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1. Introduction 

It is a distinguishing feature of classical problems that they can 

be a source of inspiration for many decades. In this note, we are 

going to treat such a problem, namely the existence of a new 

solution to the Helmholz equation in a particular spatial region 

and to discuss briefly its physical implications. 

We dedicate this study to Professor Vaclav Votruba who ie 

becoming octogenarian, though it is hard to believe that, as a 

token of our gratitude the senior among the authors is his 

student while the other two may be regarded as the second 

generation of his disciples. Prof. Votruba accomplished much during 

his career that started at the old times when nobody challenged 

the simple truth that a university professor should at the first 

place educate a new generation of scholars by reading lectures 

(maintaining a natural feedback) and pushing (by his own hands) 

the science forward in his field. Since we are ·firmly convinced 

that these virtues are essential for further development of Czech 

theoretical physics, we are grateful to Prof. Votruba also for 

demonstrating them permanently. 

The problem we are going to discuss concerns classical 

electrodynamics lectured by Prof. Votruba for many years ( 1,2] as 

well as quantum mechanics which he lectured with the same passion 

and skill but never found time to turn his lectures into a 

textbook. On the classical side, it is related to the theory .of 

waveguides, the quantum aapect of the problem concerns recent. 

experiments with tiny structures of a pure semiconducto~ material 

which might be called q~antum wavesuides. 

In a recent series of papers [3-5] we have proven that the 
• 

Laplace operator with Dirichlet boundary conditions on a curved 

planar strip of a width d can have an eigenfunction (bound 

state) with the eigenvalue below the threshold of the continuous 

spectrum, provided d is small enough, the strip is 

asymptoti,cally straight and its boundary is infinitely smooth. 

While unexpected and important, this result has some drawbacks. In 

particular, its possible physical implications depend crucially on 
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the distance between the bound-state energy and the continuous­

spectrum threshold about which we have no information. Except of 

that, the smoothness requirement is in part technical and one 

would like to know whether it is possible to get rid of it. 

With this aim we treat here a solvable model concerning the 

Laplace operator on an L-shaped strip ; we shall show that the 

bound state exists in this case and corresponds to the eigenvalue 

"o 0.93 ;\1 ' ( 1. 1) 

where A1 is the continuous-spectrum threshold, i.e., the first­

transversal-mode energy in the strip. 

2. Existence Of the ground-state solution 

For definiteness we shall speak about a quantum particle living on 

an L-shaped strip n (cf.Fig.l) of a width d it is not 

difficult to translate the following argument into classical 

terms. The state Hilbert space is therefore fit::: L2 (0) with the 

usual Lebesgue measure on o . The particle may be confined in 0, 

e.g., by infinitely high potential walls to which the Dirichlet 

boundary conditions on the boundary 80 correspond. 

Mathematically speaking, it means to choose 

-~ ( 2. 1) 

as a Hamiltonian of the problem, where the Dirichlet Laplacian on 

the rhs is the self-adjoint operator associated with the quadratic 

form 

(2.2) 

with the domain C~(O) since has the segment 
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property, the set of all VJ E 9e that are infinitely smooth on the 

interior of 0 and vanish on its boundary forms a core of -~~ 
c£.[6], Sec.XIII.15. In (2.1} and further on, we set h 2;zm::: 

for simplicity. 

Let us start from some general observations. The only 

dist-inguished length in our problem is the strip width d and 

therefore the results must be scaled with respect to this length. 

In particular, if there is a bound state of below the 

continuous-spectrum threshold, its 

where ~ 0 is a number from [0,1) 

of the lowest transversal mode 

energy must equal A
0 

::: ~ 0A 1 
and A

1 
= n 2;ct2 is the energy 

it is not difficult to check, 

e.g. , by Dirichlet-Neum'-tnn bracketing [ 6), that the continuous 

spectrum c-f H0 starts just at this value. 

The symmetry of n implies that every bound state of H0 is 

either symmetric or antisymmetric with respect to the axis x=y 

Using the bracketing technique again (on the diagonal of the 

subdomain III and on oome diotant cute on the "arms") we see that 

the ground state, provided it exists, is symmetric with respect to 

the symmetry axis of 0 and non-degenerated. 

