

объединенный
ИНСТИTYT
Ядерных
исследований
дубна

B.S.Getmanov

N-MONOPOLE-SOLITON-TYPE SOLUTIONS
OF THE SELF-DUAL EQUATIONS
FOR AN SU(2) GAUGE THEORY
IN MINKOWSKI SPACE-TIME

Submitted to "Physics Letters"

1. The technical preliminaries. Let us introduce in the Minkowski space-time (M4) the orthonormal basis of three spa-ce-like vectors $k_{\mu}^{i}(i=1,2,3, \mu=0,1,2,3), k_{\mu}^{i} k_{\mu}^{j}=-\delta^{i j}$ and a time-like vector $n_{\mu}=\frac{1}{6} \epsilon_{\mu \nu a \cdot \gamma}{ }^{i j k} k_{\nu}^{i} k_{\alpha}^{j} k_{\gamma}^{\mathbf{k}}, n_{\mu}^{2}=1 ; n_{\mu} k_{\mu}^{i}=0$. These definitions imply some useful identities, such as $\epsilon^{i j k} k_{a}^{j} k_{y}^{k}=\epsilon_{\mu \nu a \gamma} \mathrm{n}_{\mu} \mathrm{k}_{\nu}^{\mathrm{i}}$, the completness condition $\mathrm{k}_{\mu}^{\mathrm{i}} \mathrm{k}_{\nu}^{\mathrm{i}}=$ $=\mathrm{n}_{\mu} \mathrm{n}_{\nu}-\mathrm{g}_{\mu \nu}$, and we may use them to construct the following important objects:
a) The antisymmetric tensor $\mathrm{R}_{\mu \nu}^{\mathrm{i}}=-\epsilon^{\mathrm{ijk}} \mathrm{k}_{\mu}^{\mathrm{j}} \mathrm{k}_{\nu}^{\mathrm{k}}$, its dual $\overline{\mathrm{R}}_{\mu \nu}^{\mathrm{i}}=$ $=\mathrm{J}_{\mu \nu}^{\mathrm{i}}=\frac{1}{2} \epsilon_{\mu \nu \alpha} \gamma_{\alpha \gamma}^{\mathrm{R}}=\mathrm{n}_{\mu} \mathrm{k}_{\nu}^{\mathrm{i}}-\mathrm{n}_{\nu} \mathrm{k}_{\mu}^{\mathrm{i}}$, and self- (antiself-) dual tensors $\eta_{\mu \nu}^{\mathbf{i}^{ \pm}}=\mathrm{R}_{\mu \nu}^{\mathrm{i}} \pm \mathrm{iJ}{ }_{\mu \nu}^{\mathrm{i}}$. It is not difficult to check that $\eta_{\mu \nu}^{\mathrm{i}^{ \pm}}$ satisfy in $\sqrt{\mu}$ the identities introduced by t'Hooft ${ }^{1 / 1 /}$ for his tensor; in the standard references frame ($\mathrm{k}_{\mu}^{i}=-\delta_{\mu}^{i}, \mathrm{n}_{\mu}=$ $=(1,0,0,0)$) our tensors $\eta_{\mu \nu}^{\mathrm{i}^{ \pm}}$coincide with t'Hooft's tensors. So $\eta_{\mu \nu}^{i^{ \pm}}$are t'Hooft's tensors for an arbitrary reference frame ${ }^{\mu}$ (the covariant form of t'Hooft's tensors);
b) Scalar variable $w=\sqrt{\left(\mathrm{k}_{\mu}^{\mathrm{i}} \overrightarrow{\mathrm{x}}_{\mu}\right)^{2}}=\sqrt{\left(\mathrm{n}_{\mu} \widetilde{\mathrm{x}}_{\mu}\right)^{2}-\overrightarrow{\mathrm{x}}_{\mu}^{2}}=\sqrt{-\xi_{\mu}^{2}}$; $\xi_{\mu}=n_{\mu}(\mathrm{n} \overrightarrow{\mathrm{x}})-\tilde{\mathrm{x}}_{\mu} ; \tilde{\mathrm{x}}_{\mu}=\mathrm{x}_{\mu}-\mathrm{x}_{0 \mu} ; \mathrm{x}_{0 \mu}=$ const. In the standard frame we have $w=\tilde{r}=\left|\vec{r}-\vec{r}_{0}\right|=\sqrt{ }\left(x_{i}-x_{01}\right)^{2}$. We need w to construct the spherical-symmetric functions in covariant form (for an arbitrary frame). The derivative $w_{\mu}=\xi_{\mu} / w$ is a unit vector: $w_{\mu}^{2}=-1 ; \quad w_{\mu \mu}=-2 w^{-1}$.
