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1. Introduction. The aim of this paper is to study the 

error estimates for discretization in time (backward Euler 

method, Rothe method) applied to the abstract quasilinear 

evolution equation (t e <O,T>) 

(1.1) u' ( t) + Au ( t) = f ( t, u ( t) ) 

U(O) =VE r{ 

in a Banach space r< with the norm II. The operator A is 

assumed to be sectorial in X with the domain D(A), where 

Re ~(A) > 00 > o. The function f : ~ x X ➔ X is global Hol

der continuous (with the Holder coefficient o <es 1) in the 

first variable and global Lipschitz continuous in the second 

variable. We are interested here in the case when the initial 

element vis rough, i.e. the only assumption is v er<. 

It is well known that there exists a unique solution of 

(1,1) and it can be described in this way 



(1.2) u(t) 

where. 

T(t) 

t 

T(t)v + J T(t-s)f(s,u(s)) ds, 

0 

(2rri)-lI eAt (A+A)-l dA 

r 
and r is a curve in p(-A) such that arg A ➔ ±¢ as IAI ➔ ro 

for any fixed¢ e (rr/2,rr). 

without loss of generality we can suppose that r is 

described as follows 

(1. 3) A er# A= -o - s cos~± is sin~, 

wheres e <0,ro), ~ e (0,rr/2), o = o(oo) > o. 
been During the past ten years many authors .have 

studying the error estimates for discretization in space or 

in time applied to (1.1) , cf. Helfrich [1], Johnson - Larson 

- Thomee - Wahlbin [3], Le Roux [4], Le Roux - Thomee [5], 

Luskin - Rannacher [ 6] , Mingyou - Thomee [ 7] , Sammon [ 8] , 

Slodicka [9, 10], Thomee [12, 13], Thomee - Zhang [14]. The 

most of the works mentioned above are written in Hilbert 

spaces and the operator A is assumed to be selfadjoint and 

positive definite. 

Using. backward Euler method for discretization in 'time 

we get 

(1.4) 
. -1 

(ui-ui_1 )t + Aui 

uo = v, 

for i = 1,2, ... ; tis a time step; ti 

f(ti,ui-1) 

it. 

The following error estimate is known (see [10,Th.l]) 

2 

11 

I 
:t 
l 

for o < t < t 0 < 1 

(1.5) IIU (it) ( -1 e -1) - uill 5 C i + L +t lnt 1 

where i = 1,2, ..• u is the exact solution of (1.1) and u. 
i 

is the solution of (1.4). The formula (1.5) was obtained 

without any. regularity assumptions of the initial element 

VE~. 

The smoothing property for parabolic equations is 

familiarly known. We show that this property takes place for 

discretization in time, too. Using this we are able to 

establish the error estimate for backward Euler method in the 

norm of the space~, 0 <a< 1 (the definition of~ can be a a 

found in (2, Def. 1.4.7]). Our main results are formulated in 

Theorems 1 - 3 without any regularity assumptions of the 

initial element v e ~-

Remark. C denotes a generic positive constant 

independent oft but it may depend on o
0 

,¢, v, T, a. 

2. Homogeneous problem. In this section we suppose f = 

o. Solving (1.1) by backward Euler method we get such 

elliptic problems 

-1 
(ui - ui_1 )t + Aui = o, 

uo = v, 

where t is a time step; ui is the approximate solution of 

(1.1) at the time ti= it; i = 1,2, ... This system. can be 

solved successively for i = 1,2, ... and it is easy to find 

that 
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u. = 
l. 

-i 
(I+TA) v. 

Let us denote g(A) = (1-TA)-t/r for arbitrary positive 

fixed t, r: Let the range of definition of g(A) be 

-1 
D = s - {A e S; IA-r I~ c} 

for sufficiently small c > O; S denotes the closed complex 

plane. 

One can see that Dis an open set ins which contains 

u(-A) because of Re u(A) > o
0 

> o and A is sectorial. The 

complement of Dis compact. Further, g is differentiable in D 

and g(A) is bounded as -IAI ➔ oo, because of 

g(oo) = lim g(A) = 0. 
IAl ➔oo 

So, g(-A) can be described in this way (see (11,§5.6)) 

(2.1) TT(t) (I+rA) -t/r 

where r is taken from (1.3). 