In order to find equations for bound states, we decompose 

first the wave function on both arms (subdomains !,II indicated on 

Fig.l) of 0 with respect to the transversal modes 
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where 

m 
E r.(y)¢j(x) , w11 Cx,y) 

J=l J 

m 

l: tj(X)¢j(y) 
j=1 

(2.3) 

(2.4) 

wj = jn refer to the transversal-mode and the frequencies 

energies Xj = w~/dz 
equation 

j e tN • Substituting this ansat.z into the 

(2.5) 

with ' "'1 for some ' E (0' 1) ' we get 

m qj(l-y/d) 
¥'r(x,y) = I: (-1)j+1 rj e ¢j (x) 

J=1 
(2.6a) 

m qj ( 1-x/d) 
"~'n<x,y) = I: (-1)j+l tj e ¢/Y) 

J=1 
(2.6b) 

where qj = n(j 2-x) l/Z , j e IH , while in the subdomain Ill the 

wavefunction can be written as 

"'tn<x,y) = t (-l)j+l 

j=1 
(2.6c) 

with aj(x) = sh(qjx/d)/sh qj .Of course, to justify the term-by­

term differentiation of the eums one has to know more about the 

coefficients rj,tj . 

The wavefunction (2.6) is symmetric or antieymmetric iff 

rJ=tJ or rj=-tj , respectively, holds for all J . With the 

above-mentioned araument in mind, we restrict our attention to the 

~ymmetric case. The norm of ~ is then expressed in terms of the 

coefficients 
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+ u )2 

or 
""'" 2 

2H"'rH2 

d 
00 

E 
j:::l 

00 
kj 

qj 1 ) '2 
--2- Jr.J + 

sh q J 
j 

E 
(k2+j2-x)2 

rkrj 
j,k=l 

(2.7) 

+ H"'rul 2
 where 

00 d 2 
E 20J lrJI 

j=l 

If IIV'K < !XI the same is true for U'~'r D so the sequence r = {r j} 

belongs to the Hilbert space r,j-l) with the weighted norm BrJ 2 

:= I:j J- 1 !rjj 2 Suppose, on the contrary, that r E r(j-l) so 

K¥~1 11 < oo The other part of the wavefunction can be written as 

V'III = ~ + Rn , where 

and R 

Schwarz 

4Jnl2 ' 

n(x,y) = j+l I: (-1) rj~j(y)¢j(x) 
J=l 

00 

is the reflection operator, (iW-){x,y) = \"(y,x) . The 

inequality then gives IY'rnt 2 = 2Jnl2 + 2 Re(n,Rn) s 

and at the same time, 

1 ) . 2 --- Jr I 
h 2 . j 

• .j 
< 00 ' 

so we get l¥'i < oo . We have proven therefore that a symmetric 

wavefunction VI belongs to ~ iff the corresponding sequence of 

coefficients r E r(j-l) . 

The relations (2.6) show that "' is continuous throughout 

the region 0. if only the coefficients r j decrease with j 

fast enough. If VI should solve the equation (2.5) ita normal 

derivative must be continuous on the borderlines between the 

subdomains !,III and II,III too. This requirement yields formally 

the equation 
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r ::: Cr , (2.8a) 

where c (Cjk) is a matrix operator, 

(2.8b) 

At thiB moment it is necesBary to point out the difference 

between the quantum and classical caseB ; though the equation is 

the same, we look for its solution in different classes of 

functiort. In the classical case, the requirement 

finiteness means that the sequence r should fulfil 

< oo (7], i.e., it should belong te> the space ?(j) 

den~e subspace in .c2(j-l) Hence it is useful to 

of energy 
2 

'J Jlrjl ' 
which is a 

solve the 

quantum problem first and then to look whether the solution obeys 

the classical restriction. 

There is one more subtlety concerning the classical form of 

the eq.(2.8). In the waveguide literature such equations are 

solved numerically approximating C by a sequence of truncated 

matrices. Such a procedure is correct provided the operator 

compact on l 2 (j) and this claim actually appeared 

C io 

[8]. 

Unfortunately, it is false as we shall demonstrate in a while. To 

make the argument easier, we pass to an operator on ? using the 

natural unitary map between the two spaces. Another simplification 

is possible due to the fact that compactnese: is not affected by 

multiplication by a bounded operator. Hence it is only necessary 

to prove the following assertion. 

Proposition 
·I'Jk/(J2+k2) 

The matrix operator 

on the Hilbert space r 
A with 

is non-compact. 

Proof Denote by P n the projection on the subspace in 

spanned by the first n basis vectors. We apply the following 

criterion [9] : A is compact iff limn~~ lA - PnAI ::: 0 . Our aim 

is to show that there is c > 0 such that to each n e ~ one can 

find x E ~ for which O<A - PnA)xA 2 ~ clxl 2 . We set x = {xj}, 

xj ::: j-(l+e)/Z , with a number c e (0,1) to be determined later. 
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The following estimates hold : 

