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The evolution operator for quantum mechanical syBtems can be 
expr~ssed in the form of the Feynman path integral (1J. For some 
classes of hamiltonians Kac, Ito and other authors defined the 
path integral as the integral with respect to a mP~sure in some 
functional space [ 2, .3J. Such formulae named after Feynman, Kac and 
Ito were considered in numerious works on quantum and statistical 
physics [ 3l . 

The construction of functional measures in supersymmetric 
theories [4l is a rather more complicated problem [5]. A variant 
of the Feynman-Kac-Ito formula for some supersymmetric system with 
the real time was considered by Berezin [6J. The similar results 
were obtained by Khrennikov for systems With the time belonging to 
the odd part of a superalgebra [7J. Taking under consideration 
commuting and anticommuting (1,1)-time, Rogers proved the 
Feynman-Kac formula for the supersymmetric system corresponding to 
the imaginary time quantum mechanics [8J. In the present paper we 
consider the super (1,1)-time square root of the Schrtldinger 
equation that represents the real time quantum mechanics. We 
obtain the Feynman-Ito formula in the space of superdistributions. 
for some class of superpotential8. 

We consider the Cauchy problem for the square root of the 
.Schrodinger equation with ( 1, 1) -supertime: 

{ 
Dt.~f(t.~.x.e)~Qf 

( 1) f( o, o, x, e )~g(x, e). 
B B Here Dt.~~~ + (~Of is the supersymmetric time derivative, 

the supercharge Q has the form Q~ (W·p)/Y2 + W(t.~.x.e), where 
~ and p represent the operators defined on the space of functions 
of n commuting and n anticornmuting real variables (xJ,8J) by 

j_ a _ a w - Sj+ oo;-· pj--t0xj. 

I 



The fl..J....'!Ction W is the superpotential and t"he function g is 
the initial condition of the problem (t1ere and further i=v=T). 

We shall construct a solution of the probfem (1) in the &pace 
of superdistributions. Let A=A

0
+A

1 be a Panach commutative 
superalgebra (CSA) over the field of complex numbers [and A=A

0
+A

1 
be an infinite-dimentional pseudotopological CSA over the field of 
real numbers ffi with nilpotent odd elements (except numbers) and 
trivial A

1
-annulator [7~9]. Denote by ~yn the superspace A~xA~ 

over the CSA A. Let ~(~·n.A) be the space of smooth functions 
defined on ~yny compactly .supported over the real directions 
[7,9]. Denote by ~·(~•n,A) the space of A-linear continuous 
functionals F:~ ~ A. 

The super-pseudodifferential operator (S-PDO) P(x,e,-tB,!D) 
acting on 1l' (~'n,A) with smooth pq-symbol P:~•nx!R~·n __. A is 
defined by [7J 

<PF,~>~<F,P*~>. FE~'. ~E~,and 
p* (X, e, -!0, !D)~( X, 8) 1 I dnpxdnqxdn<;xd"rj X 

(2~)n!n 2 2 "' IR nxA1n 

xP(q,<;,-p,-~)~(X,8)eXp[!(p,q)-!(p,x)+!s(~8)l 

(we consider left derivatives of anticommuting variat•les 
throughout thia paper). 

Let u.s now consider the cauchy problem ( 1) for differentiable 
functions f: ~-- ~·(~·n,A) so that (t,~)EA, (x,8)E~'n. 

Note that the free super charge Q0~(ID·p)/t2 of the righthand 
side of the equation (1) may be defined as a S-PDO acting on the 

n 
space~· with the symbol Q0 (8,p,~)~j~,(9j+~j)p1 . 

Next, let us suppose that the potential W: Ax~,n ~A is the 
Fourier transform of the family of Borel measures W depending on 
the parameters ( t, ~) EA, ~EA~: 
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• n lL W(t,t,x,B)= f exp[l(x,p)+I(B.~)JW(t,t,d p,~)d ,~ 
fFfxA~ 

~ N ~ a a1 an W(t,t,d"p.~)= ~ W"(t,t,d"p)~, ~ -~1 ••• Tfn and the measures /C!T<n 

W"(t,t,d"p) have uniformly bounded supports and uniformly bounded 
variations: Vt,t,C! suppWC!(t,t,d"p)cBR, BR={XEW": lxi,Rl, T N 

fdo£ds~!Wa(s,o,d"p) ~<C, C>O. (2) 

We shall also suppose the same conditions for the initial 
value g(x,8) are hold: 

g(x,B)= f exp[l(x,p)+I(B.~)lg(d"p,~)d~. 
~xA~ 

g(dnp.~)= ~ g~(d"p)~, V~ suppg~(d"p)cBR, 
I~T'n . 

~~g~(d"J!H<C, C>O. 

N N n 

(3) 

Finally, define the symbol Q0 by Q0 (",p.~)·j~1 (~jcjPj-lpj). 
THEOREM.The super-distribution 

ro 1t 'C t 't
2
t

2 \ 1 rnrn 
f(t,<,x,B)=~ -m IJDTmJ I DTrn_ 1 ••• I I DT 1 

m==O i 00 0 0 ,0 0 

"' kl-1 kl-1 

k1-1 

'··· Qo lck • L Pj 
1 j::::O 

Qo(ckl' j~o Pj j~o ~j)x 
jfk1' •••• kl-1 j;f'kl, ••• 'kl-1 

N N w (t
1
,t

1
,dp

1
, 01 ) g (dp

0
, 00 ) x 

(4) 

is the solution of the cauchy problem (1). 
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The proof of the theorem is similar to the proof of its 
analogue in the paper l !OJ. First, using the estimates ( 21, ( 3) 
one needs to show that the series (4) converges in the space 
~'(R~·n,A) for each moment (t.~). Then, differentiating the series 
and using the superanalogue of the formula for differentiation 
with respect to the limits of integration (see [8J) 

n 
Dt,'r( {- JJDSf(s,ol)=f(t,'r), where for f(s,O)=f

0 (s)+f
1 (s), (s,o)=S 

00 

'rt t 
the integral is defined by }JJDSlf

0 (s)+of
1
(s)l=}Jf

1
(s)ds + 'rf

0
(t), 

00 0 
one may deduce the proposition of the theorem. Note that the 
theorem remains true for a wider clas.s of S-PDO, considered in 
[ 10l. 

To conclude, let us discuss the formula (4). We can consider 
it as the functional integral with respect to generalized measure 
in the space of superpaths for the evolution operator of 
a supersymmetric quantum mechanical system (cf. [8J): 
<O,Oiexp(-ttH-'rQ) lx,8>= 

n 
JnyD~ T-exnf f JJcts[0¥1~· 01~(s,o)+W(s,o,x+y(s,o),8+~(s,o11J}. 1. 00 

Tt1e formula (4) may be regarded also as the definition of the 
chronological exponent of the symbol of the S-PDO(cf.["lQ)). This 
result shows that the methods of functional integration in the 
bosonic case may be applied to the fermionic and sypersymmetric 
cases, though the construction of the corresponding measure in the 
space of paths is more complicated. 

The author expres.ses gratitude to A. Yu. Khrennikov and o. K. 
Pashaev for helpful discussions. 
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