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I. INTRODUCTION 

Estimation of the parameters of statistical distributions on the 

basis of small sample statistics, al though representing a definite 

section of mathematical statistics, is extensively applied only in 

connection with the normal distribution law. As it was shown by the 

British mathematicians Student (V .Hos set) and R. Fisher, the fluctua­

tions of statistical estimates actually occurring in this .case signi­

ficantly exceed the errors derived from relations of the classical 

Gaussian measurement theory*). 

In investigations of radioactivity the methods of classical 

measurement theory have also been applied ~n the case of a random 

variable with an exponential distributi.on. The well-known relation­

ships used for determining the variance of the estimated parameter 
. **) 

of this distr:i. but ion for various types of measurement , however, 

have been substantiated in a strict manner only .for a large number 

of individually observed decays. At the same time recent high-energy­

physics studies of rare generation processes of short-li_ved particles · ,,. 

have made the estimation of lifetimes and 'the determination of their 

uncertainties an important problem in the case of a limited number 

of observed decays of such particles. Application of the methods 

of mathematical statistics in the case of a limited sample belonging 

*) 
The classical appr.oach turns out to be valid tor small sample 

statistics only in the particular case when a single.parA!lleter charac­
terizing the · centre or a Gaussian d;J.str.ibution, µ · · is estimated, 
while the variance . ·

2
0-2 ie known a prior,1. , Generally, when both para­

meters, µ and er , ~re to be estimated -op the basis of a sample 
statistic, one should utilize · the Student distributi'on which differs 
noticeably from the normal distribut.ion: in the oaae of a small number 
of measurements. · 

**) We mean the conditions of measurement of individual lifetimes 
on the regions of observation of whicn limits are imposed:. upper 
(aee ref. III, p. I58) or lowe.r .and 9pper (aee ref. f2j, p. I48). 
We also bear in mind obaervat1011■ • ot a s,9.uenti•l chain of deca:iring 
nonatable states characterJ.zed by d1ffel'inc 11fetimu (aee ref. I I I , 

. p. IIJ). 



to the general statistics of a random value distributed exponentially 

permits one to obtain precise estimates of the 11-fetime in the form 

of confidence intervals of a given r~liabili ty a Truly, such 

exact reaul ta require quite cumbersome computations. Therefore, for 

practial needs it has sense, on the basis of exact relationships, 

e_ither to make up numerical tables or to derive approximations that 

hold for -samples that are as small as possible*). 

In the. present report exact expressions are presented for the 

probability density function of the mean lifetime ,: estimated 
. ,. . . n 

on the basis of n separately observed decay events; the problem 

of optimal choice of the nonsymmetric relative uncertainties c'i+ 

and 0 _ has been formul"ated and solved under the condition that 

the minimal total interval width c'l+ + c'l_ be obtained fer a given 

reliability a ; tables are· also provided of the confidence bounds 

correspondin~ to the reliability values of 68.3% and 95.5%. The chosen 

values are the ones corresponding to the rel~abilities of confidence 

intervals widely applied in uxperimental physics for errors within 

one and two standard deviations, respectively, in the case of a normal 

distribution law. Recommendations are also given in this paper as 

how to perform approximate computation of uncertainties when the 

number of measurements is small. 

II. ESTIMATION OF THE 

GIVEN RELIABILITY 

MEAN LIFETIME BY A CONFIDENCE INTERVAL 

a) Statistical distribution of the obtained estimate ,:, 

OF 

Assume there to be obtained, as a result of measuring the times 

of decay of unstable particles, n separate values, t 1 , t 2 , ••• , 

tn; and let a statistical conclusion on the mean lifetime of these 

particles be required to be drawn on the basis of these results. 

Let us also assume the sample to be sufficiently small and so exclude 

*) Naturally, going in pursuit of high precision in determining 
the uncertainty cannot in itself be justified in the case of interest, 
when the samples are small and the relative uncertainties are large. -
For practical applications it is important to exclude the possibility 
of large errors occurring in determining the uncertainty in the measu­
red quantity. For this reason it is quite legitimate to make use 
in comput1ng uncertainties of simplifications that provide for a 
precision ·higher, than 5% in the case of a_ small number of measure­
·ments. At the:• same. time , the presence of a systematic 'deviation in 
the estimate itself of .the particle lifetime is, naturally, undesir­
able.·· The unbiasedness of the estimate in the case of a small number 
of measurements can be provided for rigorously without difficulty. 

2 

the possibility of utilizing any approximations admissible when 

n >>I . For simplicity we shall deal with this problem without consi~ 

dering, the restrictions on ·,the region of observable decays that arise 

in practice. This will allow us to concentrate on the specifics of 

solving the problem in the case of a smal-1 number of measurements. 

The average value of the experimentally obtained quantities 

t 1 , t 2 , ... , t , ~o be further denoted by S , represents, in accord-
n • 

ance with the maximum likelihood method (MLM), an estimate ( -r ) 

of the mean lifetime ,: of_ the unstable particles being studied. 

Indeed, the probability of obtaining the given sample equals (exp-
I n n n 
- E ti) n dti . Thus, the log-likelihood function is L = I/,: E ti+ 
,: i i 

dL = - _I_ 
n 

n ln ,: . Hence, from d ti+ n/· = 0 we find ·2 I -r ,: 

,. 1 n 
i: = s = n E ti (I) 

This estimate by the MLM method in our cas·e turns out to be 
unbiased *). However, in the case of 

it is impossible to derive from 
a small number of measurements 

the likelihood function information 
of interest on the fluctuations of - the obtained estimate ,: • To 
this end it is necessary to determine the actual probability density 

function of the random variable S . Performing 

lutions of the initial exponential distribution 
n 

as find the sought distribution t (S) in the 
n 

ing distribution with the integer-values parameter 

consecutive convo­
I 

~(t) = - exp - t/ 
't" ,: 

form of the follow-

n 

tn {S) 
1 

cn::i1 ! 
!! ns n-1 
,: (~) exp ( _ ns -~ >· (2) 

This distribution belongs to the more general family of 1:-distribu­

tions in which the parameter n may also assume fractional values. 