·(2rri)-l I (1-TA)-t/r (HA) -l dA 

r 

Let us note that the integral in (2 .1) is absolutely 

convergent for every positive t, r. on the other hand, we can 

say that Tr(t) is a fractional power of (I+rA)-
1

. 

It is well known that for a ~ O we have (see 

[ 2 , Th • 1. 4 • 3 ] ) 

T(t)v E D(Aa) VV E ~, Vt > 0. 

The definition of D(Aa) can be found in [2,D.1.4.1). 

This fact is known as smoothing effect. Let us remark 

that T ( t) , t ~ O, is an analytic semi group. We know ( see 

(9,Th.l]) that T (t), t ~ o, is a semigroup, too. We shall 
T 
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prove that the smoothing effect takes place for Tr(t). More 

exactly, the following lemma holds. 

Lemma 1. Let a~ O; t,r >Osuch that t > ra. Then 

Tr(t)x e D(Aa) for every x e ~-

Proof. We consider the case when Os as 1 first. Using 

[2,Th.1.4.4) for A er we have 

( 2. 2) ;Aa(A+A)-lll s C IAla-l. 

From this we obtain 

IIAaTr(t)II = ]J (27:i)-lf (1-TA)-t/r Aa(A+A)-l dA JJ s 

r 

5 C J1(l-rA)-t/r1 IAla-lldAI s 

r 

s C J(l-rReA)-t/r IReAJa-lldAI s 

r 

s C r-t/r I IReAJa-t/r-l ldAI . 

r 
The last integral is convergent if t > ar. 

Let us consider a> 1. Then we can put a 

is an integer and~ e <0,1). So we deduce 

n +~where n 

AaT (t) = An+~T (tna- 1 )T (t~a-l) 
T T T 

= AnTL(tna-
1

)A~TL(t~a-1
) = ( ATL(ta-1 >)nA~TL(t~a-1 ) 

because oft> ar. 
□ 

Tr(t)v, as an approximate solution of (1. 1) for 

f = o, was introduced in (9). It was proved there that 
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( 2. 3) IIT(t) - T-c:(t)II s C -c:t-l. 

In virtue of Lemma 1 we know that the both solutions (exact 

and approximate) become smoother with increasing time. so, 

there arises such a question "How does the estimate of 

(T(t) - T (t)) look like in the norm of the space~ ? 11
• The -c: a 

answer to this question (in the case when a= 0) is given by 

(2.3). In order to establish such an estimate, when 0 <as 

1, we need the following lemmas. 

Lemma 2. If A e c (complex plane), Re A< o and t, -r > o 

then 

1<1-TA)-t/-r - eAt Is IAl 2 IReAl- 2 lc1--c:ReA)-t/-c: - eReAt ,. 

Proof. See (9). □ 

Lemma 3. If min {1,(3} >a> 0, then 
00 

I a-1[(. -1 J-(3 z 1+(3 z e dzs(3 ((3-a). -z] a -l 

0 

Proof. Let us fix a, (3 and for arbitrary N >Owe define 

N 

IN z 1+(3 z - e dz I a-l [( -1 J-(3 -z] 

0 

It is easy to see that (Vz > 0) 

az[ez(1+(3- 1z)-(3 - 1] = (3-lz ez(1+(3- 1zJ-f3-l, 

z 

az[ J 
N 

-s a-1 e s ds ] 

6 

-z a-1 e z 

.~ 

Using integration by parts one can find 

N 

IN z 1+(3 z - e I a-l [( -1 J-(3 -z] dz 

0 

z z 

e s ds [ J 
-s a-1 I -1 

(3 s 

N 

e 5 (1+(3- 1sJ-(3-lds]
0 

+ 

N 0 

NN 

+ e s ds (3 z e 1+(3 z dz s 
J J 

-s a-1 -1 z( -1 J-(3-1 

0 z 
00 00 

s e s ds (3 z e 1+(3 z dz. I I -s a~l -1 z( -1 J-(3-1 

0 z 

One can prove that (Vz > 0) 

00 

z e e s ds s z I -s a-1 

z 

Because of this we obtain 

00 00 

a z . 

IN s I (3-lza(1+(3-1zJ-(3-l dz 

0 

(3 w l+w , dw s a I a( J-(3-1 

00 

s (3a J (1+w)a-(3-l d{l+w) 

0 

0 

(3a ((3-a)-1. 

