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1. Introduction 

Small-amplitude breathers of the easy-axis ferromagnet and the lon 
Josephson junction placed in the h.f. alternating field, may be describe 
within the frame of the damped driven NLS equation: 

a 

The same equation arises in various roblems of nonlinear optics and 
plasma physics. The wide spectrum o P applications stimulated intensive 
mathematical studies of eq.(l) ,  mainly of its soliton solutions (see [1,2] 
and refs. therein). 

Most of these studies were devoted to the evolution of the initial con- 
dition in the form of the "pure" ( 7 = F = 0) NLS soliton. Speaking 
otherwise, the formulation of problem was as what hap ens to the unper- P t.urbed NLS soliton under the action of pumping and riction. As a rule, 
t,he r.h.s. of (1) was considered as a small perturbation, and the treat- 
ment was reduced to the analysis of the adiabatic change of the soliton's 
parameters. 

Here we consider eq.(l)  from the different point of view. Namely, 
we address ourselves to a question of what are the basic nonlinear con- 
st.ituents (i.e., asymptotic states ) of this equation. In other words, it 
is the exact soliton solutions of the full eq.(l)  that will be the object of 
our interest here. To discriminate between the effects of pum ing and 

7 = 0. 
P friction, at the first stage we confine ourselves to the damping- ree case, 

2. Solitons and the associated linearized system 

The transformation $(x, t )  = 4(x,t)eint takes eq.( l )  to 

Given a solution d(x , t ) ,  $(x, t )  = k4(kx, k2t) is also a solution, this time 
corresponding to = k3F and h = k2n. Consequently, any solution to 
eq. (2) is characterized, up to a simple scaling, by a single combination 
h = ~n-312.  

It is not difficult to find two different soliton solutions of eq.(2): 

2 sinh2 a 
4 * ( ~ , t )  = 4 * ( ~ )  = 40 1 f cosh a cosh (Ax) 



Here a is the monotonously decreasing function of h: 

A/2  is the "area" of both 4+ and 4- solitons : 

{&x) - &)dx = 2 sinh a40, (5) 

and 4o is their asymptotics: 

Without loss of generality we shall accept that  F is > 0 and therefore 4o 
is > 0. We also remark that  from the very beginning 0 was chosen to 
he > 0 since otherwise the homogeneous solution 4 ( x , t )  = 40 would be 
unstable. 

To examine the stability of the solitons, we write 4 (z ,  t )  = &(x)  + 
Sr$(x, t )  and linearize eq.(2) w.r.t. small perturbation 6 4  . Denoting 
f = Re64 and g = Im64 ,  we have 

where 4 = &(x) .  The following properties of Lo and L1 appear to be 
rather essential. 

A. L1 has a single negative eigenvalue, with the corresponding eigen- 
function being nodeless. 

The proof is standard. 
B. When 4 = ++ the operator Lo is positive definite. 
Proof. I t  is straightforward to  observe that  

where Lo Lo - 40(4 - g50). For 4 - $0 is nodeless, eq.(8) implies that  
t,he minimum eigenvalue of Lo is zero. And since 40(4+ - 40) is > 0 we 
have that  the minimum eigenvalue of the operator Lo = Lo + 40(4+ - 40)  
is positive. 

C .  When 4 = 4-, the operator Lo has a single negative eigenvalue 
and no zero eigenvalues. 

Proof. Denote the minimal eigenvalue through po. It is useful to 
fix, without loss of generality, R = 1. Then po = p O ( F ) .  When F = 0, 
110 = 0 holds. If F becomes small but finite, then the perturbation 

theory yields that  /lo becomes < 0. It is straightforward then to  verify 
t hat /lo( F) can never vanish so it should stay negative for all F ' s .  Lastly, 
the assumption that  Lo has another non-positive eigenvalue contradicts 
the fact that  L1, L1 = Lo - 44' has only one negative eigenvalue. 

3. Stability 

The analysis of the stability of 4+ is elementary. Since Lo is positive 
definite we can pass from (6), (7)  to  

Equations of this type were ~~na lysed  extensively in literature (see e.g. 
[3]-[6]). An immediate consequence of that L1 has a negative eigenvalue, 
is instability of the zero solution of (9) and thereby of the soliton 4 + .  

