


1. Introduction

¥We study maps with two turning pointe, i.e., bimodal mapa. One
of their essentlal features, to our opinion , is that such maps in
géneral are described by two parameters. So here we ancounter some
problems which or don’t appear at all in unimodal case, or are
rather trivial, For example, dynamics of bimodal maps is defined by
two kneading sequences { itineraries of two turning points ). So if
we want 2o prove the theorem about realization of all pessible pairs
of kneading sequences .[ the corresponding theorem in unimedal case
is proved relatively aimply }, then we need to consaider the question
bhow a set in a parameter plane where an itinerary of one of the tur-
ning points is conetant, looka 1ike, It is also intersting whether
there is some connection between relation of parameters and relation
of kmeading sequences, We will situdy these questione in the ecase of
Pilecewise linear bimodal mapa, These maps generalize "skew tont"
maps which were considered in /1/. In fact, this work inspired our
investigation, Bimodal maps were intensively studied by R.Mackay
and C.Treaser /2/'/3/. They used kneading theory to describe the
bifurecation structure and to find the boundary of topological chaos,

We consider the continuous plecewise linear maps F:[—Ilf]—»E—i, ]
which are given by the formula
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a’.‘:-o L < 0O . We shall consider the mapa with the following

properktiesat

1.F{x) is strictly increasing on [“4;C) U (d,4] and strictly
decreaaing on (c,d}. ‘

2. F  is a mapping of [—1,1] into itself { then Flc)s 1

Fidyz1).

3.F(C)ad,F(d}sc 1,0, we consider Yessentielly" bimodal maps
rather ihan moncotone or unimodal maps.

We shall assume IC}Fd= 4/2, ( in fact, it is important
for us only the equality Icl =d , but this always ean be achleved
by some monotone differemtiable change of coordinatea, for example
quadratic ). The wvalue al: 1/2 we choose just for simpliecity.
Then

Howd - HAFA | a2
2 4
and according to 2.,3. ]t,/-l, I vary in the range 3£A < ‘I,

s M, S EXLLEEN

The main resul% of this papar is that the map from some
subset in the parameter plane %o soms subsst of kneading sequencea
pairs is 1-1 and ordo. We shall show that a set in the parameter:
plane where an initerary of one of the turning points equals to &~
glven asequence from this subset -, 18 a continuos ine¢reasing curve
JC}U . The plan of our paper is as follows. 1n section 2 we
recall some notions of kneading theory and give necsssary definitions
In saction 3 we shall prove some eatimates, In section 4 we shall
prove monotonicity of the kneading sequences, in section 5 =
intermediate value theorem, and finally, in section § - the theorem
aliont realismability of a given kunsadimg seguences pair.

2, Some definitions and statement of resulis

Ve skall consider symbolic dycamics of our maps. The basie
motioms of kneading ftheory ecan be find in /"/. and esespecimlly for
bimodal waps in /37

If we consider bimodal maps f(t) with turning points C, a&
then $0 each point X of[-i4] one can associats ths itinerary
defined to bs the soaquense of symbols L:,C, M,D, R and sonstructed
by the mex$ rulei
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Lo~ Q'F"it-"'-) <ec {or we shall writef%x)@L)

C fiix) = ¢ i
I.tx) =< M d<plxy<e {orfare M )
“ D f‘: (x) = o
R defttxrst { or f':t'J-Jc-R )
infinite ' f A ' B
Itx) is or seguence ofl § ,M5 ,R's s or fTinite sequence of L5 M3,
- RJS folloowad byC or ) . Two itineraries can be compared.
First, L <C<M<D=< R . We say A:_B. . if'A“-“-' B‘:’:::O,I,..,H'
ir A 1s finite, and A'.:= B;_ , L= C, 1,2, .. ir i\ is infi-
nite. Ifﬁ # B then there ie an index { , for which Ai * 8;
LetMzmini . Then we say A < B , if either
1. There are even number of M'S in Ag e Am—y and Aqp<B,, ,or
2., There are odd number of M'S in Ao o Amay and Am >Bm
Tt is eady to cheek that I(x)< T(yl = X < Y and :
Ty P Lix) s ;(g) { for our maps we have .'J:<g <‘=-‘>___I_'(I)<'_I(y)
!le‘v we 1|Ll.me these notatioens for_maps F-'h,)l (::) . Let
LMo IR tbn =1 oup.
Since Fp =112) = ’“‘"".Fn,p (x) then I (R s M) is
maximal [ see / ), 1.e. XLt}
T"_["(A,f)gl’"(h,f; VEK=42,...
where J denotes a shift JA = A A, ... , and simila-
rily
T”;'(A,/:) = _I_-(h,)tj Vio=4,2...
It is obvious that I* >I" and morecver

