


1. Introduction

It is a distinguishing feature of classical problems that they can
he a source of ianspiration for many decades. In this note, we are
going to treat such a problem, namely the existence of a new
solution to the Helmholz equation in a particular spatial region
and to discuss briefly its physical implications.

We dedicate this atudy to Professor Vaclav Votruba who ie
becoming occtogenarian, though it ie hard to believe that, as a
token of our gratitude ; the senior among the authors is his
student while the other two may be regarded as the second
generation of his disciples. Prof.Votruba accomplished much durlng
his career that started at the ¢ld times when nobody challenged
the simple truth that a univereslty professor should at the firet
rlace educate a new generation of scholars by reading lectures
(maintaining a natural feedback3 and pushing {(by his own hande)
the sclience forward in his field. Since we are ‘firmly convinced
that these virtues are essential for further development of Czech
theoretical physics, we are grateful to Prof_ Votruba also for
demonstrating them permanently. ,

The problem we are goling to discues concerns classical
electrodynamlcs lectured by Prof.Votruba for many years [1,2] as
well as quantum mechanice which he lectured with the same passion
and skill but never found time to turn hie lectures into a
textbook. Un the classical side, it 1e related to the theory of
waveguides, the quantum aspect of .the rroblem concerns recenkt
experiments with tiny structures of a pure sgemiconductor materlal
which might be called guantum waveguides,

In & recent series of papers [3-5] we have proyen that the
Laplace opsrator with Dirichlet boundary conditions on a curved
planar strip of a width d can have an eigenfunction (bound
state) with the elgenvalue below the threshold of the continuwoue
spectrum, provided d is small enough, the strip is
asynptotically stralght =snd ite boundary is infinitely emooth.
While unexpected and important, thie result has some drawbacks. In

particular, lts rossible physical implicatlions depend cruclally on



the diestance between the bound-state energy and the continuous-
spectrum threshold about which we have no information. Except of

that, the smeoothness requirement is in pért technical and one
would like to know whether it is possible to get rid of it.

With this aim we treat here a solvable model concerning the
Laplace operator on an L-shaped strip ; we shall show that the
bound state exists in this caese and corresponds t¢ the eigenvalue

AL o= 0,93 M

0 (1.1)

]

where kl is the continuous-spectrum threshold, i.e., the first-

tranaversal-mode energdy in the strip.

?2. Exigtence &f the ground-state solution

For definiteness we shall speak about & guantum particle living on
an L-shaped strip Q (¢f . Fig.1) of a width d ; it is not
difficult to translate the followlng argument inte claesical
terms. The state Hilbert space is therefore & = thﬂ) with the
usual Lebesgue measure on £ . The particle may be confined in O,
¢.g8., by infinitely high potential walle to which the Dirichlet
boundary conditions on the boundary a1 correspond.
Mathematically speaking. it means to choose

H, = - bD (2.1)

as a Hamiltonian of the problem, where the Dirichlet Laplacian on
the rhs is the self-adjoint cperator associated with the quadratic
form

ho ¢ ho(¥) = I{} (9|2 ax? (2.2)
with the domain Q(—Ag) = C?(QJ ; since Q has the segment
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property, the set of all w = % that are infinitely smooth on the
interior of 0 and vanish on its boundary forms a core of —Ag -
cf.[6], Sec.XIIL.15. In (2.1} and further on, we set h/2m = 1
for simplicity.

Let wus start from some general observations. The only
dietinguished length in our problem is the strip width 4 , and
therefore the resulta must be scaled with respect to this length.
In éarticular, if there 1 a bound state of H, below the
continuous-spectrum threshold, its energy must egqual AO = “Okl .
where 0 is a number from [0,1) and Rl = ﬂz/d2 is the energy
of the lowest traneversal mode ; it is not difficult te check,
&.g,, by Dirichlet-Neumsnn bracketing [61, that the continuous
spectrum of H, starte juel at this value.