For a given integer value of the parameter n the obtained 

distribution tn (S) is characterized by a single scaling parameter 

-r , which enters into the expressions for all the moments of the 

distribution. Thus, the __ expectation value and the variance are res­
pectively 

*) 
Note, _ however, that this assertion on the unbiasedness of 

the MLM estimate does not hold when, instead of the lifetime, ·its 
inverse is estimated, ·1.e., the decay constant .\ = ,:-1 • For this 
quantity the MLM yielJs a biased estimate. The unbiased estimate 

• n+I I ( I I is represented by the following: .\ = -- • -S see ref. I , p. 
!59). n · 
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E(S} 

D(S} 

1: 

1:2 

n 
(2a) 

Thus, the quantity ,: to· be estimated from the sample data 

simultaneou~ly determines the mean value and the variance of the 

distribution. of the · random quantity S . Therefore the random devia­

tion of the estimate · ,: from the true value of the parameter 

~erived from a concrete sample also leads to aft error in the estimate 

of the<distribution's variance D = i 2/n • This circumstance renders 

the problem of determining a confidence interval for a single para­

meter of the exponential distribution law in the case of a small 

number of measurements to a ceriain extent equivalent to the problem 

solved by Student for the normal distribution when two parameters 

are unknown. 

Note also that by 

and the parameter k­

be transformed into the 

introduction of the variable 

2n the obtained distribution 

;i:-2-distri but ion 

~k (X} 
1 X k/2-1 x 

-=-2.,.,( k.-/~2c-=---1-) ! ( 2 ) exp ( - 2) 

X = 2nS/i: 

~/S) can 

(3) 

for which the expectation value and variance are respectively equal to 

E(x) = k and D(x) 2k. Oa) 

In this form the scaling parameter ,: is included in the variable 

X and the distribution is characterized by k degrees of freedom. 

b) Determining separately the· upper and lower confidence bound 

The problem of determini_ng the confidence interval for the random 

quantity ,: reduces to determination from the known distribution 

~ (S) (or tk(x)) of the lower and upper limits, i and ~ , n 1 4 2 

outside the range of which the probability for the quantity 'r 
to occur owing to statistical fluctuations is characterized by · the 

sufficiently small value ./3 = I - a. Therefore, is seems reasonable 

first to establish separately the upper and lower limits corresponding 

to given probabilities 'fl+ and fl_, respectively, of going beyond 

the indicated limits. Incidentally, when the number of measurements 

is small, one most often encounters just this problem of determining 

one of the confidence bounds of reliability a+ = I - fl+ • The 

4 

' 
;, 

problem of computing the probabilities fl+ and /3_ is solved 

exactly without knowledge of the true scaling parameter i: , to 

which end it suffices only .. to define the confidence bounds i: . and 
~ . 2) 
i:1 j is arbitrary uni ts obtained from the samples of the random 

quantities ij , ~.e. as 

1:2j t (1 + c'l ) 
. j + 

and 'rlj -rJ(l - c'l_), (4) 

where j stands for the number assigned to the sample. 

Conclusions on the probability content of the nonrandom quantity 

i: , being determined in this case, should apply to the statistical 

set of repeated samples of given size n , on the basis of the data 
• A ~ 

of which the confidence bounds i:
2
j and i:1 j are determined 

by the procedure (4). When one deals with a sole concrete sample 

~ and i: 
2 1 

and the values 
,. 
,: , derived froin its data, one must 

clearly bear in mind the r!',ndomness of these values and realize that 

they are bound to undergo changes within a series of consecutive 

samples. At the same time, when a confidence bound -r
2 

and _ -r
1

_ 

is fixed, no conclusion at all can be made on the probability con­

tent of the nonrandom quantity , -r. 

Fixing only the relative value of the bound i 2 I 
~ . . ' -r 

., I + 

c'l+ 

and 

, or 

fl_ 
probability 

-r1 1-r = I - 8_ , one can find the corresponding fl+ 

from the distribution of the random quanti:t;y S • The 

/3+ for the true value of the estimated parameter 

the chosen upper bound, ~
2

( /3+ = P( -r ) ~
2
)), is 

by . the probability of obtaining small values of S 

to occur beyond 

then determined 

for which the corresponding x < xI = 2~ s1 , where the bound SI 

is determined from the oondi tion s1(I + 0 +) = ,: • Thus, the lower 

bound s1 corresponds to the upp.er limit ,::~ of -the estimate of 

the quantity 1: • _To underline this peouliari ty in the construc­

tion of judgments on the probability of the nonrandom quantity ,: 

we have chosen to denote by another letter S the random quantity 
I *) ii l ti , on the basis of which such judgment are decided upon 

*) This permutation of confidence bounds was connected in terms 
of the classical theory of errors with inversion of the probability. 
Modern formulation of the principal problem of the theory of errors 
does not imply introduotion·of the un~ustified notion of·the statistic­
al distribution of.a nonrandom quantity being estimated, but underlines 
the random . nature of the construction of the very judgment on this 
quantity by calling the probability for the judgment on the estimated 
quantity to be correct the likelihood. These questions are considered 
in detail in the author's article "On the interpretation of the prin­
cipal problems of the theory of errors" in the Supplement to the 
Russian edition of the book "Statistical Methods in Experimental 
Physics" (ref. 121, p. 283). 
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Consequently, the quantity 

x2-distribution (3) from O to 

13+ can be found integrating the 

XI= 2n(I + o+)-I 

~ X 
/3 = P(,: > 1:) = J 1

~ (X)dx (5) 
+ 2 k • 

0 

Correspondingly, the reliability of the chosen upper limit a+ 

P( i: < 1:
2

) will be 

0) 2 
a.= 1 - 13.'= J ~k(x)dx = P(x > x

1
). 

Xl 
(5a) 

Fixing the value a one can find the corresponding I+ o 
+ 2 + 

for 
2• 

various n using the tables of extreme values Xq for the X-

distribution (see, for example, ref. I 3a I, p. 503 

49-55). 

or ref. l3bl, p. 