TP Oum s I T'LI'Gu < IV, p0.
The standard way of comparing l+ andI- doesn’t seem to be the
best ons, Tt is more natural to "make" from£+(.)|,f4j minimal sequenge
( or from_];—(.\./ﬂ maximal ) and then to compars them. So we give

Definition 1. If A= A, A Ay ... , then

A= ALALAS ... where { <R, R*<L,M% M, c*= D,

This construction will be very convenient for maps under cone
sideration, since if x g R , then = x ¢ L y and if X € M,
then - € ™ ;I=C,—_‘>—x=ol,. Henceifﬂ:l:p(xj then
_A_*= I(-x) I(—F(z)) . .I(—F" (x))+es Note that (ﬂ"‘]"‘:f_\ It is
also trivial to prove that if _A_ 18 maximal, then _&s i2 minimal
and vice versa. We have the next relation between(!*()\,/ljj* andIZ\.M



. T:.sz:em A. Let (A €D , where D={34A54, FspusH,
}J, F Then

>
o >(ITOmM &> A > p.

Futher we would like to prove a theorem abouk realizability
of a given kneading segunces pair, For this purpose fist we define
class of maps. Since we consider "everywhere expanding" maps ( 1.e.

| DFtx)|>1 ¥xelk41]) , two points X, Y X ¥ Y will noticeab-
1y separate { under repeated.'action of F ) It means that F(a:)
hesn’t stable periodic orbits, and this imposes some restriotions
to possible form of kneading sequences, For example, if for some
values Ao ,j'la ' F;\ofo (1) is superstable, .J_'-‘-(aay‘o)‘-'ﬁc , then for
every (J‘rf”*uo.ﬁa) ( no matter how small is difference max {IA-A,[,
I/“ "/Jolf- ) this superstable cycle will Be destroyed. ( This is
not the case for smooth maps where thsre 1a some neighbourhoad U
of (ho,j-lg) such that V(J,)‘)EU _:_l._-+()i._)-l)= (A'F)NJ F=M,L, c)

Now we define class 1 of kneading sequences pairs, First,

we shall say that é [ ﬂq_ , if
1a. A is maximal, 7 A <A ,K=12,.. . D_sﬁcéﬁw

24. IfA =_a C , tnem Ag = (AC)™ , where Ag denotes
extended itinerary ( see )
JA. A can not be represented as_@. * f s, wherse _g is
a finite maximal sequence Q >D , and _E is a maximal sequen-
ce, containing symbols L /M ,C 1 and
Q+fFz QF.QF ... if @ is even, and v v
gffggﬁogﬁ ser ir @ is odd , where L=M,H=L,C=C
Remark, This definition 18 similar to % ~-product in uni-
modal case /h/. of course it is not oomplete, but sufficient for
our purposes, It is easy ito prove ( analogously as in /16/ ) that
defined in this wnyg ¥ F is maximal. Moreover, if _A_ can
not be represented as g - E , then for every finite maximal @ > D
we muat have one of the inequalities ﬁ >Q ML? or -
_A_ =Q i_l._:' ( otherwise one can prove that there is F  such
that _A_= Q*E in above sense } Similar sequences in unimodal
case axe called primary.
We shall eay that B € g 1L

8. B Jie minimal T8 2 8, K=42,... L= B =C

2p, It B=8D , then EE.:' (é\D)“’

98. g can not be represented as Pwv K , where _P is
a finite minimal saeguence _E < C .—and —-K is a minimal

-



contiaining symbols R, M‘D , and

P+B=PH, Pﬁ',... if P is even
Pep= Pﬁ Ph,..; if P 1s oad.
__Pl"& 1s minimaly if 8B can be of form P+ ¥ then for every
finite minimal P<C' we must have B)P * R“’ or B<P;- MR
We shall aay that(ﬂ 8} v if Aefl, ,Be Mg and “
1c, e A= A.D ., then AE"&DB P Oif 8o - then.&E:ECﬂ
2c. e T*'A = D , then T XA > B K= A, %, e
w8 ¢ C . then T"B < A | Kaz42,...