The assertion of the lemma follows from the last estimate 

taking the limit as N ➔ oo. □ 

Now, we are able to derive the estimate of {T(t) 

T (t)) in the norm of the space~ for 0 <as 1 without any 
-c: a 
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regularity assumption of the initial element v e ~- We do it 

fort> -c first. 

Theorem 1. Let A be a sectorial operator in a Banach 

space~ where Re ~(A) > o
0 

> o. Then fort > -c, L <Lowe 

have 

(i) 

IIT(t) - T,;(t)ll
1 

s C -ct-1 (t--c)-l, 

(ii) 
IIT(t) - T (t)II :s C -ct-1 (t--c)-a, -c a O :s as 1. 

( II II denotes the norm in ~ , llwll = IIAawll. ) a a a 

Proof. (i) In fact, using (2.2) we find 

IIT(t) - TL(t)11 1 = IIA[T(t) - TL(t)Jll :s 

:s c I I (1--CA)-t/L 

r 

H - e j ldAI. 

In virtue of Lemma 2 we get 

IIT(t) - TL(t)11 1 :s C I 
r 

co 

1<1-LReA)-t/L ReAt - e I dA I :s 

:s CI [c1+-cy)-t/L - e-yt] dy = C Lt-1 (t-L)-l. 

0 

·(ii) For t > -c we have (T(t) - TL(t) )v e D(A). So 

applying [2,Th.1.4.4) one can prove (0 :s a :s 1) 

( i) . 

IIT(t) - T (t)II = IIAa(T(t) - T (t))II s 
L a L 

:s C IIA(T(t) - T (t))lla IIT(t) 
L 

T (t)lll-a 
L • 

The rest of the proof follows from this fact, (2.3) and 

□ 

8 

I• 

p 

By now, we have established the error estimate in the 

norm of ~a in the case when t > L. But,. for the 

discretization in time; it is necessary to derive this error 

in all time steps ti= i-c: i = 1,2, •. ~ • So we must still do 

it fort= L. 

Theorem 2. Let A be a sectorial operator in a Banach 

space~ where Re ~(A) > o0 > O. Then for O <a< 1, -c < Lo 

and t > a-c >owe have 

IIT (t) - T (t)ll :s C Ll-a(t-aL)-l. 
L a 

Proof. We know tbat ( T (t) - TL(t) )v E D(Aa) because of 

t > aL. Further, applying ( 2. 2) we can write 

IIT(t) - T (t)ll =· IIAa(T(t) - T (t))ll s 
L a L 

:s C I 1(1-LA)-t/L 

r 

H 
- e 11Aa(A+A)-1 il" ldAI :s 

:s c I I (l-'CA)-t/L - eAt I IAla-1 ldAI. 

r 
Using Lemma 2 we estimate 

, I I -t/L ReAtj IIT (t) - T,: ( t) II a :s C ( 1-LReA) - e IReAla-lldAI s 

r 
co 

s CI [c1+-cy)-t/-c - e-ytl ya-1 dy :s 

0 
co 

:s Ct-a I za-1[(1+-ct-lz)-t/L - e dz. -zJ 
0 

The rest of the proof follows from this applying Lemma 3 for 
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-1 ~=tr >a> o. D 

3. Nonhomogeneous problem. In this sections we suppose 

that the function f: ~ x ~ ➔ ~satisfies 

( 3. 1) f(t,x) - f(s,y) s C ( lt-sl
8 

+ llx-yll ) 

vx,y e ~; Vt,s e ~; o <es 1. 

Considering the discretization scheme (1.4) with the 

time step r (O < r < r 0 < 1) one can prove 

(3. 2) ui 

i-1 

Tr(ti)v + L Tr(ti-tk)f(tk+l'uk) r, 

k=O 

where Tr(t) is defined by (2.1). 

In the following we shall need such estimates. 

Lemma 4. Let O <a< 1, then for all n e ~ we have 

n 

(i) \ -1 -1 ( -1) L (k-a) s 2 (1-a) ln l+n(l-a) 

k=l 
n 

(ii) L k-a s (l-a)-1 nl-a 

k=l 

Proof. The proof is straightforward and so it is 

to the reader. D 

Lemma 5. Suppose O <a< 1. 