2. Here we shall construct the regular spherical-symmetric solutions of the complex self-dual equations for Yang-Mills tensor $\mathrm{F}_{\mu \nu}^{\mathrm{i}}=\partial_{\mu} \mathrm{A}_{\nu}^{\mathrm{i}}-\partial_{\nu} \mathrm{A}_{\mu}^{\mathrm{i}}+\epsilon^{\mathrm{i} j \mathbf{k}} \mathrm{~A}_{\mu}^{\mathrm{j}} \mathrm{A}_{\nu}^{\mathrm{k}}$:
$\mathrm{F}_{\mu \nu}^{\mathrm{i}}=\mathrm{i} \overline{\mathrm{F}}_{\mu \nu}^{\mathrm{i}}\left(=\frac{\mathrm{i}}{2} \epsilon_{\mu \nu a \gamma} \mathrm{~F}_{a, \gamma}^{\mathrm{i}}\right)$
in an arbitrary frame M4 for the algebra $\operatorname{SU}(2)$ (or of the real equations for $\left.s l(2, c)^{\prime 2 /}\right)$. Instead of Eq.(1) we shall use the equivalent/3/ equation
$\eta_{\mu \nu}^{\mathrm{k}^{-}} \mathrm{F}_{\mu \nu}^{\mathrm{i}}=0$,
where $\eta_{\mu \nu}^{\mathbf{k}^{-}}$is introduced in sec.1. Let us seek to determine the
solution of (2) in the form
$\mathrm{A}_{\mu}^{\mathrm{i}}=\mathrm{R}_{\mu \nu}^{\mathrm{i}} \mathrm{p}_{\nu}(\mathrm{x})+\mathrm{iJ} \mathrm{J}_{\mu}^{\mathrm{i}} \mathrm{f}_{\nu}(\mathrm{x}) \quad\left(\mathrm{p}_{\nu}=\partial_{\nu} \mathrm{p}, \ldots\right)$.
Inserting Eq.(3) into (2), we obtain
$-2 \delta^{\mathrm{ik}}\left(\mathrm{p}_{\mu \mu}+\mathrm{p}_{\mu} \mathrm{f}_{\mu}\right)+2 \delta^{\mathrm{ik}} \mathrm{n}_{\mu} \mathrm{n}_{\nu}\left(\mathrm{p}_{\mu \nu}+\mathrm{f}_{\mu \nu}+\mathrm{f}_{\mu} \mathrm{p}_{\nu}+\mathrm{f}_{\mu} \mathrm{f}_{\nu}\right)$
$-k_{\mu}^{k} k_{\nu}^{i}\left(2 p_{\mu \nu}+2 f_{\mu \nu}+f_{\mu} p_{\nu}+f_{\nu} p_{\mu}+2 p_{\mu} p_{\nu}\right)+$
$+2 \mathrm{i} \epsilon{ }^{\mathrm{ijk}} \mathrm{k}_{\mu}^{\mathrm{j}} \mathrm{n}_{\nu}\left(\mathrm{p}_{\mu \nu}+\mathrm{f}_{\mu \nu}+\mathrm{f}_{\mu} \mathrm{f}_{\nu}+\mathrm{p}_{\mu} \mathrm{f}_{\nu}\right)=0$.
By requiring that the coefficients at the independent tensor structures be equal to zero, we arrive at the over-determined system for p_{ν}, f_{ν}. This system can be simplified in two ways: a) Let $f(x)$ and $p(x)$ depend only on the variable $w=$ $=\sqrt{\left(\mathrm{k}_{\mu}^{\mathrm{i}} \overline{\mathrm{x}}_{\mu}\right)^{2}}$ and identify the set of vectors $\left(\check{k}_{\mu}^{i}, \check{n}_{\mu}\right)$ entering in w, with the set (k_{μ}^{i}, n_{μ}) on which $R_{\mu \nu}^{i}, J_{\mu \nu}^{i}$, depend (in general these sets are independent). Then Eq.(4) implies ($f^{\prime}=$ $=\partial_{\mathrm{w}} \mathrm{f}, \ldots$)
$\delta^{i k}\left[-p^{\prime \prime}+w^{-1}\left(f^{\prime}-p^{\prime}\right)-p^{\prime} f^{\prime}\right]+$
$+\left(k^{k} x\right)\left(k^{1} x\right)\left[p^{\prime \prime}+f^{\prime \prime}-w^{-2}\left(f^{\prime}+p^{\prime}\right)+f^{\prime} p^{\prime}+p^{\prime 2}\right] w^{-2}=0$.
and we arrive at the system

$$
\begin{align*}
& f^{\prime \prime}-2 w^{-1} p^{\prime}+p^{\prime 2}=0 \tag{6}\\
& p^{\prime \prime}+w^{-1}\left(p^{\prime}-f^{\prime}\right)+p^{\prime} f^{\prime}=0
\end{align*}
$$