The symmetry of (1 implies that every bcund state of Hn is
either symmetric or antisymmetric with respect to the axls x=y
Using the bracketing techrigue smgaln {(on the diagonal of the
subdomaln III and on csome distant cuts on the "srme”) we see that
the ground etate, provided it existe, is eymmetric with respect to
the symmetry axis of 1 and non-degenerated.

In order to find equations for beound states, we decompose:
first the wave function on both arms (subdomains I,1I indicated on

Fig.1) of £ with respect to the transversal modes



o . @
wI(x,Y) = JElrj(y)¢j(x) . wII(x,v) = J§1t3(x)¢3(Y) s (2.3)

where

1/2
8,(t) = [ z ] ain(w t/d) (2.4)

and the freguencies w, = Jjm refer to the transversal-mode
enargies lj = u?/dz , jJ = N ,Substituting this ansatz into the
equation

Hnrp' = Ay {2.5)

with * = ukl for ecme X e (0,1) , we get

oo 341 QJ(I_Y/d)
wiix,¥y) = E (-1) rye #y(x) (2.6a)
J=1
@ q,{1-x/4)
vioy) = E DI e e 8,(v) . (2.6b)
=1
wh _ 2_..,1/2
ere q4 = m{3%-2) , J e N, while in the subdomain IIT the

wavefunction ¢an be written as

o
- _qyd+1
VIII(XAY) = J!=:1( 1) Erjaj(Y)¢J(x) + tjaj(x)¢3(y)] {(2.6c)

with ad(x) = sh(qjx/d)/ah qj .0f course, to juatify the term-by-
term differentiation of the sums one has to Xnow mere about the
coafflclients rj,t

The wavefunction (2.6) is symmetric or antisymmetric iff
rjztj or rjz-tJ , reapectively, holds for all J . With the
above-mentioned argument in mind, we restrict our attention to the
pymmetric case. The norm of y 1ie then expreessed in terms of the
coefficlients rJ as
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T e (ke K
or fw]? = 2wy + fupd? , where

2 - d 2

T L

J=1 2c|J 3

If |[wf < » the same is true for |wy|] so the sequence r = {rj}
belonge to the Hilbert space tz(j_l) with the weighted norm ]lrﬂz

1= }:j j_lirjlz . Suppoee, on the contrary, that r tz(j_l) so
HwI | < ® . The other part of the wavefunction can be written as
WIII = v + Rn , where '
oo
nx,y) = E 13 rasne,x
i=1
and R is the reflection operator, (‘-Rw-)(x.y) = w(v,x} . The

Schwarz inequality then gives IVIIIiz = 2|n|2 + 2 Re(n,Bn) =
4]1}'2 , and at the same time,

2 _ % g oty 11 2
LI | (it o2 <o,
551 2 [ qy ahij ] 3

a0 we get Jy¥| < ®» . We have proven therefore that a symmetrie
wavefunction w belongs to & iff the corresponding sequence of
coefficients r = £2(j 1)

The relations (2.8) show that w 1is continuocus throughout
the ragj:on < if only the ccefficients L decrease with j
fast enough. If w should solve the eguation (2.5) its normal
derivative must be continuous on the borderlines between the
subdomains I,III and II,III too. Thie regquirement yielde formally
the equation



r - Cr , {(2.8a)

where C = (Cjk) is a matrix operator,

2 ik

) (52— 12 5%k o)

x T (2.8b)

oy = L {1 -ttt Y

At thie moment it ie necessary to point out the difference
between the quantum and claseical cases ; though the eguation 1is
the same, we look for 1ite sclutien in different classes of
function. In +the claseical case, the requirement of energy
finiteness means that the sequence r should fulfil zy jlrjlz <
< w {[7], i.e., it should belong to the space Jz(j) which is a
denqe subspace in tz(j_l) . Hence it is useful to solve the
guantum problem first and then to loock whether the solution obeys
the classical restriction.

