness of wave operators. Part I: The Propagator, to appear.ear.
[2] H.Neidhardt, Moving Potentials and the completeness of wave operators. Part II: Fropagating observables on scattering state, to appear.
[3] V.Enss, Commur. Math. Fhys., t. 89, 1983, p. 245.
[4] D.Ruelle, Nuovo Cimento, t. 59 A, 1969, p. 655.
[5] w. O. Amrein, V.Georgescu, Helv. ftys. Acta, t. 46, 1973, P. 653.653.
[6] H.Kitada, K.Yajima, Duke Math. J., t. 49, 1982, p. 341.
[7] V.Enss, K. Veselic, Ann. Inst. Henric Foincare, t. 39 A, 1983, No. 2, p. 159.
[8] D.R.Yafaev, Dokl. Akad. Nock SSSk, t. 251, 1980, No. 4, P. 812
[9] D.R.Yafaev, Funkz. Analysis Fril., t. 14, 1980, No. 4, p. 91.
[10] D.R.Yafaev, Dokl. Akad. Nouk. SSSk, t. 243, 1978, No. 5, P. 1150 .
[11] D.R.Yafaev, Mat. SUorrik, t. 111, 1980, No. 2, P. 187.
[12] H.Kitada, K.Yajima, Duke Math. J., t. 50, 1963, P. 1005.
[13] K.Yajima, Commun. Math. Fhys., t. 75, 1980, p. 153.
[14] G.M.Graf, Fhase space aralysis of the charge transfer model, preprint, ETH-Zürich 1988.988.
[15] G.A. Hagedorn, Ann. Inst: Henric Poincare, t. 38 A, 1983, p. 59.
[16] U. Wüller, Asymtotische Vollständigkeit des charge-Trans-fer-hodells, Ph. D. Thesis, Berlin 1988.968.
[17] U. Wuller, Geometric Methods in scattering Theory of the Charge Transfer Model, preprint.
[18] V.Enss, J. Functional Analysis, t.52, 1983, p. 219.

Движущиеся потенциалы и полнота волновых операторов. Существование и полнота.

Для обобщенного заряда переносящей модели, точнее, для движущихся и временно зависящих короткодейстпующих потенциалов, показано существование и полнота волновьх операторов, которая определяется подходящим образом.

Работа выполнена в Лаборатории теоретической физики оияи.

Препринт Объединенного института ядерных исследований. Дубна 1990

Neidhardt H.
 E5-90-370

Moving Potentials and Completeness of Wave

Operators. Existence and Completeness
For the generalized charge transfer model, i.e. for moving and time-dependent short range potentials the existence and completeness, defined in a suitable manner, of the wave operators are shown.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Received by Publishing Department on May 31, 1990.