The substitution $p^{\prime}=a+w^{-1} \quad, f^{\prime}=\beta-w^{-1} \quad$ implies

$$
\begin{aligned}
& \beta^{\prime}+a^{2}=0 \\
& a^{\prime}+\alpha \beta=0
\end{aligned}
$$

these equations yield $a^{2}-\beta^{2}=c=$ const. Integrating, we have finally
$p^{\prime}=w^{-1} \pm c \operatorname{csh}\left[c\left(w-w_{0}\right)\right]$.
$t^{\prime}=-w^{-1}+\operatorname{ccth}\left[c\left(w-w_{0}\right)\right], \quad w_{0}=$ const.

The regularity condition yields $c \neq 0, w_{0}=0$ and the "-" sign in the l-st equation. For A_{ν}^{i} we get
$A_{\nu}^{i}=w^{-1}\left[n_{\mu}(n \tilde{x})-\tilde{x}_{\mu}\right]\left[R_{\mu \nu}^{i} p^{\prime}(w)+i J_{\mu \nu}^{i} f^{\prime}(w)\right]$.
 $A_{j}^{i}=-e^{i j k} \vec{x}^{k^{2} \tilde{r}^{-1}} p^{\prime}(\tilde{r}), A_{0}^{i}=-i \vec{x}^{i} \vec{r}^{-1} f^{\prime}(\tilde{r})$. This static solution was obtained in ref. ${ }^{/ 4 /}$ by solving the Yang-Mills equations for the $\operatorname{sl}(2, c)$ algebra.
b) The second way of the simplification of Eq. (4) is the imposing of the reduction $f=-p$ (in this case the sets ($\breve{k}_{\mu}^{i}, \check{n}_{\mu}$), (k_{μ}^{i}, n_{μ}) are generically independent). Then we have a single equation $p_{\mu \mu}-\mathrm{p}_{\mu}^{2}=0$; the substitution $\mathrm{p}=-\ln \phi$ implies the d'Alambert equation
$\phi_{\mu \mu}=0$
Substitution $\phi=\phi(w)$ yields the singular solution $\phi \sim w^{-1}$. Let us search for the particular solution of Eq. (9) in the more general form
$\phi=a(w) \beta(\mathrm{s}), \quad \mathrm{s}=\left(\mathrm{n}_{\mu} \tilde{\mathbf{x}}_{\mu}\right)$.
Then we have
$\phi_{\mu \mu}=-a^{\prime \prime} \beta-2 w^{-1} \alpha^{\prime} \beta+a \ddot{\beta}=0 \quad\left(\alpha^{\prime}=\dot{\partial}_{w} a, \quad \dot{\beta}=\dot{\partial}_{\mathrm{s}} \beta\right)$,
and
$\frac{\ddot{\beta}}{\beta}=\frac{a^{\prime \prime}}{a}+\frac{2}{w} \frac{a^{\prime}}{a}=\mathrm{k}=\mathrm{const}$.
Putting $a=w^{-1} y$ we arrive at the system

$$
\begin{align*}
& \gamma^{\prime \prime}-k \gamma=0 \\
& \ddot{\beta}-k \beta=0 \tag{11}
\end{align*}
$$

We choose $k=m^{2}>0$. The general solution of Eq. (11) is $\beta=c_{1} \mathrm{e}^{\tilde{s}}+\mathrm{c}_{2} \mathrm{e}^{-\vec{s}}, \gamma=c_{3} \mathrm{e}^{\tilde{w}}+\mathrm{c}_{4} \mathrm{e}^{-\vec{w}} \quad(\tilde{\mathrm{w}}=\mathrm{mw}, \quad \tilde{\mathrm{s}}=\mathrm{ms}) ;$ regularity of ϕ yields $c_{4}=-c_{3}$, and we put $c_{2}=0$ (or $c_{1}=0$) to avoid the "tachionic exponent" in $(\ln \phi)_{\mu}^{2}$. Then we have $\phi=$ $=c \tilde{w}^{-1} \operatorname{sh} \tilde{w} e^{\epsilon} \tilde{\operatorname{s}}(\epsilon= \pm 1)$, and, finally
$\mathrm{A}_{\nu}^{\mathrm{i}}=\eta_{\nu \mu}^{\mathbf{i}^{-}}\left[\widetilde{\mathrm{w}}_{\mu}\left(\operatorname{cth} \overline{\mathrm{w}}-\tilde{\mathrm{w}}^{-1}\right)+\epsilon \mathrm{mn} \mathrm{m}_{\mu}\right]$.

