


I. INTRODUCTION

Estimation of the parameterg of statistical distributiohé on the
basis of small sample statistics, although representing a definite
'section of mathematical statistics, 1is extensively applied only in
connection with the normal distrihution law. As it was shown by the
British mathematicians Student (V.Hosset) and R. Fisher, the fluctua-
tions of statistical estimates actually occurring in this case signi-
ficantly exoeed the errors deriired from relations of the classioal
Gaussian measurement theory ‘ '

In investigations of - radioactivity the . methods of olaséical
measurement theory have also been applied in the case of—a random_
variable with an exponential distribution. The well-known relation-
ships used for determining the variance of the estimated parameter
of this distribution for various types of measurement ¥ ' howevevr.
have .been substantiated in a- strict manner only for a large number
of individually observed decays. At the same time recent high-energy-.
physics studies of rare generation processes of short-lived pafticles .
have made the estimation of lifetimes and the determination of their
uncertainties an important problem in the case of & limited number
of observed decays of suoh particles. Application of the methods
of mathematical statistics in the case of a limited s.a.mple belonging

* .
) The classical approach turns out to be valid for small sample
statistics only in the particular case when a aingle.pgra.meter charac-

terizing the - centre of a Gaussian distribution, n ‘i estimated,
while the variance o_z ig known a priori. Geneprally, when both para—
meters, p - and "o , are to be estimsted .on the basis. of a sample

statistic, one should utilize the Student distribution which differs
noticeably from the normal distribution in the case of a small number
of measurements.

*% ) : . B . . .

*) We mean the conditiona of measuremént of individual lifetimes
on the regions of observation of -which limits are 4mposed: .upper
- (see ref. |I|, p. I58) or lower .and ypper, (see ref. |2]|, p. I48).
We also bear. 1n mind obaervg‘biohl of & sequential chain. of decaying
non;;;l):le states characterigzed by differing lifetimea (ses ref. |I],
P
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to the general statistics of a random value distributed exponentially
permits one to obtain precise estimates of the lifetime in the form
of confidence 1intervals of a given reliabllity a . Truly, Such
exact results require quite cumbersome computations. Therefore, for
practial needs i_i: has sense, on the basis of exact relationships,
elther to make up numerical tables or to der;Lve approximations that
" hold for samples that are as small as possible .

. In the present report exact expressions are presenj:ed for the
probability density function of the mean 1lifetime - T, estimated
" on the ‘basis of ' n separately observed decay events; the problem
of optimal choice of the nonsymmetric relative uncertainties 3,
and s has been formulated and solved under the condition that

the minimal total interval width s, + 8_

reliability @ ; tables are also provided of the confidence bounds .

corresponding to ‘the reliability values of 68.3% and 95.5%. The chosen
values are the ones corresponding to the reliabilitles of confidence
intervals widely applied in oxperimental physics for errors within

one and two standard deviations, respectively, in the case of a norm.al‘
paper as

- distribution law. Recommendations are also given 1in  this

perform approximate computation when the

how to of uncertainties

number of measurements is small.

II. ESTIMATION OF THE MEAN LIFETIME BY A CONFIDENCE INTERVAL OF
GIVEN RELIABILITY

.

a)‘ Statistical distribution of the obtained estimate <T.

Assume there to be obtained, as a result of measuring the times
of decay of unstable particles, n
t , and let a statistical conclusion on the mean lifetime of these
n : .

particles be required to be drawn on the basis of these results.

Let us also assume the sample to be sufficiently small and so exclude

separate values, tI’ t2, Seees

*) Naturally, going in pursuit of high precision in determining
the uncertainty cannot in itself be justified in the case of interest,

when the samples are small and the relative uncertainties are large.-

For practical applications ‘it is. important to exclude the possibility
of lgrge errorspgccurring in determining the uncertainty in the 1(mea.su—
red quantity. For this reason it is quite 1legitimate to mafe use
in computing -uncertainties of simplifications that provii‘de or a
precision ‘higher; than: 5% in the case of a . small number of measure-
‘ments. At. the:-same..time. the presence of a systematic '‘deviation in
the estimate. itself of the particle lifetime is, naturally, undesir-
able." The unbiasedness of -the estimate in the case of a small number
of measurements can be provided for rigorously without difficulty.

be obtained for a given‘.

Loy e e,

. *)
unbiased . However,

the possibility of ui:ilizing any approximations admissible when
n>>I . For simplicity we shall deal with this problem without consi-
dering. the restrictions on “the region of observable decays that arise
in practice. This will allow us to concentrate on the specifics of ~
solving the problem in the case of a small number of measurements.
of the experimentally obtained quantities
tI, tE’ ceey tn,‘"to be further denoted by § , represents, in accord-
ance with the maximum likelihood method (MLM), an estimate ( T )
of the mean lifetime T . of the unstable particles being studied.
Indeed, the probability of obtaining the given sample eguals (exp-

—Zt)l‘! .

The average value .

Thus, the log-likelihood function is L = I/t ): ti +

dL 1 "
n ln <. Hence, from F* = - — t, + n/>~ =0 we find
d 2 1 i T
t=s=1y¢ : ¢3)
TaZh o

This estimate by the MLM method in our case turns out to be
in the case of a small number of measurements
it is impossible to derive from the likelihood function information
of interest on the fluctuations of. the obtained estimate T . To
this end it is necessary to determine the actual probability density
function of the random variable S . Performing n
lutions of the ‘initial exponential distribution p(t) = -t— exp - t/
as find the sought distribution 0 (S) 1in the form of the follow—
ing distribution with the integer- values parameter n :

consecutive convo-

Ne1
2.(8) = 2T 225 exp (-.15 ), (2)

This distribution belongs to the more general family of J-distribu-
tions in which the parameter n may also assume fractional values.

