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Recently, Bender/!/ succeeded in constructing the first in-
tegrals of the quantum quartic oscillator in the closed form.
In the Heisenberg picture, it is even possible to consider a
general polynomial interaction and to show that the integra-
tion of the quantum Cauchy problem remains feasible in an iter-
ative Peano - Baker-type manner/2 . Here, we intend to rest-
rict our attention to the one-pody Hamiltonians

_ 1 <12 <14
H_—é;-nA+b|rl +d|r)*, b>0, d>0 (1)

and, within the framework of the more traditional time-indepen-
dent approach, describe a new type of construction of the cor-
responding bound states.

We feel inspired by the enormous popularlty of the example
(1) and, in particular, by the recent re-interpretation of the
concept of perturbation in this context/3/ . In fact, we have
in mind a long-lasting challenge of interpretation of (1) as
a perturbed quasi-exactly solvable system/4/. In the forth-
coming text, we shall show that, although the radial form of
1), viz.,

2 .

d 2(e+1)

H'—'—""'—'+“———————+bl'2+dl'4 2
L 2 2)

cannot be assigned the quasi-exact solutions itself, it may
easily be interpreted as a perturbation of the slightly more
complicated radial Hamiltonian /5/

2 f
H:—_.d_+_e_(£ii)- +_+ar+br2+cr3+dr4' (3)
ar? r2 r
where, of course, £ '=0,1,.., (in three dimensions) or, alter-

natively (in one dimension), f =-1 or O.
In the first part of the text, we shall analyse the exact
exceptional solutions - bound states of the Hamiltonian (3) -

o

Os: ;. T

i
N0 !
:




in more detail. In the second half of our considerations, a
perturbative transition from (3) to (2) will be described.

A slight generalization of the standard Rayleigh - Schré&din-
ger formalism will be needed - a core of the new Rayleigh -
Schroedinger (NRS) technique will lie in §h use of the so-
called extended continued fractions (ECF, 6?).

A. THE CONSTRUCTION OF THE QUASI-EXACT STATES

Let us consider the Schroedinger equation

Hy (r) =ey (1) (4)

with the Hamiltonian operator (3} and postulate an Ansatz
5 n+f0+1 a3 B

() = nfo Pt exp(-—3—-r -5t -y) (5)

for its bound-state solutions’5/. Obviously,the coefficients
P, must satisfy the recurrences

5 6))

ByPoyy=DyPy + 2 Cp Py B=01 . (6)
where
P.1=Po=...=0, p07é0 -

in such a case. Here, we shall choose the parameters a(>0),
Band y in (5) in such a manner that

Cgs)=d—a2 =0,

084)= V-2aﬁ = 0'

| ()
(3) 2
Cn=b—2a'y—ﬁ =0.
The remaining coefficients in (6), viz.,
P _2a(u+0) -28y +a,
Cgl) = 2ﬁ(n+f+ -é—) —)'2 -e =6(nl)—e-
(9

Dy = 2y@+€+1)+ £ =Dy + 1,

B, =(@+1) (n+20+2)
will be nonzero in general.

In accord with the conclusions of ref./7/, the difference
equation (6) admits a truncated-matrix re-interpretation
precisely in the following two cases

(i) in the limit of an infinitely large dimension (i.e., in
the framework of the so-called Hill-determinant method /8/), and

(ii) in the case of the quasi-exact state 9,

In the former context, our bound-state problem will be con-
sidered in the next Section. Now, let us consider the latter
possibility, equivalent to the requirement

Pyy1=Pyyp= =0, By #0 (10)

complementary to equation (7) above.
In the first step, we may notice easily that equation (6)
becomes a trivial identity for n> N +2. At n=N+2, equa-

tion (10) implies that we must have ang equal to zero, i.e.,

+

a=a)=28y -2a(N+{+2) (11)
and ‘

¢® _C® _2a@-N-2). (9a)

The remaining N +2 items (6) have to define the N indepen-
dent components of the (unnormalized) eigenvector p. Hence,
two algebraic relations between the independent couplings must
be satisfied/%/ .

For the sake of brevity, let us denote

Do -Bg
¢ b, -B
o= ¢y ©fl1 Dy-y -By-s (12)
c® ¢’ Dy
and
¢’ b, -B;
& 50 o, -3,
X~ ORCONEE | (13)
Chr1 Onis
3



with the bars introduced in (9) and (9a). Then, the latter two
quasisolvability conditions may be written as a coupled pair
of the determinantal equations

det[Hy - (-DI1 =0, (14a)

det [ -el) -0 (14b)

which define the couplings f and energies e as functions of
the dimension cut-off N again. In principle, they may happen
to be complex - their reality is not a too relevant property
in the present setting.

