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1 .  INTRODUCTION 

A wide-spread problem in the theory of nonlinear evolution 

equations (NEE) is to find the exact solutions of complicated 

algebraic systems. For example, let us consider the following 

evolution systems 

Ut = AUx + F(U,U1,. .UN-l) , U=U(x,t)=(ul,. .u') , U~=D'(U) , D=d,/dx 
(11 

F=(F' ,... F'), A=diag(Al ,... A,,), Alto, A,+A, (itj). 

The general symmetry approach to checking up the integrability and 

classification of integrable NEE (see the reviews [1,2] and references 

1 therein) allows to obtain the integrability conditions which are 

1 related to existence of higher order symmetries and conservation laws 

in a fully algorithmic way. 

1 The implementation of these algorithms in a form of FORMAC program 
I FORMINT have been given for scalar equations (M=l in (1)) in [3] and ' for the general case (M>1) in [ 4 ] .  Using this program one can 

I 
automatically obtain the equations in right hand side of (1) which 

follow from the necessary integrability conditions. The integrability 

conditions for the right hand side with arbitrary functions have the 

form of systems of differential equations, the procedure of solving 

I these equations is not generally algorithmic. But in the important 

particular cases when the right hand side Fi are polynomials and the 

I integrability conditions are reduced to a system of nonlinear 
1 * algebraic equations in coefficients of the polynomials. Recent 

intensive investigations in computer algebra 151 and, particularly, in 

algorithmization of analysis and construction of exadt solutions Of 

nonlinear algebraic systems [6j allow to solve the necessary 

conditions of integrability for polynomial nonlinear evolution 
I 

I equations (1) by a computer. 

The fundamental algorithms are based [6] on the explicit 

construction of the so-called standard or Groebner basis (GB) of a 



polynomial ideal, which is generated by the initial polynomial system. 

The GB which contains the full information of ideal under 

consideration, including the one of the roots of the polynomial 

system, leads to essential reduction of complexity when solving many 

computational problems in commutative polynomial algebra [6,7]. In the 

case of null dimensional ideal, i.e. when we have a finite number of 

solutions the knowledge of GB in lexicographic ordering of variables 

makes the procedure of finding solutions very simple. In the case 

of "separable" GB [6] the problem is reduced to determination of the 

roots of the polynomial in a single variable. 

Let us introduce the following notations: fi([x)), i=l, ... N is the 
set of polynomials and (x)=(xl,..xI) is the set of variables. Let 

g,((x)), j=1, ..K be the GB of the corresponding system f,. In this 
case we can write 

Note that the choit;e of variable ordering has an essential influence 

on practical computations. It defines a particular form of GB and 

also determines it s structure [6,15]. Therefore, in arranging the 

variables we shall use the chosen ordering i.e. x1>x2>. . .>x,,. 
A more complicated problem is the solution of nonlinear polynomial 

systems with an infinite number of solutions. i.e. when we have a 

positive dimension. In this cise we select some of variables as 

parameters. We note that the construction of GB in rest of variables 

is very cumbersome procedure. It is related to appearing complicated 

rational coefficients in parameters. 

As a useful example let us consider the algebraic system which 

appears in the process of finding the algebraic curve (Riemann 

surface) for finite-gap elliptic potentials of Lame type and its 

generalizations [a]. Let introduce Lame potential 

where p(x) is the p-function of Weierstrass. 

This paper is organized as following. In sect.2 we give the basic 

equations of type (1) and in sect.3 we demonstrate the usefulness of 

Groebner basis method and computer algebra for solving the systems of 

equations, which appear in the classification prohlem of polynomial 

non-linear equations (1) of uniform rank. In sect.4 we study the 

algebraic system with parameters, which corresponds to potential (2) 

and discuss some computational aspects of its solving with the help of 

computer algebra systems. Some conclusions are given in sect.5. 