For a given integer value of the parameter n the obtained
distribution & (8) 1is characterized by a single scaling parameter
T, which enters into the expressions for all the moments of the
distribution. Thus,

pectively

the expectation value and the variance are res—

* .
) Note, however, that this assertion on the unbiasedness of
the MLM estimate does not hold when, instead of the lifetime, ‘its

inverse is estimated, 'i. e., the decay constant A= ¢} . For this
quantity the MLM yields a biased estimate. The unbiased estimate
is represented by the following: A= g;:_I . % (see ref. Iz}, p.
159).



E(S8) = T
2 (2a)
T
D(S) = ——n— .. . B
Thus, the quantity T to be estimated from the sample data

bsimultaneously determines the mean value’ and the -variance of the
'distribution of the random quantity S . Therefore the random devia-
tion of the estimate ° T from the true value of the parameter
derived from a concrete sample also leads to ‘ah error in the estimate
of the:distribution's variance D= ,tz/n . This circumstance renders
the problem of determining a confidence interval for a single para-
meter of the exponential distribution law in the case of a small
number of measurements to a certain extent equivalent to the problem
solved by Student for the normal distribution when two parameters

are unknown.

Note also that by introduction of the variable X = 2nS[r

and the parameter ~~ k- =°2n _the obtained distribution
x°-distribution

¢n(S) can

be transformed into the

_ 1, x  k/2-1
= sz =12 )

i

Qk(x) exp (- ‘ (3)

for which the expectation value and variance are respectively egqual to
E(x) =k and D(x) = 2k. : (3a)
is included in the variable

In this form the ecaling'parameter T
X ‘and the distribution is characterized by k degrees of freedom.

b) Determining separately the upper and lower confidence bound

The problem of determining the confidence interval for the random
quantity T reduces to determination. from the known distribution
3 (S) (or ] (x)) of the lower and upper limits, ‘rl ‘and tz,
outside the range of which the probability for the quantity -
to occur owing to statistical fluctuations is characterized by “the
. sufficiently small value B = I — « . Therefore, is seems reasonable
first to establish separately the upper and lower limits corresponding
to given probabilities B+ and B_, respectively, of going beyond
the indicated limits. Incidentally, when the number of measurements
‘ is small, one most often encounters Just this problem of determining
one of the confidence bounds of reliability a, =1 - B.t . The

4

problem of computing the probabilities B and B_ is solved

exactly without knowledge of the true scaling parameter T , to
which end it suffices only to define the confidence bounds %cj and

le is arbitrary units obtained from the samples of the random
quantities Ty s i.e. as .

Tay =_tj(1 +8)) and T, T tj(l -8.),

&)

where J stands for the number assigned to the sample.

Conclusions on the probability content of the nonrandom:quantity
, being determined in this case, should apply to the statistical
set of repeated samples of given size n , on the basis of the data

T

‘of which the confidence bounds '%{i and 1] are determined
by the procedure (4). When one deals with a sole concrete sample
and the values T , %2 and %1 derived from its data, one must

clearly bear in mind the randomness of these values and realize that

they are bound to undergo changes within a series of consecutive

eamples. At the same time, when a confidence bound tz and T,
is fixed, no conclusion at all can be made on the probability con—
tent of the nonrandom quantity  t .
Fixing only the relative value of the bound %z/t = I +
8, , or 1/t =1 - 35 , one can find the corresponding By
and B_ from the distribution of the random quantity S . The
probability B+ for the true value of the estimated parameter
to occur beyond the chosen upper bound, tz( B, = PC 'y tz))’ is

then determined by .the probability of obtaining small values of S
for which the corresponding x < xp = 2n SI , where the bound SI

r .
is determined from the oondition S (I + 5+) = 1t . Thus, the lower
bound SI corresponds to the upper limit %é of .the estimate of
the quantity T . To underline this peculiarity in the construc-~

tion of judgments on the probability of the nonrandom quantity T
we have chosen to denote by another letter S the random quantity

: s *
%~ Z t1 , on the basis of which such judgment are decided upon .

*) This permutation of confidence bounde was connected in terms
of the classical theory of errors with inversion of the probability.
Modern formulation of the principal problem of the theory of errors
does not imply introduotion of the unjustified notion of the statistic-
al distribution of.a nonrandom quantity being estimated, but underlines
the random-.nature of the oonstruction of the very Judgment on this
quantity by calling the probability for the judgment on the estimated
quantity to be correct the likelihood. These questions are considered
in detail in the author's article "On the interpretation of the prin-
cipal problems of the theory of errors™ in the Supplement to the
Russian edition of +the book "Statistical Methods in Experimental
Physics" (ref. |2], p. 283). .



Consequently, the quantity B, can be found
22-distribution (3) from 0 to xq = 2n(I + 6+)—I .

B,= P(T > T)

X
. ) = ' (x)ax, , (5
o}

Correspondingly, the reliability of the chosen upper limit @, =
P(T € T,) will be

_ — @ 2
«=1-8= i ¢, (x)dx = P(x% x,),
1

(5a)

Fixing the value o

4+ one can find the ¢orrespondiné I+ 8, for

2 2¢

various n using the tables of extreme values X, for the X -
distribution (see, for example, ‘ref.|3a], p. 503 or ref. |3b], p.

49-55) .