00 
j-{l+c) E 

j::n 

lk~1 I 
00 k -&/2 

Ajkxk ~ -,IJ E 
j2+k2 

> 
k::l 

00 

~ 
j-(l+c)/2 

Jl/j 

t-C/2 

~ 
dt 

for some positive c 1 . Then we have 

00 
& 2 
2 cl E 

j=n+l 

-,IJ 

~ 

I 

l+c :S 2 
c c 

-c 
n 

c 

00 x-cj2 

j2+x2 
dx 1 

.-(l+c)/2 
C!J 

~ c(n+l)-(l+c) 

with 1 2 c . - 2 c 1 > 0 Since (n+l)-l/n - 1 as n - oo , it is 

sufficient to choose & = 1/n I 

Hence one must be careful when solving numerically the 

eq. (2.8). It is, of course, possible to sweep the problem under 

the rug and to speak about the "relative convergence" Phenomenon 

[10) trying to pick up a .. right .. approximating sequence, but it is 

clearly a not very honest way. Instead, we are going to 

demonstrate that ( 2. 8) can be reformulated into a properly posed 

problem. 

To begin with, we impose on solution of the system (2.8a) a 

slightly stronger requirement than r E l 2 (J- 1 ) , namely we demand 

with some positive s 

a={a.}efXi 
J 

to be determined later. In fact, we have 
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excluded up to now only those sequences with a 

slower than power-like decrease. Now we put the first equation of 

the system (2.8a) aside and solve the remaining ones ; since the 

system is linear, we may set 

( 2. 10) 

Substituting (2.9) and (2.10) into (2.8a), we get 

a = b + Ka , (2 .11a) 

where {aj}7=2 io the a ought while b 
., 

a = sequence, {bj}J=2 

and K 
., 

= (Kjklj,k=2 are given by 

! [ 1 
-2n(j2-H)1/2 ) 

e+l 
bj = rr - e 

<J2-•l 112 (j 2+1-H) 
(2 .llb} 

.(2.11c) 

Next one has to estimate the norm of the operator 1t. in the 

Banach space fO ; if IKI < 1 , then there is (1-K)- 1 = I + K + 

K2 + . . . and the equation (2.11a) has a unique solution, namely 

a = (I-K)-lb . (2.12) 

In the followinc estimates, one has to assume 1 ~ s < 2 . In that 

case, we have 

8 

., 
E 
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dy 

Since ~ e (0,1) and j ~ 2 , it follows 

~KI s ~ ( ~ ) (s+l)/2 dy -. N( s) _ (2.13) 

We have N(l) = 2/3 so HK~ < 1 for s=l Moreover, the last 

estimate is continuous in s , and therefore there is 6 > 0 such 

that N( 1+6) < 1 . In this way, we have proven that the system 

(2 .11) has 
fulfilling 

a unique solution 

the condition ( 2. 9) 

the form (2.12) and decreases as 

within the 

with s=l 
O(j-(1+6)) 

clase of sequences 

This aolution is of 

for some 6 > 0 . 

It remains to solve the first equation of the system 

Substituting from {2.9) and (2.10), we get 

(2 .8). 

1 [ 
_1 + 
2-• 

00 

1: 
J=2 

] " F(•) ( 2- 14) 

We shall 

[0,1] and 

show that F 
F(O) < 1 < E"(l) 

such that F(x0 ) = 1 . 

is a continuous increasing function on 
so there is a unique point ~ 0 E (0,1) 

First of all, we notice that x ~-----+ b(x) is continuous in 

the f»-norm and x 1-+ K(x) is continuous in the corresponding 

operator norm. The functions bJ(.) have bounded derivatives and 
bj {:N) -to 0 as j -+Q) uniformly with respect to x so there is 

d1 independent of x such that Rb<:~e 1 )-b(x2 ))~ s d 1 1•1-•2 1 for 
any x

1
,x

2 
E (0,1] ; in a similar way one can check IK<• 1 )-K(x2 JI 

< d 2 [•c•2 [ for some d2 . It follows readily from (2 .. 12) that 

• ......,.. a(•) is continuous in ttie .tO-topology. Moreover, since all 

the bj(.) and Kjk(.) are positive increasing functions, aj(.) 

is aleo positive and increasina- for every j = 2.3 .... , and the 

same is true for the function F . Using the estimates 
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we get 

F(O) 

while 

m 

2; { 1-<0:-2n) [ 1 + E 
j:::2 

12 
5n 

sup 
j2:2 

- 1 )] = 

00 

F(l J ::: 2 ( 1 + E 
j:::2 

1 
2n 

0.237. 

> 2 > 1 

< 1 ' 

12 
00 

5n E 
j=2 

Concluding the argument, we have shown that there is a unique 

symmetric solution ~ to the eq.(2.5) in the class (2.9) with 

s=l and moreover, that the coefficients decrease as 
O(j-( 1+6)) for some 6 0 i.e., obeys the classical 

restriction mentioned above. 