There is one more gsubtlety concerning the classical form of
the eq.{2.8). In the waveguide 1literature such equations are
solved numerically approximating € by & sequence of truncated
matrices. Such a procedure is correct provided the operator C ia
compact on Iz(j) , and this claim actually appeared {[8].
Unfortunately, it is false as we shall demonatrate in a while. To
make the argument easier, we pass to an operator on Jz using the
natural unitary mep between the two spaces. Another eimplification
ig poesible due to the fact that compactness le not affected by
miltiplication by & bounded cperator. Hence it is only necessary
to prove the feollowlng assertion.

Proposition : The matrix operator A = (Ajk) with Ajk =
Z <
Yik/(j +k2) on the Hilberp space £2 ie non~compact.

Proof : Denote by Pn the projection on the subsepace in £2
spanned by the first n basis vectors. We apply the following
criterion [9] : A is compact iff 1imn4m 1a - PnA] =0 . Qur aim
ie to show that there is ¢ > 0 =such that to each n € N one can

find x & for which [(& - Pa)x|% 2 ofx]? . We set x = {x;},

_ .-(1+s)/2
J"J

x with a number & € (0,1) to be determined later.



The following estimates hold

2 2 - o
x)? = £ 37 g g g (Iedg o B2e o 2
J=1 1 & £

14

J=n n
R
X = Y3 > o3 dx =
k=1 JEE k=1 §o+k° 1 §%4xt
- j—(1+£)/2 o t_S/z g = j_(1+£)/2
1/ 1+t? i

for some poslitive 2y - Then we have

(2]
ﬂxﬂ_ZH(A - PnA)xﬂz x £ c? T jv{1+£) = c(n+1)_(1+£)

Z J=n+l
with o := 2ol > 0 . Stnce (m1)TM® o1 a8 - @, it s
sufficient to choose & = 1/n . B

Hence one must be careful when solving numerically the
eq.(2.8). It ie, of course, possible to ewcep the problem under
the rug =nd Le epeak about the “"relative convergence” phenomench
[10] trying to pick up & “right” approximsting eequence, but 1t is
clearly a not very honest way. Inestesd, we are geoing o
demcnstrate that (2.8) can be reformulated into & properly posed
problem.

To begin with, we impose on solution of the system {(Z.8a) &
slightly stronger requirement than r € Jz(j_l) , namely we demand

r, = 3 "a, , a={aj}ec"° €2.9)

with some positive & te be determined later. In fact, we have



excluded up to now only those sequences r Cz(j_l) with a
slower than power-llke decrease. Now we put the filrst egquation of
the system (Z.8a) aside and sclve the remaining ones ; elnce the
eystem 1 linear, we may set

ry =a; = 1. (2.103

Subetituting (2.9) and (2.10) 1into (Z.8a), we get

a=5b+ Ka , {2.11a)

_ © _ o
where a = {aJ}J=2 ie the sought segquence, while b = {bj}jzz
and K = (KJR)?,kﬂz are given hy
2 1/2 e+l
_ 1 -2n{jv—u) J
b, = = 1 -e (2.11h)
sew ) (32-0) 7% (3241-m)
2 1/2 e+l s5-1
_ 1 “2n(j =) J E
K = = 1 -e .(2.11e)
gl ) PELIS Vi AP 2

Next one has to estimate the norm of the operator X in the
Banach space & ; if JE} < 1 , then there is (I-K)—l = I + K +

Kz + ... and the equation (Z.1la) has a unique solution, namely

a= (I-K) Mo . (2.12)

In the following estimates, one has to assume 1 = a ¢ 2 ., In ihat
case, we have

i

2 1/2 a+l ™ -8
= l - ~2n(j"-n) J k <
]K(xj)l | 5 [ 1-e ] (32_,)1/2 k§2 la X,



(4]