The problem of determining the lower bound 

with a given reliability a_ = P( ,: ) 

f for the quantity 
,. 1 

,: 1:
1 

. ) is formulated in 

a similar way. Owing to the fluctuation of the closely correlated 

random quantities -i: = S and ~ = i: (I - o ) the inequality 
1 -,: > ~

1 
is violated starting from i: ) s2 , where the upper limit 

s2 is determined from the condition s2 (I - o_) = i: .• Consequently, 

x 2 = 2n lh. and the quantity /3 = I - a_ must be represented 

by the fo;lowing integral of the ; 2-distribution (3): 

1 - a = P (1: < ,: 
1

) 
<lO 
I ~k(x)dx 
x2 

For differing k = 2n the relative values (I - o_), determining 

the lower bound · r = i: (I - o ) , can be found for a given value 
1 -

I - a.. from the tables of extreme values x! for the :t2-distri-

bution. 

In Table I there are presented for a 95% reliability 

0 
+ relative values of the upper and lower bounds I + 

and I - 0 2n for n going from I to 15. 
x~(o.05) 

level the 
2n 

x~(0.95) 

When only a few decays of the investigated particle are register­

ed, one usually makes use only of the lower and upper· limits of the 

mean lifetime in those cases when it is necessary to make a ·sufficient­

ly reliable conclusion about the discrepancy between the results 

of the performed experiment and theoretical predictions or experimental 

results obtained earlier. 

6 

/:, 

c) Optimization of the confidence interval 

For estimating the quantity ,: by a confidence interval of 
given reliability 

and lower limits. 

a use ~ust be made simultaneously of the upper 

In this case, however, the required reliability 

Table I. Relative values of the 

upper -i: /,: =I+ o ;;_nd lower ,: /r: 
2' + 1 

I- o_ confidence bound on the 

level of a reliability equa~ 0.95 

for small number of measurements 

n (from I to 15). 

n I+o I-o 
_± 

I 19.4 0.33 

2 5.63 o .. 42 

3 3.68 0.48 

4 2.93 0.52 

5 2.54 0.55 

6 2.31 0.57 

7 2.12 0.59 

8 2.00 0.61 

9 I.91 0.62 

IO I.84 0.64 

II I.79 0.65 

12 I.74 0.66 

13 I.69 0.67 

14 I.65 0.68 

15 I.62 0.68 

can be ubtained in various ways, 

since the same value a = I -

/3+ - /3 may be obtained for 

different relationships between 

the ·probabilities of going 

beyond the upper and lower 

limits established on the basis 

of the random quantity ,: . To 

arrive at a unique solution of 

this problem an additional con­

dition must be .introduced that 

complies with the general 

principles of statistical es­

timation theory (ref. 141, 

p. 558). 

224) 
~ 

2 

In the monograph 151 (p. 

the condition /3 + = /3_ 

was applied as being 

natural and self-obvious in 

considering the 

estimating the 

of particles by 

example of 

mean lifetime 

a confidence 

interval.· Actually, this condi­

tion is such only in the case 

of a symmetric statistical 

distribution. For the case 

being considered of a random quantity with a nonsymmetric distribution 

the application of the above condition is not justified. Besides 

arguments connected with simplifying the solution of the problem, 

there seem to be no other arguments available to favour this condition. 

From a general standpoint of statistical estimation theory prefer­

ence should be given to such a relationship between the probabilities 

/3 + arid (3 _ and the respective o + and o _ that provides 

for the minimal total interval o + + o _ for the given reliability 

a • The latter condition is equivalent to defining the relationship 

between 

value of 
o+ and 

a 
o _ that provides for obtaining the maximum 

for the given total intervalo + o = _!._ - _!.__ 
+ - s s 

1 2 
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The ex max condition leada to the equation 

aa a 5
2 as = as J ~ ( S) dS 

1 1 S n 
0 for S = [S-1

- .-
1 (o + o) ]-l, 

2 1 + -
1 

from which follows 

~n(S1) 

-nsr· 
n 2 

s 
( -2 )2 s . 

1 
(6) 

Thus, the chosen bounds s
1 

and 

(I) must not only comply with the given 

s 

s2 of the random quantity S 

ex = J
2 ~ (S)dS 

S n 
1 c 

must fulfill 

reliability 

= 0.683 or 0.955 , 

relation (6). The minimal value but at the same time it 

of the interval ( o+ + 
given reliability ex 

o_) is thus provided for in the case of a 

Using expression (2) for the probability density of a random 

quantity S we obtain from relation (6) ihe following: 

s2 
exp [- n ( -

. i; 

s 
- 1 ) s 1: ] = ( 1/S ) n+l 

2 (6a) 

Hence it follows that th~ extreme values of th~ corresponding optimal 

interval are uniquely determined by the ratio R = s2;s1 

s1 
i; 

n + 1 __ 1_ ln R 
=--n- R-1 

s 
2 

i; 

n + 1 
n 

R 
R - 1 ln R. (7) 

The bounds s1!,: and s2 /,: found by these relations define 

in arbitrary' units cf-c , ·for any arbitrary number R , the optimal 

interval ( o+ ·+ o_) = (s1;,: )-I - (s2;,: )-I which has the maximum 

reliability ex max But the maximum reliability value of the inter­

val itself de~ends on the chosen value of R . To solve the formulated 

problem it is necessary to find R. for which ex_ max (R.) is 

equal to the given reliability V<!,lue a
0 

.• The quantity R 0 and 

the extreme values s1; i; , and s2;,: corresponqing to it were 

determined by the method of successive approximation.. The following 

quanti.ty was comp·uted for values of s1;,: and s2;,: that were 

defined in accordance with (6a), i.e. the chosen number R 

a 
max 

s 
2 

J ~ (S) dS 
S n 

1 

S 1 n-1 1 S 1 k S 2 n-1 1 S 2 k 

exp {-n-i;J[k! (n"'"i:) - exp {-n"'i: JI:-;,<n-i: ). (8) 
k=O ' k=O 

8 

) 

,} 

The program of successive calculations for various R ensured conver­

gence of the result to the given value cx
0 

with the required preciii­

on and determined the corresponding values of the relative uncertain­

ties 'o+ and o_ • cii:1culations were performed for n from I 

to 50 for c\ = 0. 6827 and ix O = 0. 9545 with a precision f,. ex ~ 

5 · ro-5 In Table 2 there are presented,, values of the quantities 

o and O for different numbers of measurements. The presented + - ..,. ~ 

results are rounded off at the third decimal digit which has introduced ' . 4 . 
deviations of the given values of . cx 0 up to J"IO • A corresponding 

truncation is performed alio of the reliabilities ex _of the confi­

dence intervals indicated in the ,Table. 