An important consequence of the vanishing determinants (14)

lies in an existence of the pair of the related left eigenvec-
tors or kets,

<XU|}{U=—f<XU1 ’

(15)
<XL[HL=e<xL[.

They may be understood as N+2 - dimensional vectors x with
the last and first component equal to zero, respectively.
They must be constructed numerically in general. Their use
will simplify some of our forthcoming considerations.

B. THE NEW FORM OF PERTURBATION THEORY

In the paper/3/ mentioned in the introduction of our text,
the system (2) + (4) was considered in a 'whacko" perturbati-
ve interpretation with the number "4" in the exponent of the
anharmonicity replaced by the sum 2 + A, where A was contem-
plated as a measure of a small perturbation. In such acontext,
it is almost boring to take (2) as a perturbed form of (3).
Nevertheless, the use of the quasi-exact solvability of the
latter Hamiltonian seems quite new and exciting in the anhar-
mog;c-oscillator context (see, e.g., the review of literature
in 10/)

A "slightly whacko' aspect of our forthcoming construction ’

will lie in our use of the same power-series Ansatz (5) for
both the unperturbed and perturbed wavefunctions, with the ca-
pital energy E and coefficients P, in the latter case. For the
sake of definitness, let us assume that the respective Hamil-
tonians (3) and (2) contain the same couplings b, ¢ (=0) and

4

and a (> 0) remain

d, so that also the parameters y,.3(= 0)

the same. The difference will be given by a= a(N) and f=f(N)

with the fixed dimension N. . ]
In the unperturbed case, we may denote p; = <i|gq> and re

write (4) in the finite-dimensional, non-square-matrix form

Tiq>=¢eJ|g> (16)

i i (=04 (Kronecker) .
f the set of equations (6) with Jyj ii+1 : -
gimilarly, the perturbed version of (4) (with the "capitalici

zed" energy

E -By +AE; +X By + oot (17)
and Eg =e=e(N)) will imply the "capitalicized" modification
of (16),

(T+aV)|Q> =EJ|Q>, (18)

where the column
Q> =|a>+A|Q,> +A2|Q2>+'... (19)

defines the desired or final anharmonic-oscillator coefficients
N . s . 5 )

P. —<i|@> in the Taylor series ( ) » i
' Th;linsertion of (19) and (17) in (18) reproduces the equa
tions (16) or (6) of the preceding Section in the zero-order ;
approximation A= 0. In the higher orders, we get the standar

Rayleigh - Schroedinger hierarchy

(T-e1)|Q> +(V-E 1)]|Qq> = 0,

(20)
(T —eJ)|Q2> + (V-ElJ)\Q1>-E2J\QO>=0,
where
i (21)
Avij =.-a(N)5Lj+2 --t‘(N)'o‘ij , i,j=0,1,...

in accord with our preceding specifications.

Bl. THE First-Order Corrections

The renormalization ambiguity



Q> - Q> +2|Q(> (22)

with arbitrary Z+# 0 is an obvious consequence of (16) and
of an overall recurrent structure

(T-el)|g>+|r> =E_J|q>

| (23)
]¢>»::{Qm>

of each (m-th) row in (20). At m =1, with the N+8 - dimen-

sional vector .

fr7>=V]|g> (24)

this ambiguity does not concern the n-th row of (23) with
n>N+2 only.

The matrix interpretation of the latter subset of (23)
reads

DN+2 "BN+2 ¢N+2
(1) - N+3 =
CN+3 Dyys * bN+3
(25)
1)
Cnse ™Ny2
(2)
CN+3 PNsr * 0

and does not contain any explicit reference to Z of (22) at
all. We may also recommend the ECF matrix inversion solution

of this set of equations - its convergence may easily be pro-
ved/8/,

In full extent, the explicit Z-dependence concerns the
i-th row of (23) with i= 0,1,...,N-1. These rows define
$i4188 a/determinant (subdeterminant of T ~ e j) multiplied
by¢0 ;405.

By means of the auxiliary vectors y (15), the remaining
N-th and N + 1-st rows of (23) may also be given a Z-indepen-
dent form

X glT-edlg> +<xylr>=E_ <xy|JIla>,

(26)
<x T-eJl¢>+<x 7> =E<x; [T]a> .
As long as our construction implies that
<xylT -el|¢> =—By(xy)ndn o1
<X A T-ell¢>=-Byy(xe) xe1Pnee + (27)

+ [-By(xuy + Dyt X ne sl st

we may insert here the relation¢y,,=p¢y,; +v (obtainable
from (25)) and re-interpret equation (27) as a 2x2 - dimensio-
nal non-homogeneous set of equations for the quantities E_ and

n+1 = (OpNgr -

B.2. The Higher-Order Corrections
At m> 1, the vector |s> becomes infinite-dimensional,

m-~-1
> =ViQ, >~ 2 ElQp >, (28)

As a consequence, the solution of the equations of the type
(25) becomes much more complicated. Fortunately, this does not
influence still the solution of the m = 2 analogue of the sys-
tem (27) too much. Moreover, the use of the auxiliary ECF quan-
tities may simplify the infinite-dimensional limiting transi-
tions considerably/%'s/. These technicalities already lie be-
yond the scope of the present paper.