2. THE BASIC EQUATIONS 

In this paper we shall consider the important subclass of equations 

of type ( l !  with polynomial nonlinear right hand sides with uniform 

rank [19]. Hence we suppose that Fi (U,. . )  in ( 1 )  are sums of monomials 

of the following type: 

I 
such that the ranks of all monomials are equal (including linear terms 

in the right hand side (1)). The rank R of the differential monomial 
dl dh 

U . .Uk (for simplicity we miss the vector indexes ik of functions 
I U(x,t)) is called the following number 

I where WD u WI are the weights of the corresponding vector function U 

(which are equal for all components) and the spatial differentiation 

operator d/dx. The degree D of the monomial and the full number of 

differentiations I are given by 

I k k 

D = E d , ,  I = x  id. 
I =o I =o 

Further we call the polynomial - homogeneous equations the nonlinear 
evolution equations with uniform rank. 

Let us consider some multiparametric polynomial - homogeneous 



equations. The integrability test of such equations is reduced to 

solving a nonlinear algebraic systems. 

1) The scalar NEE'S of degree 7 of Korteweg-de Vries (Kdv) type. 

The classification problem for these equations 

and for equations degree 9 have been solved in [lo]. 

2)The scalar NEEs of degree 7 of modified KdV (MKdV) type 

are investigated in [ll], 

3)The system of two coupled nonlinear equations of KdV type [12.13] 

The nonlinear algebraic equations in the next section follow from 

some first necessary contJitions of integrability. These conditions are 

related to the existence of the nontrivial local conservation laws 

(within the canonical series [1,2]) of the following type 

The polynomials R can be computed in terms of polynomials in the 
I J 

right-hand side of (1) using the algorithmic procedure [4] implemented 

in computer algebra system FORMAC. In the examples given above (see 

examples 1)-3)) R are differential polynomials in the components of 
I J 

the vector-function U whose coefficients are polynomials in numeric 

parameters of the NEE. Due to (6), the time derivatives of 

conservation laws can be the total derivatives with respect to spatial 

variables of a local function. Hence, we obtain nonlinear algebraic 

equations in parameters of NEE. Note that the process of generation 

of these equations is fully automated using the FORMINT 

program.[3,4]. 

The problems closely related to this classification analysis of NEE 

(3)-(5) arise in the theory of NEE with finite-gap elliptic potential. 

For example, let us consider the following spectral problem for Hill's 

equation with Lame finite-gap potential 

The construction of the so called Baker-Akhiezer function [8] p(x,A) 

is based on the slightly improved ~ermite ansatz 

where 

and u,C are the Weierstrass elliptic functions. The function @(x,a) is 

a solution of equation (7) when n=2. Using the Laurent expansion of 

@(x,a) at x=O, we can obtain [8] the overdetermined linear system of 

algebraic equations in al from (8). Solving this system we obtain the 

! new system of two nonlinear polynomial equations of the following type 

where F1 and F2 are polynomials in their arguments, and p(a) and P1(a) 

are connected with relation [14] 

where g2,g3 are elliptic constants [14]. Taking k and A as a variables 

in (9) we shall consider the rest variables as parameters. Solving (9) 



we can obtain the following algebraic curve [ a ]  
L-1 

Cg: ~(k,a)=k~ + r (~)k~-~=o. 
J=l 

where r (a) are meromorphic functions on the elliptic curve (torus) 
J 

C1: (pt(a),p(a)), which is defined by (10). The problem is to find the 

curve (11) which is the L-fold covering of torus (10). 

3.ALGEBRAIC SYSTEWS IN THE CLASSIFICATION PROBLEWS 

In this section we study some nonlinear algebraic systems which 

arise from the several first conditions of integrability (6) in 

classification problem for NEE (3)-(5). As we noted above, the program 

FORMINT [3,4] is used for automatic calculations of the conservation 

law densities in terms of right-hand sides in equations (3)-(5) and 

for checking the conditions (6) after that, i.e. the generation of the 

corresponding algebraic equations. 

Below we consider systematically the examples 1)-3) of sect.2. For 

more details see refs. [10,13]. 

