


Recently, ~ender/l/ succeeded in constructing the first in- 
tegrals of the quantum quartic oscillator in the closed form. 
In the Heisenberg picture, it is even possible to consider a 
general polynomial interaction and to show that the integra- 
tion of the quantum Cauchy problem remains feasible in an iter- 
ative Peano - Baker-type manner /z/. Here, we intend to rest- 
rict our attention to the one-body Harniltonians 

and, within the framework of the more traditional time-indepen- 
dent approach, describe a new type of construction of the cor- 
responding bound states. 

We feel inspired by the enormous popularity of the example 
(1) and, in particular, by the recent re-interpretation of the 
concept of perturbation in this  context/^/. In fact, we have 
in mind a long-lasting challenge of interpretation of (1) as 
a perturbed quasi-exactly solvable system /4/. In the forth- 
coming text, we shall show that, although the radial form of 
(I), viz., 

cannot be assigned the quasi-exact solutions itself, it may 
easily be interpreted as a perturbation of the slightly more 
complicated radial Hamiltonian /5/ 

where, of course, e = 0,1,. . . (in three dimensions) or, alter- 
natively (in one dimension), e =-1 or 0. 

, In the first part of the text, we shall analyse the exact 
exceptional solutions - bound states of the Hamiltonian (3) - 
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in more detail. In the second half of our considerations, a 
perturbative transition from (3) to (2) will be described. 
A slight generalization of the standard Rayleigh - SchrGdin- 
ger formalism will be needed - a core of the new Rayleigh - 
Schroedinger (NRS) technique will lie in h use of the so- 
called extended continued fractions (ECF, 7 6 P ) .  

A. THE CONSTRUCTION OF THE QUASI-EXACT STATES I 

Let us consider the Schroedinger equation 1 

with the Hamiltonian operator (3) and postulate an Ansatz 

for its bound-state solutions / 5 / .  Obviously, the coefficients 
P, must satisfy the recurrences 

where I 

in such a case. Here, we shall choose the parameters a ( > ~ ) ,  
p and y in ( 5 )  in such a manner that 

c p =  d - a* = 0, 

(4) C, = v-2ap = 0, 

(9) 2 C i  = b - h y - B  =O. 

The remaining coefficients in (6), viz., 
d,2) =a(n+ e l  -2py+ a ,  

-:I-., C(b) = 2p(n+e+ 1) -y2 - e  = C  
2 - 

D, = zy(~+ e + l )  + = D, + f . 
B, =(U+I) (n+2e+2) 

will be nonzero in general. 
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In accord with the conclusions of ref . /7 /  , the difference 
equation (6) admits a truncated-matrix re-interpretation 
precisely in the following two cases 

(i) in the limit of an infinitely large dimension (i e., in 
the framework of the so-called Hill-determinant method i 8 / ) ,  and 
(ii) in the case of the quasi-exact state /'/. 
In the former context, our bound-state problem will be con- 

sidered in thenext,Section. Now, let us consider the latter 
possibility, equivalent to the requirement 

complementary to equation (7) above. 
In the first step, we may notice easily that equation ( 6 )  

becomes a trivial identity for n > N + 2. At n = N + 2, equa- 

tion ( 10) implies that we must have c$! equal to zero, i. e., 

and 

The remaining N t 2 items (6) have to define the N indepen- 
dent components of the (unnormalized) eigenvector p. Hence, 
two algebraic relations between the independent couplings must 
be satisfied /9/. 

and 

. .  . 
H = 
L 



with the bars introduced in (9) and (9a). Then, the latter two 
quasisolvability conditions may be written as a coupled pair 
of the determinantal equations 

which define the couplings f and energies e as functions of 
the dimension cut-off N again. In principle, they may happen 
to be complex - their reality is not a too relevant property 
in the present setting. 

An important consequence of the vanishing determinants (14) 
lies in an existence of the pair of the related left eigenvec- 
tors or kets, 

They may be understood as N + 2  - dimensional vectors x with 
the last and first component equal to zero, respectively. 
They must be constructed numerically in general. Their use 
will simplify some of our forthcoming considerations. 

B. THE NEW FORM OF PERTURBATION THEORY 

In the paper/3/ mentioned in the introduction of our text, 
the system (2) + (4) was considered in a "whacko" perturbati- 
ve interpretation with the number "4" in the exponent of the 
anharmonicity replaced by the sum 2 + A ,  where A was contem- 
plated as a measure of a small perturbation. In such acontext, 
it is almost boring to take (2) as a perturbed form of (3). 
Nevertheless, the use of the quasi-exact solvability of the 
latter Hamiltonian seems quite new and exciting in the anhar- - 
mon'c oscillator context (see, e.g., the review of literature 
in Lo7 ). 