< 1 x 7 let1)/2 dy
sixl, 2 [1-%]) 7 o1
J 2 172 (1+¥y™)y
(J%-u)
Since # e« (0,1} and j = 2 , it follows
(s+1)/2 o
IK} 5é [%] _dgn?_ml_ =: N{s) . (2.13)
0 (l+yT)y

We have N(1) = 2/3 a0 (K| ¢ 1 for szl . Moreover, the last
estimate is continuous in s , and therefore there is8 & > 0 such
that N{1+&) < 1 . In this way, we have proven that the system
(2.11) has a unique solution within the class of sequences
fulfilling the condition (2.9) with 8=1 . This solution is of
the form {(2.12) and decreases as O(:}_(1+é)) for some & > 0

It remains to sclve the first equation of the system (2.8).

Substituting from {(2.9) and (2.10}, we get

-2nvi-= @ a
1= f{l-e L[+ £ i | = rm 2w
n¥i-= J=2 J7+1-»

We ehall show that F 1s a continuous increasing function on
[0,1] and F(D) < 1 < F(1} =80 there is a unigque point ny € (0,1}
such that F(no) =1

First of all, we notice that =2 +— b(x) is continuous in
the tm—norm and 2 +—» K(2) ie continucous in the corresponding
operator norm. The functions bJ(.) have bounded derivatives and
bJ(a) —+ 0 am —o uniformly with respect to » 8o there is
d; independent of = such that ub(ul)-b(nz)lm = d1|u1—x21 for
any %,,%, € [0,1] ; in a similar way one can check IK(ul)-I[(uz)l
< dz[xi—xZ] for eome d2 ., It follows readily from (2.12) that
# s a{x) is continuocus in the Jm—topology. Moreover, since all
the bJ(.) and Kjk(') are positive increaaing functione, 33(‘)
ie alec positive and increasing for every J§ = 2,3,... , and the
same is true for the function F . Uslng the estimates



fal, = f‘_—ﬁm—n)“c—n fbCay ), = 3fblx ], .

< 1 J z
fet0yj = = sup =
o # izp j2+l EiG
we get
@ o
1 on 1 12 -2
F(O) = z= (1-e 27y [ 1+ % 2t ] - [ L+t B ]
B i=2 _]2+ J 2n br i=2
2
<2 [ 1 12 [ - ]] = 0.287... <1,
while

o 72
F(l) = 2 [ 1+ £ i “a. ] > 2> 1
3=2 J
Concluding the argument, we have shown that there ie & unique
symmetric sclution ¥ to the eq.(2.5) in the class (2.9) with
8=1 , and moreover. that the ccefficlents dJdecrease as r‘j =
TR LRS!

restriction mentioned sbove.

for some s > 0, i.e., w obeys the classical

3. The numerical solution

The e€q.(2.11} can be solved by iteration. We setl a(o) =

U341 oy, ga()

b and
the number of ilterations will be denoted as
m . The numerical solution requiree, of course, to truncate the
system. Let P = Pn be the projection introduced %n the previous
gection, the cone c¢an define ;(O} = Pb and A(J+1) = Fb +
PEPa 4) for =0,1,....m . Since [PKP| < JK| < 1 , the sequence
{;(m}l:;O converges to a unigue solution to the equation ; = Pb
+ PEPa

One has tco estimate the error due to the truncation, in

particular, the guantities LPNEE fpa - a(J}ﬁm . He have
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Pa - a8*1 2 pr (o - a3y = PR (Pa - a9y + PRCI-PYa (3.1)
Next we use the fact that rj = O(jﬁ(1+é)) i.e., that
0<a, <cj?® (3.2)

for some & > 0 and all j . For 2 X j = n we get

o
1 c
0 < (PE(I-Pja), < T S S - I
I ni%-1Y? kEaer Peete1 5°
@
—6 .- -
= cOJ —%fg = 6yJn (1+5) = cyn s
n/j x
for appropriately chosen CnrCy and therefore IPK(I—P)aIm =

cln_é for some positive ey - The relation (3.1) then yields
Wipp = ﬂKij + t'.'ln—:S and by induction we obtain