Table 2. 

n 

I 

2 

J 
4 

5 

6 

7 

8 

9 

IO 

II 

12 

;o 
14 

15 

20 

25 

JO 

40 

50 

Relative errors 

and lower • ,:
1 
(x2 ) 

( ,:2 - -c1)min 
a = P( i ~ -c 

1-

o+ and o_ corresponding_upper i
2
(x1) 

bound of the.optimal confidence interval 

for two values of t~e _given reliability 

<::: i
2

) equal,0.683 and 0.955 at the dif-

f ering numbers of independent measurements n • 

ex= o.683 

a,.. 

I.65 

0.803 

0.588 

0.486 

0.425 

O.J84 

0.353 

O.JJO 

O.JIO 

0.294 

0.280 

0.268 

0.258 

0.249 

0.241 

0.2!0 

0.188 

0.173 

0.150 

O.lJ5 

0 

0.829 

0.684 

0.589 

0.521 

0.472 

0.433 

0.402 

0.377 

0.355 

0.337 

O.J2l 

O.J08 

0.295 

0.284 

0.274 

0.237 

0.2II 

0.192 

0.165 

0.147 

9 

ex= 0.955 

o+ 

20.5 • 

4.95 

2.84 

2.05 

I.64 

I.39 

I.22 

I.09 

0.993 

0.916 

0.853 

0.801 

0.757 

0.7I9 

0.685 

0.565 

0.491 

0.439 

0.369 

0.)24 

.,_ 

0.909 

0.814 

0.740 

0.684 

0.6)8 

0.60I 

0.570 

0.543 

0.520 

0.500 

0.482 

0.466 

0.451 

0.438 

0.426 

0.378 

0.344 

0.318 

0.280 

0.254 



Optimization of the confidence interval for a = 0. 683 leads 

to a significant violation of the equality fl+ = 13_ • The ratio 

{J_lf3. is equal to I.8 for n = 50, to 2.3 for n = 25 and to 

6. 7 for n = 5. This, in turn, means that calculation of the confi­

dence interval on the basis of the condition fJ + = f3 _ for small n 

must lead to a significant excess enhancement of the interval. 

It must be especially underlined that the optimal interval of 

given reliability a , that we have found, is related to the case 

when the statistical estimate is determined for the mean lifetime 

of particles, ·t:' Totally different relationships for optimizing 

the confidence interval will occur in case the inverse quantity I/T = 

i\ called 

the interval 

the 

li"A 

decay constant is estimated. The condition that 

be minimal for a given reliability a , which 

is equivalent to the condition for obtaining the maximal value 

for the given relative value of the interval tiX/i 
a 

max 
leads· 

to the relation !l>n (S 1 ) / !l>n (S2 ) = I . In this case, instead 

of relation (7), we obtain 

s 
1 

T 
n - 1 1 
~ n::-y ln R 

s 
2 

T 
n - 1 

11 

·R 
R - 1 ln R. 

III. COMPARISON WITH APPROXIMATE METHODS OF DETERMINING 

THE CONFIDENCE INTERVAL 

(9) 

I) Approximate method using symmetrical confidence interval 

for the inverse quantity I/T 

First of all we shall compare the values of the optimal confidence 

interval, obtained witn_out any approximations, with the results of 

the approximate method of determiriing the ~onfidence interval widely 

adopted in elementary particle physics without approximate substan­

tiation in the case of a small number of measurements. We mean the 

method described for the general case in the monograph 121 (p.· 196), 

in which the asymptotically normal behaviour is utilized of the dis­

tribution of the following random, for each sample (x1 , x2 , 

xn), quantity 

BL · µ(x ,x , ... x /" l =B~ 
1 2 n o 

10 

E( B2L Be2 > 

1 

2 (IO) 

":, 

h 

The confidence interval for this quantity is determined from the con­

dition 

B
2
L I [ E ( . B€r 

I 

2 BL I 
Be < µo(ao), (IOa) 

where L is the ·log-likelihood function taken with its sign inverted, 

L (x1 ,x2 , ... x/0 J = - ln l(_x
1

,x~, ... xn/a),: 
tion parameter to be determined, µ

0 
1s the 

e is the distribu-

number of stand~rd·devia-

tions being normal provides. for the given reliability ao of the 

confidence interval. 

For the case under consideration of a random quantity having 

a negative exponential distribution the condition (IOa) leads to 

the following simple confidence bounds for the mean particle lifetime 

"r
1
< T< ~2 (see ref. 121, p. 197): 

T 
1 

T 

1,+ µo/ nv2 and " T2 
T 

1 - µ 0/n1/2, 

where --c is the estimate of the quantity 

MLM and determined by the relation (I). 

(II) 

T based on the 

For· the simplest case under consideration of n observed par-

tic le decays this method actually reduces, without any restrictions 

being imposed on the range of the observed quantities ti , to utiliz­

ing the variance of the random quantity S • The random quantities 

µ and S are related in a unique way by the simple linear transfor­

mation µ = n 1
/

2 (1 - S/T). Use of the random quantity µ determined 

from the sample data is justified for finding the variance of the 

estimate T in the essentially more complicated case when 

restrictions of various kinds are imposed on the range of the observed 

particle lifetimes*) 