A "slightly whackoff aspect of our forthcoming construction 
will lie in our use of the same power-series Ansatz (5) for 
both the unperturbed and perturbed wavefunctions, with the ca- 
pital energy E and coefficients P,in the latter case. For the 
sake of definitness, let us assume that the respective Hamil- 
tonians (3) and (2) contain the same couplings b, c (=0) and 

d ,  so that also the parameters y , p (= 0) and a ( > 0 ) remain 
the same. The difference will be given by a= a(N) and f  = f ( N )  

with the fixed dimension N. 
In the unperturbed case, we may denote pi = < i l q >  and re- 

write (4) in the finite-dimensional, non-square-matrix form 

of the set of equations (6) with J i j  = 61, j+ 1 (Kronecker) . 
Similarly, the perturbed version of (4) (with the "capitalici- 
zed'' energy 

2 
E = EO +AE1 +A E2 + ... (17) 

and Eo = e = e @I)) will imply the "capitalicized" modification 

of (16), 

where the column 

defines the desired or final anharmonic-oscillator coefficients 
pi 1 in the Taylor series (5). 

The insertion of (19) and (17) in (18) reproduces the equa- 
tions (16) or (6) of the preceding Section in the zero-order 
approximation A =  0. In the higher orders, we get the standard 
Rayleigh - Schroedinger hierarchy 

... 
where 

in accord with our preceding specifications. 

B1. THE First-Order Corrections 

The renormalization ambiguity 



with arbitrary Z f  0 is an obvious consequence of (16) and 
of an overall recurrent structure 

of each (m-th) row in (20). At m = 1, with the N + 3 - dimen- 
sional vector I 
this ambiguity does not concern the n-th row of (23) with 
n ?  N +  2 only. 

The matrix interpretation of the latter subset of (23) 
reads 

As long as our construction implies that 

we may insert here the relation 4 N + 2  = p 4 N + l  + v (obtainable 
from (25)) and re-interpret equation (27) as a 2x2 - dimensio- 
nal non-homogeneous set of equations for the quantities Em and 
4 ~ + 1  = (%)N+I ' 

B.2. The Higher-Order Corrections 

At rn > 1, the vector ( r >  becomes infinite-dimensional, 

and does not contain any explicit reference to Z of (22) at 
all. We may also recommend the ECF matrix inversion solution 

of this set of equations - its convergence may easily be pro- 
ved /e /. 

In full extent, the explicit Z-dependence concerns the 
i-th row of (23) with i =  0,1, ..., N - 1. These rows define 
+i+las a determinant (subdeterminant of T - e j) multiplied 
by 4 0  f 0 / 5 / .  

By means of the auxiliary vectors x (15), the remaining I 
N-th and N + 1-st rows of (23) may also be given a Z-indepen- I 
dent form 

As a consequence, the solution of the equations of the type 
(25) becomes much more complicated. Fortunately, this does not 
influence still the solution of the m =  2 analogue of the sys- 
tem (27) too much. Moreover, the use of the auxiliary ECF quan- 
tities may simplify the infinite-dimensional limiting transi- 
tions considerably / 5 1 6 / .  These technicalities already lie be- 
yond the scope of the present paper. 

C. NUMERICAL TESTS 

Our construction of the new representation of anharmonic 
oscillators may lead to the complex representation of real 
numbers - the simplest example of such a spuriosity is the 
well-known "cassus irreducibilis" of Cardano. Of course, such 
a phenomenon would make our prescription less attractive - 
numerically, we shall therefore show that the zero-order ap- 
proximants remain real. We shall pay our attention to a few 
examples only - after all, a complete classification of the 
real zero-order solutions is not our present aim. 
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First, we test our numerical algorithms in Tables 1 and 2. 
In the first Table, the N = 0 analytic solvability of our 
problem is employed. We choose d = b  = 1, c = 0 and let only 
the angular momentum f vary. In accord with the second Table, 
the comparison with the analytic f - .  - asymptotics also works 
very well for the different sets of couplings. 

Table 1. Comparison of the numerical and analytic roots 
e(0) and f(0) of our coupled secular zero-order equations 

1 e ( 0 )  f ( 0 )  

computed values 

exact results 

Table 2. Similar test with N = l = b  and with the vari- 
able couplings c and d .  The second row always displays 
the respective power - series second - order f >> 1  
asymptotic approximant 

Table 2 (cont.) 