C. NUMERICAL TESTS

Our construction of the new representation of anharmonic
oscillators may lead to the complex representation of real
numbers - the simplest example of such a spuriosity is the
well-known '"'cassus irreducibilis" of Cardano. Of course, such
a phenomenon would make our prescription less attractive -
numerically, we shall therefore show that the zero-order ap-
proximants remain real. We shall pay our attention to a few
examples only - after all, a complete classification of the
real zero-order solutions is not our present aim.



First, we test our numerical algorithms in Tables 1l and 2.
In the first Table, the N =0 analytic solvability of our
problem is employed. We choose d= b = 1, ¢ = 0 and let only
the angular momentum ¢ vary. In accord with the second Table,
the comparison with the analytic £ - ~ asymptotics also works
very well for the different sets of couplings.

Table 1. Comparison of the numerical and analytic roots
e(0) and f(0) of our coupled secular zero-order equations

1 e(0) £(0)

computed values

10000 -2.50000000D-01 -1.00010000D+04
100 -2.50000000D-01 -1.01000000D+02

1 -2.50000000D-01 -2.00000000D+00

0 -2.50000000D-01 -i.00000000D+00

exact results

10000 ~2.500000004-01 -1.00010000d+04
100 -2.50000000D-01 -1,01000000D+02

1l -2,50000000D-01 -2,00000000D+00

0 -2.50000000D-01 -1.00000000D+00

Table 2. Similar test with N=1=b and with the vari-
- able couplings ¢ and d. The second row always displays
the respective power - series second - order { >>1
asymptotic approximant

Table 2 (cont.)

1 d c e(1) £(1)

10000 1 .000 4.28246 E+01 =1.09297 E+04
4,28386 E+01 ~1.09283 E+04
100 1 .000 9.99244 -1.44711 E+02

9.03317 -1.43088 E+02

1 d c e(1) £(1)
10000 0.01 . 000 -1.57883 E+01 -1.00444 E+05
~1.57168 E+01 -1.00430 E+05
100 0.01 .000 -2.49862 E+01 -1.02002 E+03
~2.30000 E+01 -1.02000 E+03
10000 0.01 .100 9,.99734 E+03 ~7.54564 E+04
9.99071 E+03 -7.54308 E+04
100 0.01 .100 8.74375 E+01 -7.64999 E+02
9.80000 E+01 =7.70000 E+02
Table 3. A sample of results for ¢ = -1 (one-dimensional
ground state)
N c d a(N) e(N) £(N)
2 .000 1.000 -6.000 -2.45288 4.89483 E-1
3 .000 1.000 -8.000 -2.97741 E-1 -1.60271
4 . 000 1.000 ~10.000 -5.57279 2.41352
5 . 000 1.000 =-12.000 -2.75759 2.52863 E-1
6 . 000 1.000 -14.000 -3.49798 E-1 =-2.09139
7 .000 1.000 -16.000 -6.04365 2.40505
8 . 000 1.000 -18.000 -2,99766 2.41923 E-2
9 .000 1.000 -20.000 -4.02270 E-1 -~2.52012
10 . 000 1.000 -22,000 -6.43044 2.36283
2 .200 0.01 -.600 3.01968 3.99917 E-1
3 .200 0.01 -.800 2.99913 5.94009 E-1
4 »200 0.01 -1.000 2.95989 7.84695 E-1
5 .200 0.01 -1.260 2,.90293 9.72279 E-1
6 .200 0.01 =1.400 2.82908 1.15700
7 .200 0.01 -1.600 2.73908 1.33909
8 +200 0.01 -1.800 2.63359 1.51873
9 .200 0.01 =-2.000 2.51320 1.69600
10 .200 0.01 -2.200 2.37845 1.87126




In accord with Table 3, the general features of the present
solutions need not be trivial in general - the Table displays

certain oscillations of e(N) or f(N) with the period AN =3,

and it also exemplifies their suppression at the different pa-
rameters, with an extreme choice of f = -1. These results are
complemented by the £ = 0 and f = 1 examples in Tables 4 and 5.