The problem of determining the lower bound ;1 for the quantity

T with a given reliability a = PCT > %1.) is formulated in
a‘ similar way. Owing to the fluctuation of the ’closely correlated
random quantities’ T =S and %1 = T(I - 8_) the inequality

TS %1 is violated starting from T2 SE’ where the upper limit
52 is determined from the condition SQ(I - 8_) = T . Consequently,
X, ='2n %1 " and the quantity g_=1- & must be represented

by tbe following integral of the xa-distribution (3):

R o0

1 - o= P(T < tl) = f ¢k(x)dx .
- X
2

For differing k = 2n the relative values (r - 5_), determining

the lower bound ~ ?L = T (I ~ . ), can be found for a given value
I - o from the tables of extreme values xi‘ for the x2—distri—
bution.

In Table I there are presented for a 95% reliability level the
relative values of the upper and lower bounds I + & = —E—gﬂ———
and I - &_ = ——2n._ for n going from I to I5. xq(0.95)

x;(o.os) '

When only a few decays of the 1nvestigatgd particle are register-
ed, one usually makes use only of‘the lowgr and upper limits of the
mean 1ifetime in those cases when it is necessary to make a sufficient~

ly reliable conclusion about the disqrepancy between the results

.of the’perfofmed experiment . and theoretiéal predictions,or’experimental'

results obtained earlier.

integrating the

Table I.

c) Optimization of the confidence interval

For estimating the quantity T
given reliability o4 use must be made simultaneously of the upper
the required- reliabil;ty

can be vbtained in various ways,

and lower 1limits. In this case; however,

Relative values of the
upper fz/r =I+ §+/én& lower f}/t = P
I- s_ confidence bound on the
level of a reliability equa}“0.95
for small number of measurements
n (from I to IS). ‘

- B
dizferent relationships between
the - probabilities of going
beyond the lower
limits established on the basis

upper and

of the random quantity <t . To

n I+ 6+ I~ 8 . arrive at a unique solution of
I I19.4 0.33 this problem an additional con-
2 5.63 0.42 dition must be introduced .that
3 3.68 0.48 complies with the general
4 2.93 0.52 principles of statistical es~
5 2.54 0.55 timation theory (ref. j4],
6 2.31 - 0.57 p. 558).

7 2.12 0.59 In - the monograph |5 (p.
8 2.00 0.61 224) the condition B, = B_=
g I.9I 0.62 I-a was applied as being
10 1.84 0.64 nitural and self-obvious in
b L.79 0.65 considering the example of
12 L.74 0.66 estimating the mean 'lifetime
13 1.69 0.67 of particles by a confidencé
La I.65 0.68 interval.- Actually, this condi-
I5 I.62 0.68

tion is such only in the case

arguments

of a symmetric statistical
distribution. For ' the :
being considered of a random quantity with a nonsymmetric distribution
the application of the condition 1is not Justified. Besides
connected with simplifying the solution of the problem,

there seem to be no other arguments available to favour this conditlon.

case

above

From a general standpoint of statistical estimation theory prefer-
ence should be given to such a relationship between the probabilities
B+ and f_  and the respective s, and 8_  that provides
for the minimal total interval &+ &_ for the given reliability

o . The latter condition is equivalent to defining the relationship

between 3, and 5_  that provides for obtaining the maximum
value of 4 for the given total intervals + & = _%_ - _é-.
: 1 2

7

by a confidence .interval of

since the same value a =1 -
" may be obtained for -



The ' «

max condition leads to the equation

2.

1 651

da _ 2 - '
== 3 (S)ds = 0 for S,= [s]'- T (s,+ 5)17"

N0

1

from which follows

5y - (5)°. (6)

Thus, the chosen bounds SI and ‘SZ of the random quantity S
(I) must not only comply with the given reliability

s
. o i ® (S)dS = 0.683 ~or 0.955

. 15
but at the same time it must fulfill relation (6). The minimal value

of the interval ( &, +  5_) is thus provided for in the case of a |

given reliability a . !

Using expression (2) for . the probability density of a random
quantity S we obtain from relation (6) the following:
exp.[- n (’_E - fl -, S n+1
Tt = )1 = /5, )7, (6a) -
Hence it follows that the extreme values of the corresponding optimal
interval are uniquely determined by the ratio R = Sz/SI

S

S .
1 =-n+1 1 2 + 1 »
T n E=-"1 InR - = E_H_— B 8 T ;p R. (7)
The bounds S;/¢ and ”SZ/_c found by these relations define
in arbitrarj gnits cft , for any arbitrary number R, the optimal

which has the maximum = ¥
max But the maximum reliability value of the inter-
val itself depends on the chosen value of R

problem it 1is hecessary to find R,

interval ( s, + 8 ) = (SI/t )_I - (sg/t )_I
reliability a

To solve the formulated &

for which a ax (R.) 1is 3
equal to the given reliability valug a. The quantity R, and
the extreme values SI/.c and S2/_c corresponding to it were

determined by the method of successive approximation. The following
quantity was computed for'values of SI/.c and 32/1

defined in accordance with (6a), i.e. the chosen number R :

that were

S
.2 S, na1 S S n-1 S_-
= - S 1 1 1,k 2 1 2 .k
& ax é Qn(S)dS = exp (-n—?)kng (n—)" - exp ('"'? )w@_;!(n z ). (8)
. - =

The program of successive calculations for various R ensured conver-
gence of the result to the given value a, with the réquired precisi-
on and determined the corresponding values of the relative uncertain-
ties ‘s, and 3_ . Calculations were performed for n from I
to 50 for @ = 0.6827 and ¢, = 0.9545 with a precision A« £

5'10-5 . In Table 2 there are presented, Valpes of the quantities
3, and &_ fqr different numbers of measurements. The presented
results are rounded off at the third decimal digit which has introduced
deviatiohs of the given values of .-“o‘ up to 3'10—4. A corrésppnding
truncation is performed also of the reliabilitigs <4 :of_the confi-

dence intervals indicated in the Table.