C
n
Wm = "Ku Ho + ‘i-':TKT n . (3.3)

Since |K|j £ 2/3 < 1 , the sought solution a is approximated by
a in the sense that

lin Pa-a®j, =0 . (3.4)

m, n-+o

gore explicitly, chooaing m,n large enough, the dlfterence_ ay -
alm) can be made smaller than a given =£ for J = 1,...,n due
to (3.3}, while for J = n+l,n+2,... it will be small due to
{3.2) and the fact that a‘®) = g

Furthermore, approximating the function F by

11



~ 1 - e—anl—u 1 x ;(m)
F(s) 1=z ——————— [ =t rE — ] {3.5)
LS — * 3=z j2+1—u
we get the estimate
o [+4]

o 2 =2 :
F - F = 2 2 =
R IR -l [ IRl o

-1
2 et 4 ogw
The inequality {(3.3) vields

1 -5

|§(n) - F(=x)| = c4n_ + csﬁKﬂm + oon ,

6

where C4°C5:Cg Bare sone poeitive constante.

For numerical solution, we have gone with the numdber of
iterations up to n = 20 and with the order of truncation up to
m = 100 ; it appears that both {am} and the function F are
very well stabilized at these values. In order to illuetrate thie,
we present in the following table the values of F{0.33)
calculated for various n and m

n
m 10 20 40 10 100
2 | 7 .esz .995 .985 .998 . 998
3 .996 1.000 1.001 1.001 1.001
5 .998 1.002 1.003 1.004  1.004
10 .998 1.002 1.004 1.004 1.004
20 .998 1.002 1.004 1.0604 1.004

The function F is plotted on Fig.2 . The eq.(2.14} is then solved
by

. = 0.9291. .. ’ (3.8)

12



which yields the result expressed by the relation (1.1). Using the
calculated coefficlents aJ together with (2.8} and (2.9), one
can find aleso the elgenfunction ceorresponding to this eigenvalue.
In particular, one can calculate the probabllity density 1in such a
state ; 1t is plotted on Fig.3

4. Concluding remarks

The states diescussed here can be manifeeted phyeically in waricus
ways. The quantum mechanical applicationa are particularly
Interesting. (ne of them concerns the behaviour of electrons in
ultrathin layers of a pure semiconductor material over a sharply
edged substrate. One can see easlly that the electrons (which
move ag free partlicles of some effective mase in the crystallic
lattice) with energy bhelow the firgt transversal mode remain
localized near the edge ; it suggests a poshible existence of
edge—confined currents [4]. Such an effect has not been cbeerved

Fig.2. The function F
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up to now, but there is a recent experimental evidence for similar
currents in relief-surface semiconductor layers [11].

Ancother indirect indication for existence of curvature-
related bound states comes from the experiments with the so-called
quantum wires [12]. Une has to recall that in a bent finite-length
wire (strip, tube) the bound state turns into a rescnance ;one
expects the transmiasion ccefficient to vary strongly around the
infinite-length bound-state energy. S3ince  the transmission
coefficient ie related to conductance through the Landauer formula
f13], one expects that bending of a wire can affect 1Lts
conductance. This is pregisely one of the results of a recent
experiment by Timp et al.f14] with many-probe Junctions ; they
have shown that the resistance between a palr of probes depends on

the number of right-angle turng the electron path contains.

.00 0,11 0.22 8.17 .47 8.54 .65 5,76 0.67 8.9¢ 1,07

Fig. 3, The probability density of the bound state
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From the wpathematical bpoint of view there are many
interesting problems related to the subject of this paper -
ef.[153. An immediate generalization worth of attention concerns
the case of a strip broken at an arbitrary angle o € {o,n) ; its
solution conld help teo ansewer the gquestion whether the critical
wildth below which the curvature-related bound atates appear ie
finite or not. )
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