*) R.Peierls (ref. 161) initially solved the problem of estimating the 
mean lifetime of particles from observations of the moments of separate 
particle decays when a common restriction for all the observations is 
imposed on the time range of the registered decays, t < T. Then, in 
1954, M.S.Bartlett (ref. 171) solved the problem or1 estimating_,the 
quantity T on the basis of separately observed decays in the general 
case, comprising entirely different groups of observations, both with­
out restrictions imposed on the range of observed ti and with restric­
tions of·an individual nature, t < Ti , and taking into account the 
information on the particles that did not decay inside the detector. 
This complicated problem was timely solved specially for determining 
the lifetime of hyperons. Ref. I 8 I may serve as an example of the 
application of this method. Later such methods became widely diffused 
and they are par.tly described in monographs (ref. I I I, p. I58 and ref. 
121, p. 148 and p. 196). 
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The significant progress in solving the complicated problem, that 

has arised from practical physical reality, of determining the estima­

te of the mean lifetime of unstable particles with account of systema­

tical corrections due to various restrictions imposed on the range 

of observable decay moments gave on contribution, however, to altering 

the essence of the initial formulation of the problem of finding 

the uncertainty of the obtained estimate. For this reason it has 

sense to discuss, for greater clarity, the widely utilized method.· 

of determining approximately the confidence interval as applied 

to the ·simplest idealized case when no restrictions at all are imposed 

on the: range of observable decay moments. After clearing up the 

essentials of this point and obtaining. substantiated recommendations 

for the approximate approach one can deal with the same problem 

of determining the confidence interval for the estimated quantity 

in the more complicated case corresponding to the real situation 

considered in ref. I 71. 
In the case of a confidence interval with a reliability equal 

in the asymptotic approximation to a
0 

= 0.6827 (µ
0 

= I) the rela-

tion (II) for the bounds yields the values 

-c= 
1 1 + n- 1/2 

and 
'C 

-c2= --~ 
1 - n - 1/2 • (Ila) 

to which there correspond in the variable S/-c 

tive confidence bounds: 

the following respec-

S2/1: 1 + m - 1/2 and s /-c = 1 _ n - 1/2 (IIb) 

This means that the considered approximate method of determining 

the confidence interval reduces to adopting the symmetrically situated 

bounds (IIb) for the random quantity S/-c with a· deviation from 

unity equal to the square root of the variance li.
0 

= {D{S/-c)} 1
/

2 

I/ Vn . The latter is equivalent to assuming a symmetric relative 

uncertainty for the inverse quantity i\ = T-
1 

, since the bounds 
·-1 + 

(Ila) correspond to the interval -c {l - ti.0) , • 

On the contrary, 

expressed in terms of 

for small. n 

the relative uncertainties o+ and 0_ 

~ turn out to be not equal to each other 

o = n·· 1/-:!. 
+ . 

1 - n- 1/2 
and 

c5 = n- 1/2 

1 + n- 1/2. 
(Ile) 
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Accordingly, for another .interval reliability given in the symptotic 

approximation one must introduce into all ·the relations (!Ia, b, c) 

the corresponding number µ of standard deviations ti. = I/ Vn . o. 0 

Thus, the relations (Ile), for instance, in the general case - have 

the form 

c5 = 
+ 

µo/ n1/2 

1 - µ o / 1/2 n 
and 

µo/ 1/2 
c5 = n 

- 1 + µo/n1/2 

Presenting this method of determining the uncertainty in the 

estimate Bartlett himself pointed out is application being justified 

only in the case of a ldrge number of registered decays (ref. I 71, 
p. 251). However, in practice this method without substantiation 

was applied for handling samples consisting literally of a few regis-
tered decays*). . 

At any rate the warn~ng of Bartlett remained unno.ticed, and 

the absence of symmetry between the errors c5 i: and c5 -c ob-
. + -

tained at small n lead to the wrong impression, that the applied 

method accounts for the specifics of handling small-sized samples 

in reflecting the nonsymmetric character of the initial distribu­

tion of the random quantity • Actually, this ·nonsymmetric charac-

ter, c5 > c5 , as we already pointed out, is merely due to· 
+ - -I 

our adopting a symmetric uncertainty for the quantity. • Further 

we shall consider another such as simple approximation consisting 

in assuming a symmetric uncertainty c5.=c5_=c5
0

= n-I/2 for 

the quantity -c and accordingly a nonsymmetric uncertainty for 

the inverse quantity i-1 

ti. = 
+ 

n- 1/2 

1 - n- 1/2 
and ti. = 

1 + n 

- 1/2 ·n 

1/2 

*) Such a use of this method at the beginning- of the investigation 
of hyperons was caused first of all by the level itsel~ of the first 
observations of the decays of these particles. In recent years a 
similar situation w~s repeated in connection with the study of the 
decays of charmed particles with even shorter lifetimes. The problem 
of· handling small-sized samples will still be of interest in the 
near future of elementary particle physics in· connection with the 
search for new short-lived particles predicted theoretically on 
the basis of newly introduced heavy quarks. Therefore it is of utmost 
importance to establish the limits for the application of the general-
ly accepted approximate approach. · 
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i, 
I 

The expression (2a) made use of for the variance in these approxi­

mate approaches is exact for any arbitrarily small number of measure-

ments. However, 

in the simplest 

for n >> I 

the probability content of such intervals constructed 
-I/2 way on the basis of D is clearly defined only 

from the asymptotically normal distribution of the 

random quantity S. 

2) Comparison with the optimal confidence interval 

The exact reliability of the interval made use of (IIa) for 

small•': n is determined by integrating t~e distribution (2) within 

limits given by the relation (IIb). However, the main control must 

be applied to the deviations of the utilized intervals from the 

optimal values Aimin for various n 

Differing confidence intervals must be compared with each other 

first of all on the basis of the total interval value, 8 + + 8 _. 

Another, auxiliary, characteristic of the interval reflects the 

difference between 8+ and 8 _ , · the absence of symmetry of the 

relative uncertainties. For representing in a clear manner the depend­

ences of these characteristics of confidence intervals on the number 

n it is conveni~nt to make use of the quantities*) 

8+8 1/2 •• 
- + - n o + - o - u2 (I2) 

U-------1 Y---- n 
2 µ 0 ccxi - 2 µ

0
ccx> ' 

where the parameter µ
0 

( ex ) equals I for ex = O_. 683 

and equals 2 for ex = 0. 955 

The histrograms of the dependences of the quantities (I2) for the 

discussed confidence intervals are pres'ented in Fig. I. Here the 

confidence intervals corresponding to the histqgrams I, 2, 4 corres­

pond exactly to the indicated reliabilities 0.6827 and 0.9545. 