Table 4. A sample of results for [ = 0 (the three-dimen-

sional ground state)

N c d a(N) e(N) £(N)

0 .000 1.000 -4.000 -2.5000 E~1 -1.0000

1 .000 1.000 -6.000 1.4202 -3.3948

2 .000 1.000 -8.000 -2.4528 4.8948 E-1
3. .000 1.000 -10.000 -2.9774 E-1 -1.6027

4 .000 1.000 -12.000 -5.5727 2.4135

5 .000 1.000 -14.000 -2.7575 2.5286 E-1
6 .000 1.000 -16.000 -3.4979 E-1 -2.0913

7 .000 1.000 -18.000 -6.0436 2.4050

8 .000 1.000 -20.000 -2.9976 2.4192 E-2
9 .000 1.000 -22.000 -4,0227 E-1 -2,5201
10 .000 1.000 -24.000 -6.4304 2.3628

() .100 0.01 3.350 -1.2562 E+1 =7.5000

1 .100 0.01 3.150 -1.3487 B+l -7.5184

2 .100 0.01 2.950 -1.1644 E+1 -7.2246

3 .100 0.01 2.750 2.3623 E+1 2.8582

4 .100 0.01 2.550 -1.0759 E+1 ~6.9461

5 .100 0.01 2.350 -9.8154 -6.6615

[ .100 0.01 2.150 -9.9075 -6.6639

7 .100 0.01 1.950 -8.2585 -2.9955

8 .100 0.01 1.750 -9.0892 -6.3775

9 .100 0.01 1.550 -1.3357 E+1 -1.4232 E+l
10 .100 0.01 1.350 -8.3052 -6.0863

10

Table 5. A sample of results for £ = 1 (the first exci-

ted three-dimensional bound state)

N c d a(N) e(N) £(N)
1 .000 1.000 -8.000 -0.2500 -3.00000
2 .000 1.000 -10.000 -2.8715 0.60733
3 .000 _ 1.000 -12.000 -0.2675 -2.75069
4 .000  1.000 -14.000 2.2429 -6.56468
5 .000 1.000 -16.000 -3.1310 0.25339
6 .000 1.000 ~18.000 -0.2891 -3.38848
7 .000  1.000 -20.000 -6.5841 3.56905
8 .000 1.000 -22.000 -3.3442 -0.08139
1 .200 0.01 -.800 5.04172 0.40852
2 .200 0.01 -1.000 5.06064 0.80792
3 . 200 0.01 -1.200 5.05838 1.19926
4 .200 0.01 -1.400 5.03630 1.58338
5 .200 0.01 -1.600 4.99552 1.96095
6 .200 0.01 -1.800 4.93701 2.33253
7 .200 0.01 -2.000 9.24884 2.49129
8 .200 0.01 -2.200 9.23996 3.04414
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'} . AHrapMOHHYECKHI OCIMIJIATOP B HOBOM ITOCTPOEHHH
|- Teopum BoaMyILIEHUMI

E5-89-726

Ipennaraercss MpocTod HOBLIA MeTON IOCTPOEHMA pellleHHMil
ypasHennsa lllpegunrepa ¢ NmosMHOMHMAaNLHBIM NoTeHuHanom. IToka-

. 3bIBaeTCA BO3MOJXKHOCTh NOCTPOEHHA PANOB TEOPHHM BO3MYILEHMH,

HayMHasA C KBa3sHTOYHBLIX pemeHHil. Jlna npocrore Geperca TONLKO
MOIMHOMHAAbHOEe B3aHMOJEICTBHE YeTBEpPTON CTemeHH (IuIOC
B3anmopeiicrue Kynona). JleTabHO OIMMCHLIBAETCA KOHCTPYKIMA
KBa3sHTOYHOrO COCTOAHMSA HyJIEBOro NOpANKa TaK ke, KaK H ero

BO3MYIIEHHH BhICIIHX NopAnkoB. HoBoe npencrasnenue pemenuii
N .

He TOJIbKO Ype3BhMaiHO MPOCTO, HO H NoJie3HO (Hanpumep, HOMoJI-
HAET TaK Ha3biBaeMyH TEXHHMKY onpefeiMTelieii Xuina) ¥ OTKpbI-
BaeT HOBYI0O BO3MOXHOCTb IIPDEOIONIEHHA mnpoblieM c pacxomu-

"] MOCTLIO PAZIOB TEOPHH BO3MYIIIEHHH.

Pabora BeimonHena B JlaGopaTopuu TeopeTHueckoil (HUIUKH

v

Cooburerne O61enHHeHHOro HHCTHTYTa ANEPHEIX HCcTenoBanuii. Jy6ua 1989
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Anharmonic Oscillator

" in the New Perturbative Picture

A new method suitable for solving Schroedinger equations
with polynomial potentials is proposed. It is based on a perturbati-

- ve improvement of the quasi-exact solutions. The simple Coulomb +

anharmonic oscillator is analysed in full detail, and a feasibility of
the whole scheme is documented. The preliminary numerical tests

| are encouraging — the method may become a valuable complement
 and extension of the so-called Hill-determinant approach.

The investigation has been performed at the Laboratory of
Theoretical Physics, JINR. '
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