The following lemma shows that these conditions really define
possible kneading seguences,
Lemma C, Let 3!_25_‘!,3&/(5-4 Then

I -
(L G, LOpm) e 1.
And Tinally we describe Ele main result of this paper,
Theorem G, Let (A, )Cnﬂ={3 ‘J--—-n/‘ l‘-j-'-?-
Let I'J::J'I=[(’ ,B)e N, A=RRD, 8 L.L.C]

Let (ﬁ B)eﬁ Then there is an unique (h/-ljeua such that

I()\ﬂ) A,I()/J}
3. Some estimates

Here we shall obtaine some estimates of partial derivatives,
We use the technique developed in /1/. Let

= F ) "= Ixn g IXn = n
T & y h/.l })431 n.;_.lf)n. 9?\ )za 3)}_‘—
These derivatives exlat if X, ¢ "1/2' JJ‘;#rf& .f‘or all J<n .
means that I + C D for all [ < , and I'--;: c, D for all
t<n. Now we define some notations as in /1/. e I I_ZT.. « T :’
doesn't contain C D + then we define 6: as the number
1
ot M's an IY...T7% and set £,=(-1) ®¢ | similariiy,
it I I, oo I, doesn’t contain C,p , then (=2 1s+the .
number of M'g in this sequence, and an:(-.;)au . IfI“r.C,.D
{ DrIi‘:C, D ) , then &, =0 for all n= K (J’FL a g for
all L= K ).
Lemma 1B. Let (),}4; € If £,#0 VA=R{ then £im {Gn e co
and Uy &, >0 ¥R = thindes

If Yo+ O ¥Az{ theng,p,<0 and Qm w! gl
Proof. We shall prove the estimate for &, (and the esti-

mate for in_ can be obtained in the same way).
We Tecall that for aimpliclty we assume [cf=dl = /s,  Then from



(1.1) one can obtain the recursive formulas:
Ao =0, Q= iy

: Xp + Ay +1 Af = £ %X, <=4 (a:,,eL() )
3.1
Apps = ""z K """an.""‘&' if —;-2'-.‘5354":% (xae M)
M, if £ <X, %1 (2c5@R) .
Tnen we can obtain the next estimates:
{
haaé Gn,,<7lqn_+-§_- if a:n, [ L (3'2)
ROp< Qpyy <4 +xa, 1t Xp €M
Rpeqg = MAy if X, eR .

+
Let % Dbe the first index for whichI'R-zM(kM). From (3.2) we

have
0< QA SUy< ... < Qg (3.3)
oKl . ',
and in fact g = M'A a, where is the numbir of R'S
. . -
inL:...I:'_’ . K_J—4 is the number of L 'S 'inI,.-.- K-
To provide a constant sign of an“ wh.enxnl-:- M we must have
4
a, + - (3.%)
Ka, z < 0
and for increasing of ! Qnf we must have
KOp +4 £ - Qp . (3.5)

Irlzaa_p]x,%],-_g and [K+f]ety >_—i— then by (7.3) {3.4) end
(3.5) nold. Since/.d >3‘1m >4 , the first inequality is satisfied,
and the seoond is true :l.f:/-ij-rH = 1 , but this is the case when
(mw) € D . Hence the sign of O, ia changed %o opposite on M
Since halQ:A)I/&‘;!/z + the sign of &, ies reserved on i '
and 1if a,,, comes to L, with negative sign, then singe (;;-.1)}4/2‘ -4 S
|yl >ian] . So the sign of O, changes only on M , henoce
€nQ,>»0. Ve also have
fae] ¢ It s -0 % ‘an].
Moreover Nk & N..L
lan) 2 M " |x) T

+=
where N-R is the number of RlS in I_: eee L n-1
NL 1is the number of L's in I; Parrs I"'n..,
NM 16 the number of M'S in I% «..I%n-1.



So the assertion of the lemma is obvious.

Lemma 2B, Let 3s Mg and Aali-f//,z . If EpF O Y=t
then £nb, <0 and é',m 1 B4f =
Froof. Note the condition A4 —f/ﬂ mean2 that
I (9-./4) RRD and [KI = I3/g
Let us write the recursive formulas for gﬂ_ = 2T A
N, |, xhe L, oM
gni_’ = ":,!,:‘Iﬂ, ™ ﬁgn_— ‘—:"-, Xp € M (3.6)

.r,,_+/u€,,_-f, x,e R
é,=€=0 2 83= 2 -2
From (3.6) we obtain:
34+;=A€m ; xpe L
Kgn."'_%‘ < €ney < Hgm

_/“en—"i" < gru} “-ﬁgn. » Xa €R,

(3.7)
, Xn €M

Let N be the number of R‘S in £+
i.e, _I_"‘: R‘,,a. R osas (N'>2 )
Let 5
e % -2

from the beginning,
N can be find as follows,
=N’_. c v £ >0 . Then o, -_-,"|/'?.—- fgf-ejxa=-f-7ld£.-.