For the confidence interval (II) (histogram 3) the reliabilities 

are only approximately equal to these values. Truly, the excess 
-2 ~ over cx

0 
= 0. 6827 amount to less than IO for n IO and to 

less· than 5·rn-3 for n > I7 . 

*) 
Accordingly, the relative uncertainties are expressed 

these quantities by the relations 
µ (ex) 

8 = ~u2 u + u + Yl and 
+ n 

14 

µ CCX) 
0 

8 = nl / 2 ( 1 + U - Y) • 

through 
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Fi_g. I. Histograms of the quantities U and 

intervals corresponding to the following 

y for confidence 

conditions: 

I - Al:mln , 2 - f3.= f3_ , 3 -
4 - fl;,.: ; for the reliabilities 

min 
b), and ex = 0.955, c) and.d). 

A = A =Vn + -
IX = 0.683, a) and 

n - represents the number of measured decay times. 

The significant deviation of histogram 3 from histograms I 

and 4 indicates that the confidence interval determined from the 

condition that there be introduced equal relative uncertainties 

fl = fl = fl = I/ Vii for i-1 essentially exceeds the 
+ - 0 

optimal interval LJ '!'min and does not coincide with the interval 

corresponding to the condition of Ll/( i • At the same time the m n · 
histrograms 2 and 3 being close to each other means that the condi-

tions fl = fl = fl = n - 1/ 2 ·and /3+ = /3 = 0. I58 lead 
+ - 0 -

to close intervals. 

3) Choice of the best approach from the simply methods 

Having utilized for comparison of the earlier discussed confi­

dence ·intervals the quantities (I2) we have, thus, implicitly intro­

duced one more approximate expression for a confidence interval 

15 



with extreme values equal in the case of 

i:1 = i: ( 1 - n - 1/2) and 

C'( 

0 
0.683 to 

"t" = 1: ( 1 - 1/2 
2 + n ) (13) 

and to which the following symmetric relative uncertainty corresponds: 

o=o=o= 
+ - 0 

D(t:/1:) }1/2= n- 1/2 

It is readily seen that for this confidence interval the introduced 

quantities (12) have zero values. Consequently, the interval corres­

ponding_ to the bounds (13) is assumed to be the base interval deter­

mining, the origin for the quantities (12). ,For n >> 1 this interval 

coincides with the considered approximate expression for the confid­

ence interval (Ila). However, for small n the optimal confidence 

interval (histogram I in Fig. I a) turns out to be significantly 

closer to the approximation (13), to which corresponds U = 0 and 

Y = O, than to approximation_ (Ila) (histogram 3 in Fig. Ia). However, 

this fact is insufficient to draw a conclusion on the advantages 

of the approximation (13), The point is that closeness to the optimal 

interval in the value of the total interval could have been achieved 

owing to a loss of the probability content of the approximate confi-

dence interval (13) expressed by a definite int~gral 

tion (2) for the random quantity S with limits 
•-=)-I ( -)-I I/ Vil and s2 = i: I - I/ Vn . 

of the distribu-

s = I 1: (I + 

Calculations of ex (n) ·for the interval (IJ) have yielded, 

however,- an unexpected result. The deviations of ex (n) from cx
0 
= 

0.6827 for this interval turned out to be significantly smaller 

than for the widely applied approximate confidence interval (Ila). 

Thus, for n = 16 the value o: = 0. 6825, while the condition I ex -· 

cx
0

j < 5'10-3 is fulfilled starting from n = 4. 

This means that the approximation (13) is more precise than 

(Ila) from all points of view. In other words, the bounds 

~ = i. ( l + - 1/2 
2, 1 - n ) 

• 

correspond to the optimal interval better than the bounds 

:;;.-1 = -r-1 ( 1 t. n - i/2 ) 
1,2 

of the currently widely diffused approximation. 

for 

From the data of Table 2 it is easy to see the sum o + o 
C'( = 0 .683 with an accuracy higher thari Io-2 obeys ;he -law 

2/ Vri° starting from n = 4. This means that the approximation 
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(13) in the whole region n > 3 gives a good description of the 

total value of the optimal ·interval. On the other hand, the asymmetry 

Y for the optimal interval within all this region has a negative 

value while its absolute value remains less tha1;1 0. 07. · _Neglecting 

this quantity in the approximation (13) (Y = 0) o~ly ·introduces 

an insignificant. decrease of the probability content of the interval 

by a value < 
0

5 'I0-3 . At the same time introduction of nonsyminetrio 

uncertaint'ies o > o in the case of the approximation (Ila) 
+ - ' . 

yields more significant deviations from cx
0 

and from the total 

value of the optimal interval. 

Thus; for a confidence interval of reliability O. 683 one is 

justified when n > 3 in adopting the approximate approach based 

on the choice of a symmetric relative uncertainty 

·o = o =o = n - 1/2 
+ - 0 

From Fig. I c and done can see that_in the case of a reliability 

o: = 0. 955 both considered approximations do not provide for, small 

n , a description satisfactory from the point of view of closeness 

to the results obtained for the optimal confidence interval. However, 

in this· ·case an approximate approach is not really needed. When 

the number of registered decays is small, a confidence interval 

of reliability close to I is utilized only in rare special oases. 

Turning -in suon cases to exact tabular values of. the optima.l confid­

ence interval cannot be considered burdensome, if a guaranteed high 

reliability of the confidence interval is required. 

IV. CONCLUDING RECOMMENDATIONS FOR CALCULATION OF 

UNCERTAINTIES IN THE COMPLICATED CASES. OF REAL OBSERVATIONS 

In real experimental oondi tions the inean lifetime of unstable 

partio1es is estimated by simultaneously processing various groups 

of measurements differing in the restrictions imposed_ on the range 

of observations. Together with the n registered deo,ays . considered 

above with out restrictions being imposed on the range of observed 

times, there is included in the joint analysis a group of m decays 

registered when restrictions are imposed on the ranges of observa-
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tion: ti <Ti~ 1:· 

into account one more 

about which one only 

*) In the joint analysis there is_ also taken · · 

group of k investigated unstable particles 

knows that each one has decayed later than 

a certain moment of time e . This group, for instance, includes 
I . 

decays that occurred in the detector after the particle had already 

come to a stop. For such events the. quantity ei is the time that 

passed before the. stopping of the unstable particle. fhe same group 

also includes events of investigated particles travelling through 

the detector without decaying in it. 