Table 2. Relative errors 6+ and. S_ corresponding&upﬁer f;(xI)
and lower R %1(x2) bound of the optimal confidence interval
¢ =, - 'C._)min for two values of the given reliability

a = P( EL < 1t < TZ) equal,. 0.683 and 0.955 at the dif-
fering numbers of independent measurements n .
a = 0.683 a = 0.955

n a* J_ q* S

I I.65 0.829 20.5 « 0.909
2 0.803 0.684 4.95 0.814

3 0.588 0.589 2.84 0.740
4 0.486 0.521 2.05 0.684

5 0.425 0.472 I.64 0.638
6 0.384 0.433 I.39 0.60I
7 0.353 0.402 I.22 ' 0.570
8 0.330 0.377 I.09 ’ 0.543
9 0.31I0 0.355 0.993 0.520
10 0.294 0.337 0.916 0.500
II 0.280 0.321I 0.853 0.482
2 0.268 0.308 0.80I 0.466
13 0.258 0.295 0.757 0.451
I4 0.249 0.284 0.719 0.438
I5 0.241 0.274 0.685 0.426
20 -0.2I0 0.237 0.565 0.378
25 0.188 0.2II 0.49I 0.344
30 0.I73 0.192 0.439 0.318
40 0.150 0.1I65 0.369 0.280
50 0.1I35 0.I47 0.324 0.254




Optimization of the confidence interval for a = 0.683 leads

to a significant violation of the'equality B, = g_ + The ratio
B_/B, is egual to I.8 for n = 50, to 2.3 for ‘'n = 25 and to
6.7 for n = 5. This, in turn, means that calculation of the confi-
dence interval on the basis of the condition B, = B_ for small n

must lead to a significant excess enhancement of the interval.
It must be especially underlined that the optimal interval of

" given reliability o , that we have found, is related to the case .

when the statistical estimate 1is determined for the mean lifetime
of particles; < . Totally 'different relationships for optimizing
the confidence interval will occur in case the inverse quantity I/t =

A called the decay constant 1is estimated. The condition that

the interval Ai» be minimal for a given reliability « , which

i8 equivalent to the condition for obtaining the maximal value amax
for the given relative value of the interval Ai/i , leads’
to the relation gJSI)/ ¢n(82) = I . In this case, .instead
of relation (7), we obtain

s s

1 _n-1 1 2 _n-1 'R

T T " i In R = = m B 1 In R. (9

ITII. COMPARISON WITH APPROXIMATE METHODS OF DETERMINING
THE CONFIDENCE INTERVAL

I) Approximate method using symmetrical confidence interval
for the inverse quantity I/

First of all we shall compare the values of the optimal confidence
interval, obtéined witﬁput any approximations, with the results of
the approximate method of determining the confidence interval widely
adopted in elémentary particle physics without approximate substan-
tiation in the case of a small number of measurements. We mean the
method described for the general case in the monograph [2]| (p. I96),
in which the asymptotically normal behaviour is utilized of the dis-
tribution of the following random, fqr each sample (xI, Xoy ewe
x), quantity

dL

. 1
“(x1’¥z""¥ /é ) =p5— L E(a 2) 1"z, (10)

10

The confidence interval for this quantity is determined from the con-
dition .

1 .
tECSE) 17 L < uey, (10a)
where L 1is the-iog—likelihood function takeh with its sign inverted,
L (x Xoree X /9) = - 1ln l(x x yeeeX / ) is the distribu-
tion parameter to be determined u, 1s the number of standard devia-
tions being normal provides for the given reliability o, of the
confidence interval. )
For the case under consideration of a random quantity having
a negative exponential distribution the condition (I0a) 1leads to
the following simple confidence bounds for the mean particle lifetime
%1< T < %2 (see ref. |2, p. I97): S

: T 4 T
L T and T, =7 1/ (ID)
1 1.+ uo/nl/z 2‘ 1 uo/nl/z s
where T is the estimate of the guantity T based on the

MLM and determined by the relation (I).
For the simplest case under consideration of n observed par-
ticle decays this method actually reduces, without any: restrictions

being imposed on the range of the observed quantities ti y to utiliz-

ing the variance of the random quantity S . The random quantities
p and S are related in a unique way by the simpie linear transfor-

mation M = nl/2 (2 - s/7). Use of the random quantity p determined

from the sample data 1is justified for finding the variance$of the

estimate T in the essentially more complicated case when
restrictions of various kinds are imposed on the range of the observed

particle lifetimes *).

*) R.Peierls (ref. |6]) initially solved the problem of estimating the

mean lifetime of particles from observations of the moments of separate
particle decays when a common restriction for all the observations is

imposed on the time range of the registered decays, . Then, in

1954, M.S.Bartlett (ref. |7]!) solved the problem of’estimating the

quantity T on the basis of separately observed decays in the general
case, comprising entirely different groups of observations, both with-

out restrictions imposed on the range of observed t and with restric-
tions of "an individual nature, , and taking into account the

information on the particles tha% did not decay inside the detector.