Xpz 4 —JHn-'& n=2;..4N*{. From {3,6) we obtain:

b,=-¢, Gg= § = HE-MHE~1 = ~2piE
et = - N)J'V-fe = ‘;«N: {1~ x2sed]. (3.8)

Let us consider the minimal value N'=3 ,E:RRR---( It is obvious
that if the assertion is true for AN'=3 ’ then by (3.8) it ia
also true for N'>3 )

if I+ RRRL .- then since X4 < ’/2 .;@ [:-j- 3, and by

(3. 6)’5_5]734\,8 >f. Later we’ll see that this value is sufficient to
provide the necessary behaviour,

Now 191:_.1_:2 RRRM ... Let J
e, I+‘ RRRM

1.4:! I*=?RPRRMR ... Thenx <o and |84/ > 3/y 1651 > ¥y

'
be the number of M & , 1,

2'd = 1 ._I_" RRRML ... Here we need some more exact estimates,
We have;
A
K=2 -’u; :—/” +£&, g ="‘-“q""‘g“‘='l+£f"£ "3/‘
Since -!—/U‘,E < :2‘-. . }EE’:"% + 0(e2) , € is small ('-'-Cf<xq‘-i‘



- oL —JE 3
whereF(1|)=';%'--’I!EM _x!=_£|§"_>&?2-—-SDE<#: = MF)

" .
3. d =2 . Let x,-*=I-1'A, where X ¥ is a fixed point, i.e.
hxto = ¥ ( some caleculations show that under the conditions of the
¥
lemma =i <oac® <-'%- ) Since‘-'l':5=\t*+KAEM , X +KA>—;%—' and
83
x, = x*+ k*A > 4 (3.9)

From (3.6) we have
- : - A

g, = (-i—-x —-‘;—)(H-f-f)—HA +45*E, .

Using (3.9) we obtain
2’ —

lg ’>H }ggj ’hf

The case XL =X*= A can be considered similarily, and in fact we’ll

*7)_ (é1*+qf—)lﬁ +1>02, | 83/>0,6.

obtain here the greater value of lg;’ P
. d >2 . We'll show that if ]6,,] = 3/g then

| B5l < 184] < [Bg) < »-- {3.10)
By (3.7} we have

lgc’>/€5/ /ga/>/€1l,...

so0 Ign,l increass, We have from (3.7) ’
85> 86~ 1y , KBs< -4 u , 8 <nbs<nb -k
e; > Hg I- > Hggy—-a—'na —5—

F

Thus if K‘agﬁ,-%h‘z_z s K Gq ; then €¥> gs . The inequality

H’gq—%h*—ﬁeq-_—é >0 (H=<o, By <0)

holds as it 1is easy to see if ,{6,/>-3/3 , and f~3'/'9$|'ﬁf5-?.. We can

repeat these arguments, and show tha% fg‘,l)]e-;,f s+ +evs and so on,

Now we see that in all cases we’ll start our considerations

with a wvalue ‘gﬁf which is greater than an "initial" one, Ig‘,)‘

wlll not decrease at the most "dange:ot:_a" part M , and in fact it is
easy to show, using (3.6}, that ifJ I =M= , then efm] er;,)f:ao
In the remaining cases this 1s obvious, oo

Remark, Unfortunately, we can not consider a smaller domain
in the conditions. For example, if we allow itinerary I RR...<RRD
then forI- RRML v~ as one can see from (3.6) ‘8 I becomes
very small, end for iteraryI RML ... even the condition gq &€, <0

doesn’t hold. Of course, for aome itineraries ( e.g. I RRLL ... )

we have £n 8, <o R éim [gn,/
1 co



Lemma 3B, Let 3 s A < andﬂ<‘-l~f/).2. (I~ < LLC
If fnt0 ¥Rz 4 then/un’Dn:-D and &m IPnl = oo
Proof is the same as the provioua one.,