This is a regular localized solution with the centre in an arbitrary point of space, $\overrightarrow{r_{0}}$. It moves in an arbitrary direction with a speed $\vec{v}=\vec{n} / n_{0}\left(n_{\mu}=\left(n_{0}, \vec{n}\right)\right)$.

The general solution of eq.(5) of the form (10)
$\phi=\sum_{\mathrm{a}=1}^{\mathrm{N}} \mathrm{c}_{\mathrm{a}} a\left(\tilde{\mathrm{w}}^{\mathrm{a}}\right) \beta\left(\hat{\mathrm{s}}^{\mathrm{a}}\right)+\mathrm{c}_{0}$.
$\tilde{w}^{a}=m^{a} \sqrt{\left[n_{\mu}^{a}\left(x_{\mu}-x_{0 \mu}^{a}\right)^{2}-\left(x_{\mu}-x_{0 \mu}^{a}\right)^{2}\right.} ; \quad \tilde{s}^{a}=\epsilon^{a} m^{a}\left[n_{\mu}^{a}\left(x_{\mu}-x_{0 \mu}^{a}\right)\right]$, produces the final N -soliton-type expression:

This solution depends on 8 N parameters such as $\mathrm{c}_{\mathrm{a}} / \mathrm{c}_{0}$ (or c_{a} for $\left.c_{0}=0\right), x_{0 i}^{a}, m^{a}$, and $3 N$ "angles" which parameterize the vectors n_{μ}^{a}. There is also a set of discrete parameters, $\epsilon^{a}= \pm 1$.

The analytical investigation of the general solution is extremely complicated; the computer analysis of the simplest "head-on" collision ($\mathrm{N}=2, \quad \mathrm{n}_{0}^{1}=\mathrm{n}_{0}^{2}, \quad \mathrm{n}_{\mathrm{i}}^{1}=-\mathrm{n}_{\mathrm{i}}^{2}, \mathrm{x}_{0}^{1}=-\mathrm{x}_{0}^{2}$, $\mathrm{m}^{1}=\mathrm{m}^{2}, c_{0}=0, c_{1}=c_{2}$) gives a picture which is rather far from the standard one for two-dimensional elastic scattering (and is essentially distinct for $\epsilon^{1}=\epsilon^{2}$ and $\epsilon^{2}=-\epsilon^{2}$). The detailed analysis will be published elsewhere.

The author is grateful to Prof.V.I.Ogievetsky for useful discussion and to V.E.Kovtum for the help in the computer analysis.

REFERENCES

1. t'Hooft G. - PR, 1976, D14, p. 3432.
2. Wu T.T., Yang C.N. - PR, 1975, D13, p. 3233.
3. Prasad M.K. - Physica, 1980, 1D, p.167.
4. Hsu J.P., Mac E. - J.Math.Phys., 1977, 18, p. 100.

Receivea Dy Fublishing Department on December 12, 1989.

Гетманов Б.С.

E5-89-826
Решения N -монополь-солитонного типа уравнений
самодуальности в пространстве Минковского
Предложен аппарат для представления анзаца Ву-Янга, тензора Хуфта и сферически-симметричных функций в ковариантной форме /в произвольной системе отсчета/. С помощью этого аппарата получены в ковариантной форме монопольные решения /в том числе N -солитонного типа/ уравнений самодуальности в пространстве Минковского.

Работа выполнена в Лаборатории вычислительной техники и автоматизации Оияи.

Препринт Объединенного института ядерных исследований. Дубна 1989

Getmanov B.S.
E5-89-826
N-Monopole-Soliton-Type Solutions
of the Self-Dual Equations for an SU(2)
Gauge Theory in Minkowski Space-Time
The techniques for representation of Wu-Yang ansatz, t'Hooft tensor, and spherical-symmetric functions in a co variant form (for an arbitrary frame) is introduced. Monopole solutions (including N -soliton-type solutions) of the self-dual equations in Minkowski space-time are constructed in a covariant form.

The investigation has been performed at the Laboratory of Computing Techniques and Automation, JINR.