,The likelihood function for the whole sample ~onsisting of 

the indicated three groups of events has the following form I 8 I 
n m k 

L=}:(lm+t.f/ )+}:{ln-r:+tl/ +ln[l-exp(-'li; )]}+}:81/1: 
1=1 l: 1=1 l: l: 1=1 

The estimate of the quantity, is equal to 

n m T k 
1 {Et + E [t + T I ] +EBI} l: = ---n+m I I ( I ' 1=1 1=1 exp. 1 1:I - 1 1=1 

The random quantity (IO), which is usua:).ly utilized for deter­

mining the confidence interval, in this general case has the form 

µ 

n m T 
-1 I 

- l: [ E ti+ E [\+ exp1T~l 

{n + m + E(T1/1:) 2exp(-T1/1:) [l -

k 

J + E e1 } 

exp (-Ti/ -r;l l-2} 1/2 

But, as it was revealed in the preceding section, the procedure 

proposed by Bartlett 171 for determining the confidence interval 

does not yield a satisfactory approximation to the optimal confidence 

interval in those cases, when the uncertainties obtained by applying 

it turn out to be comparable with the estimated quantity • The 

more precise approximation 1:2,1 = t [I .±. i/D( ~ / t) ] makes 

direct use of the same variance of the random quantity i I -r: 

which, however, in the general case considered ·here cannot be repre-

*) In other words, for each particle decaying inside the detector 
it is taken into account that 1ts decay would not have been registered 
in the detector, if. it had taken place later than a certain moment 
Ti. The extreme value of Ti is not constant not only owing to geometric 

factors of individual character· (the point at which the studied 
particle is created and its angle of .departure), but also because 
of the differences in the particle velocities. This is because the 
moment when a moving particle decays in its proper time is determined 
by the measured flight length li with account of its velocity · Vi 
and the Lorentz fac-cor '¥ : ti = 1 1 / v '¥ · 

I. I I 
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sented by a simple expression. At the same till)e the Bartlett proce­

dure gives the interval for the inverse quantity i-1 related 

to the variance. Therefore it may be applied for a definite variance 

D (i/1:) The random quantity µ is equal to O for -r; = i Its 

deviations by .±,I from the zero value are associated with certain 

bounds -r; + (µ=l) and t _ (µ=-1) connected with the variance 

of the ratio ·1: /-r: by the simple relation 

; (t ~1- 1:--:_) = [D (i/i::)] 1/2 • 

Thus, the quantities t+ and i::_ are not to be considered 

bounds of the confidence interval of reliability a = 0.683, but 

bounds of the "variance interval 11 • Now, the bounds of the confidence 

interval of reliability ex = 0. 683, as it was shown above, with 

a good precision of approximation to the optimal confidence interval 

are expressed through th~ variance of the random quantity i/1:. 

by the following relation: 

t = -r: [l ± D1
/

2
] = -r; [l ± ! (t-1

- -r;-
1
)]. 

2,1 2 - + (I4) 

For earlier publications one can determine the more exact value 

of the confidence interval (I4) .±. u
0 

directly from the uncertainties 

u+ and u_ 

u
0 
= t [D (i/i::) ] 1/2 

u + u 
+ -

-2--
i 

IT • 
(1 + +/t) (1 

u . 
-/i::) 

On this basis one may decrease the values of the total interval 

given in the previous publications. It is important to take into 

account the possibility of performing such corrections when discussing 

work devoted to the currently important problem of measuring the 

lifetime of particles of new family with heavy quarks (see Appendix, 

item I). 

Averaging of the estimates of the mean particle lifetimes obtain­

ed in different works must be performed with account of the statisti­

cal weight of each estimate. TheNrelative uncertainty of the resulting 

average value equals o
0 

= ( E D-
1) - 1/ 2 • 

!=1 J 
In the general case, when the three indicated groups of measure-

ments are processed simultaneously, one can introduce the concept 

of the effective number of measurements which corresponds to the 

found variance: 

nJ 

1 

D(i/i::) 
J 

4 cE i:: 
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This quantity should be taken as the statistical weight when 

the results of different experiments are ,;_veraged ( see Appendix, 

item 2). 

Separately for the second group of events comprising m regis­

tered decays with a restriction imposed on the range of observed 

times Ti"' 'I: , we always have n < m • In other words, we have 
A -1 

D(-z:/-z:) > m • However, when these data are considered simultaneous-

ly with the group of k particles travelling through the detector 

without decaying there should be obtained, on the average according 

to the results of- ref. 151 (p. I9J), a variance equal to m-I 

This indicates the importance of taking into account the full infor­

mation when estimating the mean lifetime, including the information 

on the particles that did not decay. In practice, unfortunately, 

for panticles passing through the detector without decaying not 

always is there available a reliable proof of their belonging to 

the investigated class of unstable particles. At the same time the 

presence in the group of k events of an admixture of background 

origin leads to a corresponding systematical enhancement of the 

obtained estimate 'I: 

Rounding off to an integer value the effective number of measu­

rements found. in accordance with (I5) one can on its basis make 

use of the results presented in the preceding sections for th,e simp­

lest case. For instance, from the data of Table 2 one can derive 

estimates of the relative uncertainties or and o_ correspond­

ing to an optimal confidence interval of reliability 0.955 for 

which there exii,ts no satisfactory approximation based on the vari­

ance of the random quantity i;-z:. 

