


The evolution operator for quanium mechanical systems can be
expressed 1n the form of the Feynman rath integral {41. For szome
classes of hamiltonisns Kac, Ito and oiher authors defined the
path integral as the.integral With respect to & measure 1In some
functional Space {2,31. Such formulae named =fier Feyrman, Kac and
Ito were comsidersd 1n humerious works on quantum andg statistical
Physica [37.

The construction of functicnal measures in supersymmeiric
theorles [41 iz a rather more complicated problem [51. A variant
of the FeynmanQKac—Ito formila for some supersymmetric system with
ihe real time was considered by Berezin [6]. The similar results
were obtained by Xhrennlkov for sysiems with the time belonging to
the cdd part of a superalgﬂbra [71. Taking under consideration
commiting and anticommuting (1,1)- -time, Rogers proved the
Peynman-¥ac formils for the Supersymmetric system corresponding to
the lmaginary time quantum mechanics [81. In the Iresent paper we
conalder the super (1,4)-iima dquare roct of the Schrédinger
Equation that represents the real  time quantum mechanies.  We
cblaln the Peynman-Tto formula in the space of superdistributions
for some class of superpotentials,

We consider the Cauchy problem for the square root of ihe
Schrédinger equation with (1, 1) -supertime:

{ Dt’Tf(t,T,x,B)=Qf )

1{C,0,x,8)=g(x,8),

Bere Dt,rzag + lwag 1s the supersymmetric time derivétive,
the suparcharge Q has the form Q= (T-py/V2 + W(t,7,%,8), where
Uand p represent the operators defined on the space of functions
of n commuting and n anticommuting real variables (x ,B } by

J_
= 8 + BH; pj-~!ar;



The function W i3 the superpotential and the function g is
the inditisl condition of the problem {(here snd further 1=v—T:.

¥e shall construct a soiution of the probiem (%) in the space
of  superdisiributions. ILet A=A +h, bBe a PBanach commuiative
superalgebra (CSA) over the field of complex numbers € and A=A A,
be an infinlte-dimentlonal pseudotopological CSA over the field of
real numbers R with nilpotent cdd elementis {except numbers) and
irivial A, -annulator [7,9]. Denote by ®y'" the superspace AD<AT
over the CSA A. Let ﬂ(mﬁ'n,A) be the space of smeeth functions
defined on Ei'“, compactly supported over the real directions
[7,91. Dencte by D(RU™ A the space of A-linear continuous
functionals F:9 - A.

' The super-psevdodifferantial cperator (S-PDCY P(x,8,-18,im
acting on 2" (®"™, Ay with smooth pg-gymbol PIROTEST - A i
defined by [71

<FF,¢»=<F,P*p>, Peg', $ed, and

P*(x,e,fia,iD}rp(x,Bhat%t—n T A

% nfon

*P(Q, & -F - B(X, 8)expl 1{D,q) -4 (p, XI+HLE(M-H) 1
(we conslder left derivatives of  anticommuiing variables
throughcut this paper).

Let ug now consider the Cauchy problem {1) for differentisble
functions f: A — ﬂ‘{mf’n,A) 50 that (1,7)¢4, (x,e)gmﬂ’n.

Note tha& the free super charge Qoz(m-p)/VZ ol the righthand
side of ihe eguation () may be defined as a S-PDO acting on the
space §' with the symbol Qo(e,p,n):dg1(93+nj)pj.

Next, let us suppose thai the potential W: ARUT - A ls the
Pourier transform of the family of Borel measures ﬁ depending on
the parameters (t,T}éA,neA?:



WL, 1%, 8)= [ expli(x,p)+4(8, ) W1, T,d"p, man,
l?nxAn
¢

~ o

Wit,T,d%p,m) = ; Wa{t,r,d“p)n“, e, ™ and the measures
fal<n n

ma(t 1,d"p) have uniformly bounded Supports and uniformly bounded

varia‘tionu vi, T, 0 suppw 1,7T,8°p) By, B={xeR™: |xI<RY,
J‘dojdod‘?nﬂwats o,d47p) I<C, ©>0. (2

We 5hall alsc suppose the same conditions for ‘the 1initizl
value g{x,8) are hold:

E(x,8)= [ explt(x,p)+1(8,m)18(d"p, md™,
RnxA?