Let now Cp= an"&'r .dr,.,_'=an_r gn, ,ZﬂFP“- 2"" eﬂ-ﬁfﬂ-"iﬂ—: et:Jg:hEn.xnare as

before. Then we have
Lemma 4B. Let.?("'/’l'f‘!ﬁ'*\’_' If E,50 Vrizd andfp,#0V¥n 2t then
EnCn>GJE‘ndn‘:O,Jn.Zn‘>O,Jne <0 eim/cm; e'm;af,,; CmfEn = il

o % co
Proof., We’ll write only the recursive :f‘ormulas for <, and o{

the further proof is similer to previous one,

ACn T+ XA+ 3 I,LEL.
Cnss =% KCn “'5‘_-' 2 Tn €M
MEp — X+ x, €R

Q= LHMZA o> 3

Xn i-]lo{n + f R JI,,_EL

a(nﬁ"-' ‘x"‘"*‘}sd’l) Xn e M
. Xnp €

In—l-i-ﬁdn, ne R

= f+V3
al,-ﬂ;z ca=-k, dy 120

Finally, we shall prove a 1emma in the same spirit,
Let Xp -* j"( ), Ya= F Jlj-‘ (4)  tetI(x)=1 g ) ést,,.
(Recall that R*al, =R, M*=M C1=D ) set 5,,, oc,”yn.
Lemma A, If (hyq) € .:b ' 7‘>j4,5n,*0;‘”‘-"-'-':“‘ then
£nBn >0 YRk - e:‘mfa_”[-:

)

K-> oo
Proof.

S = %)O

(A-pM) o-}-ign,-w-(i =M)Xa, ::,,_eL,(:yneR) (3.11)
Sﬂ.ﬂ': K&n. +(x ﬂ)/z; xXpe M (g,,gM)
(f-ﬂ);-ﬂgn+(n-/«)3,,,’ Xn €R (Ypell).

From (3.11) we obtain
jlgn € 64y X %-#_ +/45.n,
Sn.-,-{ =H6;L+ L‘;'L— (3.12)

chYn.S n+4sli‘,fi_+/45.

)

=00



If pifxed) = o then by (3.12) £, 8, >0 vn=/.. .«
jé_" < [Sa]l<w cor = }SJK"I
o o MaTHL, NM -
’5n1 2 2 . | ‘ (-?‘—2-}&) s+ Where N.R.N-M,N-L are
the same as in lemma 1B, Thus {;m {6kl =
K ~=» o
4. Monotonicity of the kneading sequences

Using the estimatea, one may prove the following
Theorem B, Let (?‘l,/"ol, ()2‘/40) e , A Ay-

. Then )
I7CAs, po) > IT7 (22, po). (4.1)
Ir (?u,/”t) { A ﬂz}Eaﬂf {3*}4‘4 Azx4d-4i }and Ay Az, My < My
(2 ”‘2.'/”1 "',ﬂ* or Ny>Ay | /ul</”2. also 1s possible ), then
b,
It (M.}‘:)‘;I (32‘/,2)_ (4.2}
Let (Aa}“l‘) (-‘o}-l;_)é 2 /.l’-q‘j-fz,'!‘hen
u,
Y (c\o,/l;) = 1 (A.,,/uz) (4.3)
Let {a;, M), (?I,L,)Jz, edy = {35,\;.4“/454---;?_- }- ) A A,
Mo« He { one of these inequalities may be non-sharp )
then ~ -
J_: { h.l‘)"l)b-l (“z./“z]- (4.4)
Proof, Since it is very similar to the garresponding proof in
v/

we shall not give it here. The idea is that, if, for example,
Ar> Ay and I"+(RJ/¢QJ'#I+( Az ')Jo) then according tc lemma 1B

En 3" >0, thus [T(B;/Jal”:-l- { X /-‘a:l y and sinc'e‘ €im I 91"':00 the

equality I (‘4‘/‘0)" I+ (az, po) is lmpossible, 7 AT Ay

{ In the case of finite sequences 1t is also impossible, because
23X

_BT*O)'

From lemma 4B we also obtain the gimilar proposition about mono-

Sonicity of the kneading sequences along lines }\+/4.= const , -‘\-JH =L 1% 2N

Proposition B, Let (a,}J,} (aa.lj"z) E.ga {34,‘44 3-744_4 '\Waﬁ'ﬁ
Set U= _L U= MM

K se= W,IE Uy> uy, | wy £y ( ons of these
inegualitiea may be non-sharp ) then

IT(n p) > IV (ha, p2)