I am grateful to O .M. Kuznets av and V. V. Lyukov for drawing my 

attention to the problem of determining the · uncertainty in the 

estimate of a mean particle lifetime in the case of a small number 

of measurements. I also thank greatly G.Pontecorvo for his kind help 

in translation this article. 
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APPENDIX 

EXAMPLES OF CONFIDENCE INTERVALS FOR EARLIER PUBLISHED RESULTS 

BEING CORRECTED 

I._ In one of the f,irst publications, I 8 I , on the determinati~n 
. . 0 . . 

of the mean lifetime of the A -hyperon on :the basis of the proce-

dure proposed by Bartlett for processing experimental the following 

result was presented: 

'I: = (2.9 ~ i:~) . IO-IO s 

I~ agreement with relation (I4a) 

ly we obtain the final result 

a- =, I.8 • IO-IO s and according­
a 

~ = (2.9 ± I.8) • IO-IO 

with a confidence interval I.6 times smaller than the one previously 

found. 
At present this'correction is, naturally, of no practical.value, 

since the mean lifetime of the A0 -baryon is known with a good 

precision ( I0-2 ). However, in'the case of the new particles (the F 

and B mesons and the Ac ~baryon), for which only the first measure­

ments of their lifetimes have been performed recently, a similar 

correction of ,the confidence ,. interval would be of great .topical 

interest. Thus, for example, in ref. 191 the following result with 

a nonsymmetric uncertainty is given for the mean lifetime of the 

F ± -meson: 

(2.I ~ 6:~) . IO-IJ s 

In accordance with relation (I4a) we find (2. I ± I.J) IO-n s. 

The symmetric interval of this more accurate approximation is 

times smaller than the previous confidence interval. 

I.7 

2. For the charged and neutral D-mesons it is now important 

to correctly perform averaging of the various results of measuring 

the mean lifetime. The results of individual measurements · of the 

mean lifetime of the n± and D0 -mesons adopted in ref. I IO I for 
-IJ 

averaging are presented below in uni ts of IO . s 
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2 5+2.2. 8 2+4.5. ' 
o±: 9 5+3.I. 8 4+2.5 6 3-+5.0. II.5+?,•~ • -I,I' • -2.5, • -1.9' • -2.2; • -2.7' -1.~.-:; 

Do: 3 2+2.0, 
• -I.6 

6 7+3.5. 
• -2.0t 2 ~+0 .. 8. 

·"-0.5, 
4 r+I.3. • -o. 9, 

4 r+2.6. 
• -I .LJ., 

4 2+1.6 
• -I.4 

The average weighted value given in Tables of particle properties 

of I984 1101 was determined by averaging the inverse qua.nti ties 

where 

N 
E w 

j ,: = J=l N --

L -i-::-1w 
J=l J j 

,: = ,: - CT 
-J J -J 

values are equal to 

the D0 -meson. 

and 

9.2+!. 7 
-I.2 

with the weights -1 -2 w = (1: - i: l , 
j + J 

i:+J = ,: j + .,.+J , The corresponding mean 

+ +0.8I for the 0.:... and to 4.40_0 _60 for 

However, in this· case of comparatively large measurement errors 

it is more justified to perform averaging of the ,: with the 
j 

weights nj , in accordance with (I5). Accordingly the confidence 

interval for the mean weighted value is determined by the symmetric 
N 

uncertainty o-0 = <i:>( E ~ )- 1
/

2 

. J=l 
ing the final results are 'obtained 

for the o± and to (3.92_±0.56)"Io-13 s 

• In the case of such averag-

equal to (8.7±I.3)"IO-I3 s 

for the D0 -meson. 

Thus, the proposed correc.tion of the procedure for averaging 

results leads to a significant shift of the mean weighted value 

and to a certain decrease of the total confidence interval. These 

alterations of the final result must be taken into account, since 

they are considerably larger than the given uncertainties of ~ixing 

the central value and the bounds .of the confidence interval. 
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Tm1KHH A.A.' . ES-90-351 
OnpegeneHue ·norpellIHOCTI1 \0u;eHKH CJ)e,D;Hero 

' , . . 
BpeMeHH .~H3HH qacTHIJ; nPH MaJIOM qucne 
Ha6mop;aeMbJX pacnap;oB 

TionyqeHo To·imoe periieHue 3ap;aqu onpep;eneHuH' MHHHManb­

Horo ,IJ,oBepttTeJibHoro HHTepBana 3ap;aHH011- p;otToBePHOCTH · npu 

Ma.r!O~ qncne 3aperHCTPHPOBaHI-ibJX pacn~OB <iacTHIJ;, BbIHCHeHo ~ 
qTO npu MaJIOM qucne H3MepeHHH onpep;eneHHblH. Ha OCHOBe )];HC 

., . riepcuH,CHMMe,Tp~qHb!H HHTepBa.ri: ±i/if'." p;aeT ·CY~eCTBe~HO 6onee 

ToqHoe npu6n~eHue · K 'onTHMaJihHOMY 'p;oBepuTeJihHOMY HHTep­
BMY no cpaBH.eHHIO c·,. nOJiyqHB~HM -B :ci>tt3HK·e·: mHpoKoe pac;:npo-. 
c-i;.PaHeHHe ~pH6JIH~eHHblM nop;xop;oM. P aCCMOTpeH CJiyqaii coB­
MeCTHciro aHaJIH3a pa3JIHqHb!X rpyniI H3MepeHHH, 

p a6oTa BblTIOJIHeHa B. J1a6opaTOPHH 
.,.(' 

~p;ep~b!X npo6neM, . 

• i ·1"'-

. . coo6meHHe 061:,e,llHHeHHOro HHCTHTYT& H.it_epHbIX HCCJJl!~O~aHHH.·,Uy61ia' 1990 

Tyapkin A.A. , ES-90.;..35 I 
Determi~~ng the Uncertainty in.the Estimate 
of the Lifetime of .a .Particle Based · · . . 
on. a SmaU Numb'er of Obs~rved Decay' Events 

The e~a~t solution is obtained for the problem of de-
:termining · the minimal confidence interval of given. re-

.. liability -in _the case· c:,f, a' smal,l 'number· of. observ~d par­
. tic:le decays. It is . demonstrated that for a small sample 

1 of measurements the syrnnietric.interval·±VD, defined on 
the, basis of the ,variance, 'yields ·a significantly ,more , 

' precise,· approxfmaticm to· the. optimal. confiden'ce interval' 
·than is obtained from the approximate 

I 
approach widely. 

applied in physics~ A case of simultaneous analysis of 
different groups of measurements is examined. 

' ' ', '. .. ", ':;' ~ ' : : ' ', ; 
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