The situation with 4- is less trivial, however. In this case Lo is also 
invertible, but in equation (9) both L1 and L i l  operators have negative 
eigenvalues so that  all standard stability criteria [3] -161 are inapplicable. 

Assuming that  

with X real, eqs.(6,7) reduce to 

Log = X f ,  Ll f = -Xg. (11) 

It is well known that  when F = 0 the eigenvalue problem (11) has a 
doubly degenerate eigenvalue Xo = X1 = 0 corresponding to  one even and 
one odd eigenfunction. When F is deviated from zero, the degeneracy 
breaks down. The odd eigenfunction continues to  correspond t o  = 0 
whereas the even one pertains now to Xo imaginary. Since there 1s no 
other eigenvalues for small F, this fact implies that  solutions of the form 
(10) do not exist in the mentioned limit. Surprisingly, this property 
remains valid in the general case. 

Proposition. Eqs. (11) do not have real eigenvalues X . 
Proof. Rewrite (11) as 

and consider an  auxiliary problem 
e 



with 6 2 0, y > 0. Suppose eq.(13) has an eigenvalue - A 2  = -A2(6, y ) .  
Then the necessary condition that  this (-A2) be simultaneously an eigen- 
value for eq.(12) is clearly 

Eigenvalues of eq. (13) exist for any 6 > 0 and y >I  I where po is the 
negative eigenvalue of Lo. The  minimum eigenvalue, -A; can be found 

The  corresponding eigenfunction is obviously nodeless. There is also an 
eigenvalue -A: pertaining to the  one-node eigenfunction. It is given by 

2 - min . < t I L l - 6 I t >  
o d d ~ < ( I  L i l + y I ( > '  

By properly choosing test functions it can be demonstrated that  -A;(&, y )  < 
-6/y,  -At(6, y )  2 -617, with the equality being attained only when 
6 = 0. Thus for 6 > O we have 

Consequently, eq. (14) does not have solutions and nonzero eigenvalues 
of (12) do not exist. Q.E.D. 

So, if unstable perturbations exist then they have a different form 
from (10). A more general possibility is 

with f R ,  f I ,gR, 91, AR, XI  real. Feeding (18) into (6,7) and making corn- 
I~inations f = fR + i fI ,  g = g~ + igl, A = A R  + iAI, we are led to  the  
eigenvalue problem (11) again, but this time with f , g ,  and A complex. 

An eigenvalue A of eq. (11) satisfies A = ~ ~ 1 ,  with A as in (5) and 
i depending solely on a eq.(4). The numerical analysis of the set (11) - 
revealed that  the non-vanishing eigenvalue A = A(a) exists for any a . - 
There is a certain a = a, such that  A is pure imaginary for a > a, and 

li 
acquires a positive real part for a < a, (Fig . l ) .  Consequently, we may 
conclude that  the 4- soliton is stable for a > a,  and unstable otherwise, 

l 

or ,  equivalently, stable for h less than some h, and unstable for h > h,. 
Numerically, a,  = 2.5327, and the corresponding h is given by eq.(4): 
11, = 0.07749. 

Fig. 1. The real and. imaginary-part 
of the eigenvalz~e of eq. (11): A = A 2 i  = A 2 ( i R  + i i l )  

4. Numerical simulation 

So,we have shown that  in the region h < h, the  basic nonlinear con- 
st,ituent is the soliton 4-. Accordingly, the question arises of what are 
the  asymptotic states for h > h,. T h e  fact that  the  unstable eigenvalue 
possesses an  ima inary part there indicates that  the stable configuration 
should be time- d ependent. We have verified this hypothesis in the  di- 
rect numerical simulation, and here are the  preliminary results of these 
st,udies. 

In the  region h > h, (i.e., a < a, ) we used 4- as initial condition 
and the observed evolution was the same for each h. The  soliton was 
destroyed, with energy being radiated away in the form of hump-like 
solitary waves. (These waves could be taken for moving solitons unless 
they were gradually being dispersed). Instead of the  initial static con- 
figuration a pulsating localized structure ( a kind of a breather ) was 



appearing a t  the origin. The period of pulsations was constant with high 
accuracy while the amplitude of the breather was not seen to  decrease. 
Consequently, this structure is a natural candidate for the role of the 
asymptotic state for large values of the control parameter h. 
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