If. U< Uz , U7 > Uy ( or U3y W»Y, 1YY, U<y} then

10



I Oy pn>1 ("‘-".aj‘z)-
Procf is the szame,.
We aay that(h,,”;)t(ﬁa'ﬁ&)if at least one of the inequalities
At hy . Mi Mg holds. Similarily (4, &)+ (Az, B, ) if either
Arehy, or By B, Note that D, 2,9, DcHc HD Then
using theorem B and proposition B one can easily prove the following
Cocollary B, If (h’:ﬂl), (A"‘ﬂ*) G 5 and (?\,,}4,) * (M:ﬂ&)
then (£+th"ﬂ"r I 04’/‘4» * ( £+ (?‘.a.j-‘:.', E- ("‘:..j-vfg,))-
In other words, kneading sequences pairs corresponding to
distinct points at the parameter plane are distinct,
Proof, We separate the domain around the point (?H,/Jl) by the
lines }.:canst‘,}uccnst.my'l:wns‘r. ( see fig, 1t )

L
I Y
1; (Blj‘d)
v 4 Fig. 1

According to theorem B we have:

'O > I ( Ag, par) 12 (hp) el
170 <27 (20, p) £ (ap) e X
and by proposition B :
1:+(a,}.n >_lj+(m.j~u) if (A p} &
I*a < T* (A p) ir (A p) ¢ T
I"G A > (M, pa) if (apy e ¥
l'n./w-c;'(a,,);.) if (ap) ¢ ¥,
So whichever point (A M) distict from (a,,j:,) we teke, at least
one of the itineraries L (}\,Ja) or T (h,/q) will be different

- -
from ; (M.jh) ; oTr correspondingly from I (?\c,ﬂ;).

Finally in the same apirit using lemma we may prove the theorem
A,

Proof of theorem A, It ie similar to the proof of the theorem B,
IfM>MEF0 then eccording to the lemma A Endn>0 S0 if there is

-

the smallest M such that I(L,)#L1(ym), then Xn>~Ym 1f the sequence
I(xp ---I(fqm) is even, and X< -J.-,,_ if Tlxy) - -.I(:!;,,.,) is odd,
But this means that

*
_];*(RTJE.I(I')---I(x"‘J--. >I”(y() I?ga) och‘“{gm)-.o '-‘g-(aj"))_

11



Such M. exists, becauce if ]:" is infinite, then"elm- ‘g 1= oco-
r I (h}l)is finite, then /T exists, since nz’o( sce 11/ }. The

inverse assertion is obvious ( [ ()1}{] (I (])t)) only if )ﬁ:ﬂ. ).

5. Intermidiate value theorem

We consider some connected set at the parameter plane, for
example a continuos curve P‘ffiﬂ(t) . Lettef &, b7, Aftol= Aoﬁlfo))‘o
and A= MEd), pez Mity), I(a,,u,) Ay I(A.)u,} Ay Lcka= B, ,._]_.'n,,ﬂ,)_ By.
Suppose thatA 1*>A.B,>8, . Then we have the following theorem.

Theorem D. Let A be maximal segquence,and _&o‘ £<ﬂ { ,ﬂ_ [3 ﬂc,._,-
Let YEe[tetd v x| 24 VT A >I (;\H.-J_/-;!H) ir TRl A £ D.
Then there is t *e (1, t,) such that I+(.g(+,*) (t*)} = -

1tBe Mg , and Bo< B<By, ¥k 1 ,vielt, £, J'“'B<I@(ﬂ}iw) FJ'BFC
then there is t*e(to ¢r) such that I~ (,\u;*),j.,(ﬁ*)) -8.
Procf. Xt 1s enough to consider the case of ﬁ s the other one

being similar., To prove realizability of ﬁ we define by standart
way the following seta:

Lﬂ. = {-i: t te [tet,] and ;.I'jh(aftl,jl{tl) < A }
Ry = {t s ke Um’}_,] and 'L"(Mt),)v(t)) >£\} .
We need to show that they ari open. Let us consider Rﬂ {the case

of LA is similar ) Assume t € R + We ahall show that there is
some neighborhood V (f 5'1:!'5) such that ¥£ (':VS I (aie), peg)) > A -
For simplicity we denote I (MH}HH} I+(L') I («\{-&lj«[ﬂja L (‘H
Let rL be the first index for which I"“-)#: A . We may
assume that theASequenceI PPN In_, doean’t contain C- D , sin-
ce otherwzseI (H A ( due %o the "stopping” rule ). The further con-

slideration is just a careful enumaration of various possibilities.