Table 3. A sample of results for f = -1 (one-dimensional 
ground state) 

N c d a (N) e (N) f (N) 

2  .OOO 1 . 0 0 0  - 6 . 0 0 0  -2 .45288  4 . 8 9 4 8 3  E-1 

3  . 0 0 0  1 . 0 0 0  - 8 . 0 0 0  - 2 . 9 7 7 4 1  E-1 - 1 . 6 0 2 7 1  

4  . 000  1 . 0 0 0  - 1 0 . 0 0 0  - 5 . 5 7 2 7 9  2 . 4 1 3 5 2  

5 , 0 0 0  1 . 0 0 0  - 1 2 . 0 0 0  - 2 . 7 5 7 5 9  2 . 5 2 8 6 3  E-1 



In accord with Table 3, the general features of the present 
solutions need not be trivial in general - the Table displays 
certain oscillations of e(N) or f(N) with the period AN = 3, 
and it also exemplifies their suppression at the different pa- 
rameters, with an extreme choice of l? = -1. These results are 
complemented by the l? = 0 and l? = 1 examples in Tables 4 and 5. 

Table 4. A sampleof results for e = 0 (the three-dimen- 
sional ground state) 

N c d a (N) e (N) f (N) 

0 . O O O  1.000 -4.000 -2.5000 E-1 -1.0000 

1 .OOO 1.000 -6.000 1.4202 -3.3948 

2 . O O O  1.000 -8.000 -2.4528 4.8948 E-1 

3 .OOO 1.000 -JO.OOO -2.9774 E-1 -1.6027 

4 . O O O  1 .000 -22.000 -5.5727 2.4135 

5 . O O O  1.000 -14.000 -2.7575 2.5286 E-1 

6 . 000 1.000 -16.000 -3.4979 E-1 -2.0913 

7 . 000 1.000 -18.000 -6.0436 2.4050 

8 ,000 1.000 -20.000 -2.9976 2.4192 E-2 

9 . O O O  1.000 -22.000 -4.0227 E-1 -2.5201 

1 0  ,000 1.000 -24.000 -6.4304 2.3628 

0 . l o 0  0 .01  3.350 -1.2562 E+1 -7.5000 

1 . l o 0  0.01 3.150 -1.3487 E+1 -7.5184 

2 . l o 0  0.01 2.950 -1.1644 E+1 -7.2246 

3 . l o 0  0.01 2.750 2.3623 E+1 2.8582 

4 . l o 0  0.01 2.550 -1.0759 E+1 -6.9461 

5 . l o 0  0.01 2.350 -9.8154 -6.6615 

6 . l o 0  0.01 2.150 -9.9075 -6.6639 

7 . l o 0  0.01 1.950 -8.2585 -2.9955 

8 . l o 0  0.01 1.750 -9.0892 -6.3775 

9 . l o 0  0 .01 1.550 -1.3357 E+1 -1.4232 E+1 

1 0  . l o 0  0 .01  1.350 -8.3052 -6.0863 . 
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Table 5. A sample of results for e = 1 (the first exci- 
ted three-dimensional bound state) 

N c .  d a (N) e (N) f (N) 
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IIpemaraeTc~ npoc~oii H O B ~ G  ~ e ~ o n  n o c r p o e m  peruemii 
YpaBHeHuR NpeIUfI-Irepa C nOJIHHOMEiWIbHbIM llOTeHUuWIOM. n 0 ~ a -  
3bIBaeTCR BOSMOXHOCTb nOCTPOeHUR PWOB TeOpEiM B O ~ M Y U ~ H H ~ ~ ,  

HarWIaR C KBa3WTOWbIX peUIeHH#. A ~ H  ~pOCTOTb16epeT~ff TOJIbKO 

nonuHoMHanbHoe ~ m ~ o n e i i c r s u e  s e ~ s e p ~ o i i  menem ( m c  
~3a&i~oneiicmue Kyno~a)  . AeTanb~o OmcbmaeTcff KOHCT~~ICIJHR 

~ ~ a s w ~ o w o r o  COCTORHUR HyneBoro nopRnKa TaK we, KaK H ero 
B O ~ M Y U ~ H &  B ~ I C U H X  ~ O P R ~ K O B .   HOBO^ npencTmneHue perue~wii 

\He TOJIbKO rlpe3~bFXahi0 IIpOffO, HO U nOne3HO (Hanpki~ep, AOnOn- 
HReT TaK Ha3bIBaeMYIO TeXHWKY onpe~eJIHTeJIe# XHJIna) H OTKPbI- 
BWT HOByIO BOSMOXHOCTb npeOAOJIeHuR n p o 6 n e ~  C PaCXOnw- 
MOCTbH) PqqOB TeOPwH B O S M ~ ~ ~ H U ~ ~ .  

Znojil M. 
Anharmonic Oscillator 
in the New Perturbative Picture 

A new method suitable for solving Schroedinger equations 
with polynomial potentials is proposed. It is based on a perturbati- 
ve improvement of the quasi-exact solutions. The simple Coulomb + 
anharmonic oscillator is analysed in full detail, and a feasibility of 
the whole scheme is documented. The preliminary numerical tests 
are encouraging - the method may become a valuable complement 
and extension of the so-called Hilldeterminant approach. 

The investigation has been performed at the Laboratory of 
Theoretical Physics, JINR. 
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