BAp = T g (dp)nB, v £ (d"p)cB.,
gL, ) Eﬁ%;ngﬁ( "D, VB suppgg(¢p)e,
ngnuéﬁtd“p)ﬂ<.o, >0, (3)

~ ) Tt
Pinally, define the symbol Q, T Qe B = ¥ (Ujﬁjpd—ﬁpj)-
3=

THECREM. The super-distribution

© Tt T, t Tate

1(1,7,%, 6) Z ;ﬁDT,,,rIDT SRS

60 50 oo 1=D '1§kﬁ<...<k1§m

~ ~ 1
L N E )

ST TR j#kl,...,kl s
k-1 k-1

oo g, (§K1. Ji,;opj , Jgonj) e WL TdpLE) g (dpgaE,) x

m m
<expli(x, d‘_gopjm (3, Jgonj) JdE .. .98, (4)
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is the solution of the Cauchy problem (1).



The proot of the theorem 1z simlisr to the proot of  its
analogue In the paper [40). First, using the estimates (2), (3)
one needs to show that the &eries . (4) converges 1n the space
ﬂ'(R:’“,A) for each moment {t,T). Then, differentiating the series
and using the superanalogue of the formula for differentiation
with respect io the limits of integration (see {81)

T
Dy of %rijSf(s,U)]=f(t,T), wasre for f(s,0)=f (8)+f (8), (5,0)=8
<0

Tt ) )
the integral is defined by %jjBS£IO(s)+ofﬁ(s)}:}jf1(s)ds + T (1),
oo )

one may deduce the proposition of the theoren. Hote that the
theorem remaing true for a wider clase of S-PDG, conslidered in
£1071,

To conclude, let us discuss the formule (4). We can consider
it as the functional integral with respect 1o generalized measure
in the space of superpaths for the evolution cperator of
4 supersymmeiric quantum mechanical system (cf. [8]):
<0,0exp{-1tH-1Q} X, B>=

Tt
= [oyim T-exp{ ; jjas[ﬁlggLQin(s,c>+wts,s,x+y{s,c),9+n{s,o))]}

[#ls]

The formula (4) may be regarded zlso as the definition of the
chronclogleal exponent of the symbol of the S-PDO(cE.040}). This
result shows that the methods of functiconal integration 1in the
beaonie case may be appiied 1o the fermionle and Bypersymmetiric
cases, though the constructicon of the corresponding measure in the
space of paths is more complicated.

The guthor expresses gratitude to  A.Yu.Khrennikov and 0.K.
Faghaev for helpful discussiond.



REFERENCES

1.

[oA)

10.

Feynmen R.P., Hibbs A. Quantwum mechanics and path
integrals. McGraw Hill, New York, 1S65.

. Xac M.~ Proc. 2nd Berkeley symp. math. stat. prob,, Univ.

Calif. press, Berkeley, 1954, p. 189.
Ito K.- Proc. 4th Berkeley symp. math. stat. prob., Univ.
Calif. press, Berkeley, 4961, p. 227; Proc. 5th Berkeley

symp. math. stat. prob., Univ. 0Calif. press, Berkeley,
1967, p. 145,

Daletskil Yu.L.,Pomin S.Y. Meosures and differential

equations in infinite-dimentional spaces. Nauka, Moscow,

1985 (1n risslan); see also references to ch. VI

- Berewin F.A. Introduction to superanalysfs.  D.Reidel,

Dordrecht, t926.
Rogers A.- Journ. Math. Phys., 1991, 22, 939 (1981).

DeWitt B. Supermanifolds. Cambridge Univ. rrass, Cambridge,
1984,

Viadimirov V.S5., Volovich I.V.-. Theor. Hoth. Fiz., 59, 3;
60, 169 (1984).

. Smolyanov 0.G., Shavgulidze E.T.- Doklady dced. Nauk USSR,

299, S16 (1983).

Berezin P.A.- Theor. Math. Piz., 6, 194 (1971).

Khrennikov A.Yu.- Theor. Math. Fiz., T3, 420 (1987); Usp.
Matem. Nouk, 43, 87 (19882), Diff. Uravn., 24, 2144 (1988);
25, 314 (1989;.

Rogers A.- Fhys. Lett. B, 193, 48 {198T); 213, 37 (1988);
Comm. Math. Phys., 113, 353 (1987).

Nagamachi S., Kobayashi ¥.- [lett. Moth. Fhys., 14, 15
(1987); 15, 17 (19288).

Ktitarev D.V. - Lett. Math. Phys., 18, 325 (1989},

Received by Publishing Department
on January 9, 1990,

5