This ccmplicated problem was timely solved specially for determining

the lifetime of hyperons. Ref. |8| may serve as an example of the

application of this method. Later such methods became widely diffused

and they are partly described in monographs (ref. |I], p. IS8 and ref.

|2], p. 148 and p. I196).

11



The significant progress in solving the complicated problem, that
has arised from practical physical reality, of determining the estima-
te of the mean lifetime of unstable particles with account of systema-

tical corrections due to various restrictions imposed on the range -

of observable decay moments gave on contribution, however, to altering:

the essence of the initial formulation of the problem of finding
the wuncertainty of the obtained estimate. For this reason it has

sense to discuss, for greater clarity, the widely utilized method.

of determining approximately the confidence interval as applied

to the'simplest idealized case when no restrictions at afl are imposed ;

on the: range of observable decay moments. After clearing up the .

essentials of thiS~point and obtaining . substantiated recommendations
for the approximate approach one ¢an deal with the same problem
of determining the confidence interval for the estimated quantity
in the more complicated ‘case corresponding to the real ‘situation
considered in ref. |7].

In the case of a confidence interval with a' reliability equal
in the asymptotic approximation to a = 0.6827 (uo = I) the rela-
tion (II) for the bounds yields the values ) ’

T ‘ > T

T=—" and T = — .
v 4 V2 ; 2 g - V2 (I1a)

to which there correspond in the variable S/¢ the following respec-

tive confidence bounds:

S /T =1+ m /2 and 5 /T =1 - n_ 1/2, (IIb)
This means that the considered approximate method of determining
the confidence interval reduces to adopting the symmetrically situated
bounds (IIb) for the random quantity s/t with a deviation from
square root of the variance A = (D(S/'t:))l/2 =

unity equal to the o
I/ V— The latter is equivalent to. assuming a symmetric relative
uncertainty for the inverse quantity A=t , since the bounds
(ITa) correspond to the interval (1% 6 .

On the contrary, the relative uncertainties 3+ and S_
expressed in terms of T turn out to be not equal to each other
for small . n :

‘ - 1/2 ~ 1/5

n
§ = 1 and 8§ = —mm————r (IIc)
+ l_n" 1/2 ) - 1+ n 1/2.

12
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Accordingly, for another interval reliability given in the symptotic
approximation one must introduce into all ‘the relations (IIa, b, c)
the corresponding number Ry of standard deviations 4, = I/ Vo .
Thus, the relations (IIc), for instance, in the general case- have
the form - T

u .

5o - vO/nl/Z ”o/ ﬁ/z

T and 8 = ———— .
1 - 5} /n1/2 1 + uo/nl/z

Presenting this method of determining the uncertainty 'in the
estimate Bartlett himself pointed out is applicatfon being justified
only in the case of a ldrge number of registered decays (ref. 171,
P 25I)
was applied for handling samples consisting literally of a few regis—

However, in practice this method without substantiation

tered decays * .

At any rate the warning of Bartlett remained unnoticed and
the absence of symmetry between the errors 6‘t and & T ob~-
tained at small n lead to the wrong impression, that the applied
method accounts for the specifics of handling small-sized samples
in reflecting the nonsymmetric character of the initial distribu—
tion of the random quantity .. Actually, this nonsymmetric charac—
is merely due to’
our adopting a s}mmetric uncertainty for the quantity. -1 . Further
we shall consider another such as simple approximation. consisting
in assuming a symmetric uncertainty 5+=5_=50= n-I/.2 for
the quantity T and accordingly a nonsymmetric uncertainty for

ter, §> & , as we already pointed out,
+

the inverse guantity 7
A L1 R oz
= ——— an A s —
+ - 12 _ -
1 -« n . R 1 +.n ‘1/2

*) Such a use of this method at the beginning- of the investigation
of hyperons was caused first of all by the level itself- of the first
observations of the decays of these particles. In recent years a
similar situation was repeated in connection with the study of the
decays of charmed particles with even shorter lifetimes. The problem
of handling small-sized samples will still be of interest in the
near future of elementary particle physics 1in  connection with the
search for new short-lived partioles predicted theoretically on
the basis of newly introduced heavy quarks. Therefore it 1s of utmost
importance to establish the limits for the application of the general-
ly accepted approximate approach.

13



The expression (2a) made use of for the variance in these approxi-
mate approaches is exact for any arbitrarily small number of measure-

ments. However, the probability content of such intervals constructed

in the simplest way on the basis of D"I/2 is clearly defined only

for n>> 1 from the asymptotically normal distribution of the

random quantity S .°

2) Comparisdn with the optimal confidence interval

The"e#act reliability of the 1ntervai made use of (IIa) for
small’ n is determined by integrating the distribution (2) within
iimits given by the relation (IIb). However, the main control must
be appliéd to the deviations of the utilized intervals from the

optimal values A% for various n .

Differing conf;thce intervals must be compared with each other
first of1311 oy the basis of the total interval value, 6+ + 3
Another, auxiliary,v‘characteristic of the 1interval reflects the
@ifference between - '6+‘ and 5, the absence of symmetry of the
relative uncertainties. For representing in a clear manner the depend-
ences of these characteristics of confidence intervals on the number

. : D *
n it is convenient to make use of the gquantities

.

3+ 8 172 ' S~ B
Vr S ! po 20 W (12)
byt 2 B (@
where the parameter uo(d ) equals I for a = 0:683
and equals 2 for a = 0.955 .