(i) Let u be the.solution of (1.1) defined by (1.2). Then 

llu(t)II s Ct-a 
a 

Vt s T. 

left 

(ii) Let ui be the solution of (1.4) defined by (3.2). Then 

llu.11 
i a 

s Ct-a 
i 

Vi = 1, 2, ... 

10 

' l f 

. I\ ,, 
) 

Proof. (i) This assertion follows immediately from 

(3.1) applying the semigroup theory. 

,(ii) Using Theorem 2, [2,Th.1.4.3) we get 

IITL(ti)lla 5 IIT(ti)lla + IITL(fi)-T(ti)lla 5 

( 
-a -a -1) -a ( a -1) 

5 C ti + L ( i -a) = C ti 1 + i ( i -a) 5 

s C t-:-a 
l. 

In virtue of [10,L.l) and (3.1) one can write 

llf(t.,u.)llsC 
l. J 

for i, j = 1, 2, .•. 

So we have 

i-1 

llu.11 5 IIT (t.)11 llvll + \ IIT (t.-tk)II llf(tk+l'uk)II L 5 1.a r 1. a L r 1. a 

C [ 

s C [ 

t-:-a + 
l. 

-a t. 
l. 

i 

I 
k=l 

k=O 

i-1 

+I (i-k) -arl-a l 
k=O 

k-arl-a l s C -a ti . 0 

Theorem 3. Let A be a sectorial operator in a Banach 

space~ where Re ~(A) > o0 > o. Suppose (3.1), O <a< 1. 

Then 

llu(t.)-u.11 s c (r-a(i-a)-l +re-a+ rl-a ln r-1) 
i i a 

for ~11 i = 1,2, ... 

Proof. We can write 

(3.2) u(ti) - ui Il + I2 + I3 + I4 + I5, 

where 

II 



I 1 = (T(ti)-Tr(ti))v, 

i-1 

I 2 = L T(ti-tk) [f(tk+l'u(tk)) - f(tk+l'uk>] r, 

k=O 

I3 

t. 
.l -1 

i-1 

L [T(t i-tk) 

k=O 

Tr(ti-tk)] f(tk+l'uk) r, 

i-2 

I4 I T(ti-s)f(s,u(s)) ds - L T(ti-tk)f(tk+l'u(tk)) r, 

r k=l 

r ti 

I5 I T(ti-s) f(s,u(s)) ds + 

0 

I T(ti-s) 

t. 

f ( s , u ( s ) ) ds -

.1-1 

- [T(t .)f(r,v) + T(r)f(t. ,u(t. 1 ) >] r . 
.l .l .1-

Let us estimate I 1 , ••. ,I5 • Using Theorein 2 we have 

(3.3) 

It is easy to see that 

r 

-a -1 II I 1 11 a :s C r ( i -a) . 

t . 
. 1. 

u 5 ua :s C [ J IIT(ti-s)lla ds + I IIT(t.-s

1

)11 
1. a 

0 ti-1 

+ IIT(t.)11 r + IIT(r)i r] :5 
.1 a a 

r t. 
.l 

ds + 

:s c [ J (ti-s)-a ds + I -a -a 1-a] (t.-s) · ds +rt. + r 
.l 1. 

0 ti-1 

:5 C rl-a [ il-a - (i-1) 1-a + 1 ] . 

So we can write 

12 

:5 

( 3. 4) III
5

na :s C rl-a 

The second term can be estimated in this way 

i-1 

III 2 ua :s CL IIT (t i-tk) Ila llu(tk) -ukll r :5 

k=O 

i-1 

:5 CL rl-a -a (i-k) llu(tk)-ukll 

k=O 

In virtue of [10,Th.1] we get 

Hence 

llu(tk)-ukll :s c ( re + k .+ r lnr . -1 -1) 

i-1 

III
2

lla :s CL rl-a (i-k)-a (re+ k-l + r lnr-
1

) 

k=l 

i-1 

c rl-a (re+ r lnr-1) L (i-k)-a + 

k=l 

i-1 

+ C rl-a I (i-k)-a k-l :s 

k=l 

i-1 

:5 C rl-a r + r lnr ( e -1) I k-a + 

k=l 

i-1 

+ c rl-a L k-1 . 
k=l 

From this we deduce 
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(3.5) III211o: 5 C (re+ rl-o: lnr-1). 