1. 1¢3, L, D then by continuity of we can preserve the
A
equalities I*[i] = *(t] RN ‘I"- (t)= I+ {t) in some
A
neighbourhood VJ of ' V'& 2 V; , L€ RA

2, If In(-tj C, then I {f,j (Ac’“’ and A A’I".,.There is a
neighbourhood ¥V of £ such that if teV , thenIT%y- HF, where
F =M or LJ

) 1.1. Let E be even. SinceEC)_A?T’. T=lL . 1If F=M, then
_:_I_:.r(f]=AM--- )5;‘_. see 30 let us consider the case F=0L . Since_&en
we must have or A<A N or A >A * ML= { but
A... A L oaae o this is impossible ) Therefura there is H such
thatA (AL)B..- ,where!Bl"}ALf andB <A\L

i'--fl
Then choosing sufficiently small Y we can provide I T/t = (&L)

12



forte V and henee I*e)> A for teV-

2.2, If A is odd, then T= M R D , and the onl'y non-tri-
vial case is 'T'- M, F=M Again we wust have orﬁl)ﬁ * ML
( this is 1mpossiblo }, or A < A"L -(A M) . Then there 18 M
such thntA (AH)“B P where ]a] ’AMI B<A M. Therefora
we again ean find V such that I"(ﬂ (A M)“_-'){AM}B“, for L.

2. Now we consider the case In['bl D ., i.e. IE= RDI (t)
A:AT'..- and for some neghbourhood I (H:AF...  F=M,R
for tely . If £ is oven, thenT=z= L, Af, C The cases 'T'-C L,
F=R are tri:ial So 1etI (ﬂ=£MP A= AMB According to the
conditions if J A * _D then ¥t e[to t;] ,T A >I (]
and in particular B > I ( t), Let m be the first
index for which g + I, (t) » Here again we have several possibili-
ties, A

3.1.T,(6) #C,D.Then by continuity of F we can find a nei-
bourhood V' <Y such thet for t e V‘

Iuﬂ(t)-P I (t)-BJ"'I m+n.{'ﬂ" -Im(k)*sm.

Thus fortev , L (f}-AMP) AMB ( sineeAM is odd }
3.2. I (E)=D rice. I"(H-ADBDI [H—(BD}"'Then
A:EM@F cea Ir _Q, is even, then F_ R . By the

A
above arguments for some V< V when teV“I?l:):A'T'QK...where
"'I‘=M,H=' M,R. We consider only the case K =R ( the other one
being trivial ). In the next section we’ll show that 4 (7\,

(TG, I () e M1, . S0 L18)2QRuce >Q%R™ 1
;'{ﬂ:_g_R.,,-:_Q;Mk“‘ { this is impoesible ). By the conditions

T"/_\ =QR... >I7(t)> @#R”

Therefore there is H such that A= AM(G-RJ 8... ' IB[ ,QRI B)G.R
Then choosing ,cV;CV we can provide for teV;

I7e=(@Rr) i, . I = fmier) " > AM(aRr)¥g. ..

The remaining possibilities when Q is odd , or A
some other comhinations are conaidared analogously,
3.3, Im (tj- ,I fﬂ-(ADBC) { so called double cycle ).
Let A ' B be even. Then we conaider some neighbourhood V‘ '
whare I (f.-j RMBM te w 3 ﬂ-ﬂHéM eoe ( the other possi-
bilities are trivial }. If £ 1is sufficlently close %o 2 then

is odd, or

13



It = (Amdm)’

A A
{ and only this comblnation is possible, if _& and B are even!}
Note that AML’) . is maximal and odd. Then since Ae N or
A:-(AMB] ML , or ﬂ<(AHB} L (AMﬁM} . The first inegqu-
ality is lmpossible. Thus there is M . such that
A A Ao A A AN
=(AMBM) G oeen where ’Q-'=‘AME’MI,Q q{éME_M,

Therefore we can find V [ V;‘ such that

Ty = (AMBM)™ e > (AMBM)"a ...

K&i

A A
It A is even , B is odd, then one should consider
; A A AN
Ir(terMBL..:,A.—AMBL".-The arguments in this case, as in the
rema:.ning cases are s:.m:.lar. This in fact completes the proorf,
since LA and R,q closed non-empty, and [ts ;] ie connected,
Thus LAn R‘k is non-empty, so there is +%®¢ {te, £4) such that

I (t*1=4

6, Proof of theorem C

Proof of lemma C. We must check whether the conditions 14,24,34
1C,2C are satisfied by I (2 /A, and correspondingly 1B, 2B, 3B, 1C,
2c - byI (h/y . 14,B,C and 2B,A,C follow immediately from the
definition of L (R./\J) and]__'-'(h,_).J) , and in fact thHe only con-
dition which we have to consider, is 34 ( 3B ),