The histrograms of the dependences of the quantities (I2) for the
discussed confidence intervals are presented .in Fig. I. Here the
confidence 1ﬁtervals corresponding to the histograms I, 2, 4 corres~
pond exactly to the indicated reliabilities 0.6827 and 0.9545.
For the confidence interval (II) (histogram 3) the reliabilities
are only approximately equal to these 'values. Truly, the excess
over a = 0.6827 amount to less than IO_'2 for n = I0 and to
less than 51072 for n > I7 . ' '

" .
) Accordingly, the relative uncertainties are expressed through
these quantities by the relations TRT S
L (a) ’

5=-%2 0 +u+ D and 8= —F1/2 (1 + U - ¥),
+ n
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Fig. I. Histograms of the quantities U and Y for confidence
intervals corresponding to the following conditions:

- s, ,2- 8=B ,3- b=a=A ,

4 - Ahrn -3 for the reliabilities « = 0.683, a) and
in

b), and & = 0.955, ¢c) and-d).

n — represents the number of measured decay times.

The significant deviation of histogram ‘3 from histograms I
and 4 indicates that the confidence interval determiped from ‘the
condition that there be introduced equal relative uncertainties

A-A=A =1/ }n for ! essentially exceeds the
-5 To
optimal inter;al [)?;in and does not coincide with the interval
corresponding to the condition of A/tmin' At the same time t&e
histrograms 2 and 3 being close to each other means that the condi-
=A=pA=p Y2 and B_= B = 0.I58 lead
tions A=A = AO_ n_ . + _
to close intervals.

3) Choice of the best approach from the simply methqu

Having utilized for comparison of the earlier discussed confi-
dence intervals the quantities (I2) we have, thus, implicitly intro-
duced one more approximate expression for a confidence interval
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with extreme values equal in the case of o = 0.683 to-
. - 1/2 -~ - -
T,=T (L -n / } and T=T (1+n 1/2) (13)

and to which the following symmetric relative uncertainty corresponds:

8,7 855~ ( D(E/T) V%= 0 V2,
It is readily seen that for this confidence interval the introduced
quantities (I2) have zero values. (Consequently, the interval corres-
ponding to the bounds (I3) is assumed to be the base interval deter-
mihing“the origin for the quantities (I2). For n >> 1 this interval
coincides with fhe considered approximate expression for the confid-
ence interval (IIa). However, for small n the optimal confidence
interval (histogram I in Fig. I a) turns out to be significantly
closer to the approximation (I3), to which corresponds .U = 0 and
Y = 0, than to approximation.(IIa) (histogram 3 in Fig. Ia). However,
this fact 1s insufficient to draw a conclusion on the advantages
of the approximation (I3). The point is that closeness to the optimal
interval in the value of the total interval could have been.achieved
owing to a loss of the probability content of the approximate confi-
dence interval (I3) expressed by a definite integral of the distribu-
tion (2) for the random quantity S with limits SI = z (I +
/vl aa s, = -1/ vmt

Calculations of a(n) for the interval (I3) have yielded,
however, an unexpected result. The deviations of a(n) from @ =
0.6827 for +this interval turned out to be significantly smaller
than for the widely applied approximate confidence interval (IIa).
Thus, for n = I6 the value a = 0.6825, while the condition [a -

a| < 5'10“3 is fulfilled starting from n = 4. :

This means that the approximation (I3) is more precise than

(IIa) from all points of view. In other words, the bounds
%a1= %‘(1 “n " l/ﬂ
‘correspond to the optimal interval better than the bounds
Setata v

of the currently widely diffused approximation.

From the data of Table 2 it is easy to =see the sum - 3 + &
for @ = 0.683 with an accuracy higher than 1072 obeys the law

2/ yYm starting from n = 4. This means that the approximation
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(13) in the whole region n=>3 gives a good description of the
total value of the optimal ‘interval. On the other hand the asymmetry
Y for the optimal interval within all this region has a negative
value while 1its absolute value remains less than 0.07. Neglecting
this quantity 1in the approximation (I3) (Y = 0) only introduces
an 1nsign1ficant decrease of the probability content of “the interval
by a value < 5° IO 3. At the same time introduction of nonsymmetric
uncertainties 83>%8 .  in the case of the approximation (IIa)
yields more significant deviations from @, 'and from the total

vvalue of the optimal interval.

Thus, for a confidence interval of reliability 0 683 one 1is
justified when n>3 in adopting the approximate approach based
on the choice of a symmetric relative uncertainty '

s, = 8.=8=n" /2,

From Fig. I ¢ and d one can see that in the case of a reliability
@ = 0.955 both considered approximations do not provide for, small
n , a description satisfactory from the point of view of closeness
to the results obtained for the optimal confidence interval. However,
in this -case an approximate approach 1is not reall& needed. When
the "number of registered decays is small, a confidence interval
of reliability close to I is utilized only in rare special cases.
Turning :in such cases to exact tabular values of the optimal confid-
ence interval cannot be considered burdensome, if a guaranteed high
reliability of the confidence interval is required. -

IV. CONCLUDING RECOMMENDATIONS FOR CALCULATION OF
UNCERTAINTIES IN THE COMPLICATED CASES OF . REAL OBSERVATIONS

In real experimental conditions the mean lifetime of unstable
particles 1is estimated by simultaneously processing various greups
of measurements differing in the restrictions imposed on the range
of observations. Together with the n registered @ecgys_considered
above ‘without restrictions being imposed on the range of observed
times, there is included in the joint analysis a group of m decays
registered when restrictions are imposed on- the ranées of observa-
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tion: ti <Ti~ T *). In the joint analysis there is also taken --