So 

( 3. 6) 

For the third term we get (using Theorem 2) 

i-1 

11r3 110: :s L IIT(ti-tk) - Ti(ti-tk)"a llf(tk+l'uk)II r :s 

k=O 

i-1 i-1 

:s C I (i-k-o:)-1 rl-o: C rl-o: I (k-0:)-1. 

k=O k=l 

III3 11o: ~ C rl-o: ( 1 + lnr-1). 

Let us rewrite the fourth term into the following form 

(3.7) r
4 

= s
1 

+ s
2

, 

where 

i-2 tk+l 

s1 L I T(ti-s) [f(s,u(s))-f(tk+l'u(tk))] ds, 

k=l tk 

i-2 tk+l 

s2 L I [rcti-s)- T(ti-tk)] f(tk+l'u(tk)) ds. 

k=l tk 

One can see that 

i-2 tk+l 

11s1 110: :s c L I IIT(ti-s)lla (re+ llu(s)-u(tk)11) ds. 

k=l tk 

Applying (10,L.2] we get 

IIU (s)-u (tk) II :s C (k-l + r + r lnk )· 

14 

Hence 

i-2 tk+l 

t1S1"0: :5 CL (k~1 +re+ r lnk) I -a (ti-s) ds. 

k=l tk . 
Using 

tk+l 

I -a 
(t i-s) ds :s (l-o:)-1 rl-o: 

tk 

one can find 

(3.8) 

11S2110: 

11s
1

110: :s c [re-a+ rl-o: lnr-1]. 

In the end we estimate s
2

. Applying [2,Th.1.4.3] we have 

i-2 tk+l 

L I [r(s-tk)- r] Ao: T(ti-s) f(tk+l'u(tk))ds 

k=l tk 

i-2 tk+l \ I 1-o: :s CL (s-tk) IIA T(ti-s) f(tk+l'u(tk))II ds :s 

k=l tk 

i-2 tk+l 

5 CL I 1-o: -1 
(s-tk) (ti-s) ds :s 

k=l tk 

i-2 

:5 CL 
k=l 

tk+l 

rl-a I -1 
(ti-tk+l) ds :s 

tk. 

i 

:5 C rl-o: L 
k=l 

15 
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From this we get 

(3.9) tts2"a 5 C Tl-a [ 1 + lnT-1]. 

Using (3.2)-(3.9) we conclude the proof. 

Consequence. (i) If o s a< e < 1 then 

e-a 
(ti-at) ttu(ti)-uitta = O(T ) . 

(ii) If Os a< 1 = e then 

1-a -1 (ti-at) ttu(ti)-uitta = O(T lnT ) . 

D 

Proof. If a> O the assertion follows from Theorem 3. 

If a= Owe use [10,Th.l]. D 
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CnOAHqKa M. ES-9O-342 
3¢¢eKT crna~HBaHHfl H AHCKpeTH3aQHH no BpeMeHH 
KBa3HJIHHeUHbIX napa6onuqeCKHX ypaBHeHHH 
C He rJiaAKHMH AaHHbl~H 

PaccMaTpHBaeTCfl AHCKpeTH3~Hfl no BpeMeHH. KBa3HJIHHeu
Horo napa6onuqecKoro ypaBHeHHH B npocTpaHcTBe BaHaxa. 
IIonyqeHa oQeHKa own6KH B HopMe npocTpaHCTBa Xa,O <a:< I, 
KOrAa HaqaJibHbie AaHHbie Herna,a;Kue. 

Pa6oTa BbIITOJIHeHa B Jla6opaTOPHH BbJqHCJIHTeJibHOH TeXHHKH 
H aBTOMaTH3aQHH OllilH. 

IlpenpHHT 06-be,[I.Heeeeoro necnnyra HAepHLIX uccneAOBBHHii. ,lly6ea 1990 

Slodicka M. ES-90-342 
Smo~thing Effect and Discretization in Time 
to Quasilinear Parabolic Equations 
with Nonsmooth Data 

The purpose of this paper is to derive the error esti
mates. to the discretization in time of a quasilinear pa
rabolic equation in a Banach space, The estimates are 
given in the norm of the space Xa for O <a< I when the 
initial condition is not regular. 
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