3. The numerical solution 

The eq.(2.ll) can be solved by iteration. We set a(O) ::: b and 

a (j·H) :: b + Ka ( j) , the number of 1 terations will be denoted as 

m The numerical solution requires, of course, to truncate the 

system. Let 

the 

for 

P = Pn be the projection introduced in the previous 
one can define ;coJ = Pb and ~U+l) Pb + 

j=O,l, ... ,m Since ~PKP~:!: ~Kil < 1 , the sequence 

section, 
PKPa-(j) 

{;(m)}oo_ 
-.m-0 

+ PKPa . 

converges to a unique solution to the equation a = Pb 

One has to estimate the error due to the truncation, in 

particular, the quantities wj .- HPa- ;(j)noo We have 
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Pa - ;<J+l) PK (a- ;(j)) = PK (Pa- ;(j)} + PK(I-P)a (3.1) 

Next we use the fact that O(j-( 1+6 )) , i.e., that 

.-6 
0 < aj < CJ (3.2) 

for some 6 > 0 and all j . For 2 $ j 5 n we get 

"' J 
n/j 

.2 

dx 
2+6 

X 

00 

E 1 

k=n+1 

for appropriately chosen c
0

,c1 , and therefor_e iPK(I-P)al
00 

5 
-6 

c 1n for some positive c 1 . The relation (3.1} then yields 
-6 

wj+ 1 $ RKiwj + c 1n and by induction we obtain 

(3.3) 

Since YKI 5 2/3 < 1 , the sought solution a is approximated by 

;<m) in the sense that 

lim 
m,n .. oo 

(3.4) 

More explicitly, choosing m,n large enough, the difference aj -

;<m) can be made smaller than a given e for j = 1, ... ,n due 

to (3.3). while for j = n+l,n+2, ... 

(3.2) and the fact that ;<m) = o . 

it will be small due to 

Furthermore. approximating the function F by 
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F(x) . -
-2n~ 

1 - e 

we get the estimate 

The inequality {3.3) yields 

[ 
1 + = 

oo "'(m) 

j~+l-x ] 
E 

J=2 

where c 4 ,c5 ,c6 are some positive constants. 

( 3. 5) 

For numerical solution, we have gone with the number of 

iterations up to n = ZO and with the order of truncation up to 

m = 100 ; it appears that both {am} and the function F are 

very well stabilized at these values. In order to illustrate this, 

we present in the following table the values of F(0.93) 

calculated for various n and m 

n 
m 10 20 40 70 100 

2 .992 .995 .995 .99£ .996 

3 .996 1.000 1.,001 1 .001 1. 001 

5 .998 1 .002 1.003 1.004 1 .004 

10 .998 1. 002 1.004 1.004 1 .004 

20 .996 1 .002 1.004 1.004 1 .004 

The function F is plotted on Fig.2 . The eq.(2.14) is then solved 

by 

•
0 

= 0.9291. (3.6) 
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which yields the result expressed by the relation (1.1). Using the 

calculated coefficients aj together with (2.6) and (2.9), one 

can find also the eigenfunction corresponding to this eigenvalue. 

In particular, one can calculate the probability density in such a 

state ; it is plotted on Fig.3 

4. Concluding remarks 

The states discussed here can be manifested physically in various 

ways. The quantum mechanical applications are particularly 

intere6ting. One of them concerns the behaviour of electrons in 

ultrathin layer6 of a pure 6emiconductor material over a sharply 

edged substrate. One can 6ee easilY that the electrons (which 

move as free particles of 6ome effective mas6 in the crystallic 

lattice) with energy below the first transversal mode remain 

localized near the edge 1 t susge6t6 a P06Bible existence of 

edee-conjined currents [4]. Such an effect has not been. observed 

2.50 

2.00 

1.00 ------------

0.50 

Fig.2, The function F 
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up to now, but there is a recent experimental evidence for similar 

currents in relief-surface semiconductor layers [11). 

Another indirect indication for existence o-f curvature­

related bound states comes from the experiments with the so-called 

quantum wires [12). One has to recall that in a bent finite-length 

wire (strip, tube) tht: bound state turns into a resonance ; one 

expects the transmission coefficient to vary strongly around the 

infinite-letigth bound-state energy. Since the transmission 

coefficient is related to conductance through the Landauer formula 

[ 13], one expects that bending of a wire can affect its 

conductance. This is precisely one of the results of a recent 

experiment by Tjmp et al.(14) with many-probe junctions they 

have shown that the resistance between a pair of probes depends on 

the number of right-angle turns the electron path contains. 

Fig. 3. The probability density of the bound state 
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From the mathematical point of view there are many 
interesting problems related to the subject of this paper 

cf. [ 15]. An immediate generalization worth of attention concerns 
the case of a strip broken at an arbitrary angle a e (o,n) ; its 
solution could help to answer the question whether the critical 
width below which the curvature-related bound states appear is 
finite or not. 
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