" into account one more group of k investigated unstable particles
about which one only knows that each one has decayed later than
a c_ertain moment of time Ez This group, for instance, includes

decays that occurred in the detector after the particle had already

: , 1s the time that
pasged before the‘ stopping of the unstable particle. The same group

“also includes events of 1nvest1gated particles travelling through
the detector without decaying in it

:"I‘he likelihood function for the whole samp'le consisting of
the indicated three groups of events has the following form [8] :

come to a stop. For such events the quantity o

N n : k
=7 (lnt + ti/t ) +¥{ln T + t'/-c + 1n[1 - exp( -'I;/.C )1} +Eey/T .
1=1 1=1 : i=1

The estimate of the quantity, is equal to

R 1 n m T‘ k
T = (Yt +y ([t + —ap— ] +¥8}
. n + m R exp(Tl/t'; -1 =1 b

The random quan'tiAty' (1I0), which is usually utilized for deter—
mining the confidence interval, in this general case has the form
. _1 n m
W T ):t+z[t+&-p—(l/t)_l]+):e
(n+n+ LM/ %exp(-Ti/) (1 - exp(-T1/ ) 1732

But, as it was revealed in_the preceding section, the procedure
proposed by Bartlett: |7| for determining the confidence interval
does not yield a satisfactory approximation to the optimal confidence

interval in those cases, when the uncertainties obtained by applying

. 1t turn out to be comparable with -the estimated quantity . The
more precise approximation %21 =T [T + VD('C / 'c) ] makes

direct use of the same variance of the random quantity T /T
which, however, in the general c'a.se considered here cannot be repre-

*) In other words, for each particle decaying inside the detector
it is taken into account that its decay would not have been registered
in the .detector, if. it had taken place later than a certain moment
Ti' The extreme value of Ti is not conatant not only owing to geometric

factors of individual character” (the point at which the studied’
particle is created and its angle of departure), but also because
of the differences in the particle velocities. This is because the
moment when a moving particle decays in its proper. time ‘is determined
by the measured flight 1length 1 with account of its velocity V
and the Lorentz factor LA t; = 51 / v, 7
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found variance:

sented by a simple expression. At the same time the Bartlett proce-

dure gives the interval for the inverse quantity ! related
to the variance. Therefore” it may be applied for a definite variance

D(-E/'c) . The random quantity p 1is equal to 0 for =71 . Its ’
deviations by +I from the zero value are associated with certain
bounds T, (u=1) and T_(H=-1)
of the ratio 't st by the simple relation

connected with the variance

v('C_l- 'c:_l) = [D(-E-/-,_-)]l/z.

Nl

Thus, the quantities t, and T_ are not to be considered
bounds of the confidence interval of reliability a = 0.683, but
bounds ‘of the "variance interval". Now, the bounds of the confidence
interval of reliability a = 0.683, as it was shown above, with
a good precision of approximation to the optimal confidence interval
are expressed through the variance of the random quantity 'E/'c.
by the following relation:

—tnio/ -t ti -

T
2,1

(14)

For earlier publications one can determine the more exact value
of the confidence interval (I4) + o directly from the uncertainties

o, and o_:
- - +
o= T [D(T/T)1V/? = 0'2 2 , .1; — .
a+%yna - %/

|

On this basis one may decrease the values of the total interval
given in the previous publications. It is important to take into
account the possibility of performing such corrections when discussing
work devoted to the currently important problem of measuring the
lifetime of particles of new family with heavy quarlgs (see Appendix,
item I). '

Averaging of the estimates of the mean particle lifetimes obtain-
ed in different works must be performed with account of the statisti-
cal weight of each estimate. The relatlve uncertainty of the resulting
average value equals 5 = ( 2 DJ‘)_ /2,

In the general case, when the three indicated groups of measure-—
ments are oprocessed simultaneously, one can introduce the concept
of the effective number of measurements which corresponds to the

1 a~ -~
- : T _ T -2
b TR T - (19)
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This quantity should be taken as the statistical weight when
the results of different experiments are éveraged (see Appendix,
item 2).

Separately for -the second group of events comprising m regis-—
tered decays with a restriction imposed’ on the range of observed

times T{v T , We always have n<mn . In other words, we have.

D(%/t) >m However, when these data are considered simultaneous-
ly with the group of k particles travelling through the detector
without decaying there should be obtained, on the average according
to the results of ref. |5| (p. I93), a variance equal to m !l .
This indicates the importance of taking into account the full infor-
mation when estimating the mean lifetime, including the information
on the particles that did not decay. In practice, unfortunately,
for particles passing through the detector without decaying not
always is there available a reliable proof of their belonging to
the investigated class of unstable particles. At the same timé‘the
presence in the group of k events of an admixture of background
origin leads to a corresponding systematical enhancement of the
obtained estimate ¢ .

Rounding off to an integer value the effective number‘of measu-—
rements found in accordance with (I5) one can on its basis make
use of the results presented in the preceding sections for the éimp—
lest case. For instance, from the data of Table 2 one can derive
estimates of the relative uncertainties 8, and 5_ correspond-
ing to an optimal confidence interval of reliability 0.955 for
which there exists no satisfactory approximation based on the vari-
ance of the random quantity T/T.