Suppose on the contrary that for some (3\ j") for example
I (?«jl) can be represented as G. P in sense of the defini-
toin given in 3A. Fixst note that if I"(A,Ju) doesn’t contain C, D
it can not be periocdic, sinee otherwise two points F(CJ and F"”(c)
( where n. is a period )} have equal itineraries { this is impossible
because our maps are everywhere expanding, eo two arbitrary points
will be sgparated. )

Lat jmow for definitness be even, I (3\/4) QMQ-.. IQI =
Then F " (C) Cra v O > 0 . VWe consider

Fz(nz-g) = FH{E*-E) = C o+ + O e,

o = _ﬂ' DF(Fd(e).

. a4
Sinee ).}4 >3 o |l >4 , &3 . Thus

where
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P48 e -S[1 =Mk 2 -8 ana &> Sy -

We have
3(n+t)

F {c) = c-53 ) ]d-g,‘ > ]83_‘ - &¢ . and so on ( we have
supposed ithat ;"Q*E 80 we can contl-
nue thos process infinitely ).

Then

Sm=C- Fm(m-l) ; f;m '74#(."1)‘ cs.‘ where Cim f(m) = ¢o.
When Jm increase sufficiently, the sequence _9_. m"‘:ﬂ.il be des-
troyed, so Ii.(?n ) can not be of form @ ¥ P . The treatment of the
case, when @ 1s odd, and of .l:"(ﬁ.jd} is similar.

Proof of theorem C, Let(ﬂléjen and A = RRD ,_E SLLC .
The assertion is obvious 1f A=R¥ 3=L" (_.]_:“'-{-q'qjgnﬁ I9y) = L™ ).
It is also obvious ifﬂ: R“,é-_a- L® orB= Lo? '_ﬁ_\*Rw . { Since
for e:l:‘a.mple g:e set :_{(Ay‘”es;l.‘-(?hjd =R°°] im the line J = 4
and J E( R 17T _g 3+ C and feagge P 4 we can apply theorem C ),

So let ﬁq: R"' B * L™ . According to the just given argu-
mente there im a A, such that _:_f_'.(‘f, o)=_§ ,j!a<4.Lat
us consider the domain C;={("y4)€5:/'2/*m )“f}' By %heorem B
VapreG, Tap)<I™ (4 po)=§ « Homee

T"A > B >1 (mpm) ¥ (3 € G,.

Since D <_A_ < R® ., we can apply theorsm G. So for every _M ‘-}/-fo
there is a ).(/4) such that -I-*(A(}U, }a-ﬂ. Moreover, by theorem B
this value A{m) 1s unique, A{ M) 1e increasing and continuos
by the intermidiate value theore:: if y < Mg, then A{j.aj <A .(/44).
IEALM)< A< A () + then I (W%Hé‘ £+(7"_/"’J' hence
there is aj“;/"f‘ﬂ“}"l such that £+(7'j4)=ﬁ ). ~

Let Af{No)xr A, + Lot us coneider now the domain G-"={(hyd}éa0,
A=Ao 'jJ <H}.,By the similar argumgnta for every A )\o there is
an unique (N such ulaf.I (A pm)=5 . M (n) 1s continuos
and increasing. SQtjl(ho)=&,}4(ha j“w’f‘o' Then we consider (G, = {
(hw)ﬁ:ﬁ,/-l ;/4,,)-(43 . We can continue the curve )(j-d) ( where
l().‘j‘)./,,} = A ) for My $MSE Mo . Lot Alj«,j=)“.. and so0 on.
yar

Flg. 2
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We obtain the sequences

Ao = Aipod, My=Hlded, Ap=alpa), oo - ,/Jn=/4(a,,-,), A= 2 (M)

éu: lrr(am/““) , Bos _]_:_ EAD./“}, _dnl =1 ?’H,}#), vae ;Hnsltan/‘n)’ Bn_‘..Ih.,.‘,ﬂn)-

The sequences {}\,,5 '{/""5 are decreasing and bounded ( the same is

true for ..A_n , B, ) .Hence -

Cimag= A" , LimMa= M
R - oy 5 n-y (« .
exist, ang f*vJ(afj 'A(/-‘*J = )% . Dy definition of the curves
s =2

I"(a pt=A [ I (A M) = B,
Due to corollary B (A%, M F¢) is unique. Note also, that (A',/q*)e;s
since otherwise or T¥(a%u*)<RRD or Ithy-'*J)LLC . This

completes the proof.
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