I am grateful to O0.M.Kuznetsov and V.V.Lyukov for drawing my
attention to the

estimate of a mean particle lifetime in the case of a small number

problem of determining the -uncertainty in the

of measurements. I also thank greatly G.Pontecorvo for his kind help
in translation this artlcle.
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'and B mesons and the

APPENDIX

EXAMPLES OF CONFIDENCE INTERVALS FOR EARLIER PUBLISHED RESULTS
BEING CORRECTED

’ -

I. In one of the first publications, lBl, on the determination
of the mean lifetime of the -hyperon on the basis of the proce-—
dure proposed by Bartlett for processing experimental the following

result was presented:

In agreement with relation (I4a) o, = I1.8°10° s and according-
ly we obtain the final result

T 2 (2.9 +1.8) * 10710

with a confidence interval 'I.6 +times smaller than the one previously
found. ‘

At present this correction is, naturally, of no practical .value,

since the mean 1lifetime of the A —baryon is ‘known with a good

precision ( 10‘2)} However, in’ the case of the new particles (the F
A ~baryon), for which only the first measure-

ments of  their lifetimes have been performed recently, a similar
correction of .the confidence . interval would be of great toplcal
interest. Thus, for example, in ref.. |9] the -following result with
a nonsymmetric ‘uncertainty is given for the mean lifetime of the

+
F — -meson:

o o 4 3.6y . -I3
(2.1 _ 0.8) IO 8 . .
i i . -I3
In accordance with relation (I4a) we find (2.I + I.3) 10 s.

The symmetric interval of this more accurate approximation is I.7
times smaller than the previous confidence interval.

2. For the charged and neutral D-mesons it is now important
to correctly perform averaging of the various results of measuring
the mean lifetime. The results of individual measurements -of  the

mean lifetime of the DT and D°-mesons adopted in ref. |IO| for
-I
averaging are presented below in units of IO 3 s @
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+, +2.2, +4,5, +3,I 245 -

ot: 2.53075 8.2321% 95075 831 e.83ips TL.5lli
o s +240 ~+d. ~+0,8, .

s 3.2tE:ds 6.728:3; 2.8%8; 85 4.I75:% 4-Ii§:2i 4217 2

The average weighted value given in Tables of particlevproperties
of 1984 110]| was dete:mined by averaging the inverse quantities

N
+ 2 wJ .
oA _ 3=t .
T= with the weights W= (t '-t)?
T T W yoo
1 3y
T = T - ' = 1
where -y ‘5 a and T =T+ Ty . The corresponding mean

=J . +] j
values are equal to 9.2t§:g for - the pr  and to 4.40i8'gg for
the D°-meson. ’ ' )

However, in this-case of comparatively large measurement errors
it is more justified to perform averaging of the T with the
" welghts nj , in accordance with (I5). Accordingly the confidence
1nterva1 for the mean weighted value is determined by the symmetric

uncertainty Oy = <T>( E q )~ /2 . In the case of such averag-

ing the final results are obtained equal to (8.7+I.3)'IO_13 s
for the DY and to (3.92+0.56)°10713 s for the D°-meson.

Thus, the proposed gorrecfion of the procedure for averaging
results leads to a significant shift of the mean weighted value
and to a certain degreasé of the total confidence interval. These
alterations of the final result must be taken into account, since
they are considerably larger than the given uncertainties of fixing
the central value and the bounds of the confidence interval. '
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',VMaHOM ylclie SapeFHCTpHpOBaHhMX paCnaﬂOB qaCTHH BHHCHEHO,
'Uﬂnepcun cummeTquHmH HHTepBaﬂ /D -daer cymeCTBeHHo Gonee

‘~sBany 1o cpaBHeHum € MOJYUUBIIHM B ‘bHU3MKe’ mnpoxoe pacnpo— Ao

bfTﬂnKHH AAL ,’ L ‘b o Sl f":—f E5-90-351
‘~0npeneneHHe nOFpemHOCTH oueﬂxn cpenﬂero [N RIS
- BpeMeHH KM3HH YacTHL, npu Man0M qncne_qrf‘ L :
7Ha6ﬂmnaemmx pacnauos

. Honyqeﬂo Tquoe pemeHne sanaqn onpeﬂeneﬂnﬂ MHHHMaHb—‘
:HOFO nosepuTeanoro nHTepBana .3aaHHOI: HOCTOBeDHOCTH npH

‘,QTO IIPpH MaﬂOM qncne HSMGDEHHH onpeueneHHmH Ha OCHOBe HAHC

TOqHOE anGHHXeHHe K OnTHMaﬂbHOMy ﬂOBepHTEHbHOMy HHTep—

’fCTpaHeHne npuﬁnnmeHHmM nonxon0M PaCCMOTpeH cnyqan ‘COBT :

‘MECTHOFO aHannsa paanqux rpynn HSMepeHHH »ﬁ ’»r

*PaGOTa anonHéHa‘BdHaooparopun‘ gnépng”hpo6ﬁeM.

S I

v

R

fgaof ‘the Lifetime (of .a Particle Based
‘;aon a Sma11 Number of Observed Decay Events=

P ftlcle decays It is. demonstrated that for a small sample
[ of measurements the | symmetrlc 1nterva1 +V§ ‘defined on

”fpreclse approxlmatlon to’ the: opt1ma1 confidence: 1nterva1

iTyapkln A, A

: : o E5 90—351
;Determlnlng the Uncertalnty in' the Estlmate i

B

5 'The exact solutlon is obtalned for the problem of de—
:}termlnlng the- m1n1ma1 confldence 1nterval of given. re-.
1liability-in the case of a small number of observed par-

]the ba31s of the .variance, yleldS -a 31gn1f1cant1y .more ?
‘than is. obtalned from’ ‘the -approximate approach w1de1y

"*applled in- phy81cs. A case of 31mu1tane0us ana1y31s of
L4d1fferent groups of meaSurements 1s examlned :