Example 1. Let us consider the explicit form of R, in (6) for 

equations with numbers i=1.3, 5, 7 (all the conditions (6) with even 

numbers are satisfied identically, and we omit the vector index j=l) 

where 

Substituting (12) in 161, we obtain the following system of 13 

equations 

The system (13) is one of nonlinear algebraic systems arising in 

the problem of NEE classification, which have been firstly solved in a 

fully automatic way using computer ( IBM 3081D ) by means of 

Buchberger's method of constructing GB using SAC-2 [15]. The optimal 

ordering for example 2) as well as for example 1) is the lexicographic 

one i.e. ;\,>A ( i < j )  . This is in a good agreement with empirical 
J 

strategy (see [15]). Being rather cumbersome, the system (13) have 

moreover an infinite number of solutions. It is easy to establish 

that, using the well known invariance property u=#3u. After fixing the 

arbitrary parameters and finding GB, the solutions of the system are 

exactly the same as in [lo]. Further we follow the papers [ll-131, 

where various alternative possibilities to reduce the initial system 
4 

to simpler subsystems are given . 
In the present paper we use the computer algebra system REDUCE 3.2 

on the IBM PC. Due to that we have no possibility to solve the general 

system (13) because of memory restrictions. We note that in [15] this 

example is already have been computed for 55 sec. at IBM 3081D. 

Example 2. The first three odd 'densities (all even densities are 

not informative ) for equation ( 4 )  are given by 



where 

The application of FORMINT program in [ll] shows that the condition 

(6) for density R1 is fulfilled identically and reduced to the 

following system of equations for R3 and R5 

It is easy to see that system (15)-(16) have in general an infinite 

number of solutions, due to invariance of 6-parametric family (4) 

under the scale transformation u=.pu. Below we shall check this by 

direct calculation of GB for the cases when all the densities (14) are 

not zero. 

To simplify computation of solutions of (15)-(16) we consider the 

following alternative cases [ll]. 

2. 1) R =R =RS=O. It follows from ( 14) - (  16) that A2=A5=0. In this case 
1 3  

system ( 15) - (  16) can be rewritten as al=b2=b3=b4=0. Now we give the 

result of GB computations, using the notation of sect.1 

Hence we obtain immediately that A,=0 (i=1+6) is the single solution 

of the system ( IS)-( 16) and corresponds to the trivial case ut=u7 in 

equation ( 4) . 

2.2) R,+O (i=l, 3,5). From equations ( 14) - (  16) we obtain that hl=h4=0. 

Keeping non-identical equations and using computer algebra 

calculations we obtain the explicit form of the initial system and the 

corresponding GB 

The variables in this GB are not separated, hence it is the case with 

an infinite number of solutions [6]. Let us fix the value of a 

variable, say, A2. If we put A2=0 then the GB structure leads to zero 

values of the rest variables. It means that all densities (14) vanish 

in contradiction with the initial assumption. Therefore, to cancel the 

numeric denominators in (15) ( note that the concrete choise of A2f0 is 

not essential) let A2=7 and then we can again compute the GB 

I 
So we obtain the known solution Al=O, A2=7, A =21, A =0, A5=35/2, 

A6=35/2 see [Ill. 

2.31 Rl+0,R3=0,R~0. Let us fix one of the variables. When A1=O, we 

obtain b2=0 from (16) and A4=0 from ( 15) . Hence we have one of the 

above cases which leads to the contradiction. So we can set, for 

example, A =7, as in [Ill. Then we have 



It gives the solution A =7, A =-7, A3=-14, A4=-14/3, A =14, A =-28/3 which 
1 2  

is the same as in [ I l l .  Those solutions are obtained by different 

methods. 

The cases 2.1)-2.3) considered above exhaust all solutions of 

system (15)-(16) [ll]. To verify that it is sufficient to construct GB 

for other alternative possibilities when some of densities R1,R3,R5 

vanish. Let, for instance, R1=RS=0,R5+0. Then the construction of GB 

gives immediately Ai=O (i=l-6) which contradicts the assumption R5+0. 

Example 3. In [I31 we already gave a detailed analysis and solved 

the nonlinear algebraic system on the parameters al,bl ( i=0+4) in (5), 

which follows from the first 8 conditions ( 6 1 ,  i. e .  i=l+8 (j=1. 2). 
This result was obtained in [l2] using FORMINT program [4] at ES-1061 

computer. Further we can solve the same problem in two steps. 

At the first step we consider the system which is a result of the 

first four and partially fifth conditions. We can study the 

alternative cases and subcases, searching equivalent set of 

subsystems, which is simple to solve on the personal computer using the 

method of computation of the corresponding resultants and the great 

common divisors. To do this we use the REDUCE 3.2 system (interactive 

mode) at the ES-1061. As a result we obtained four classes of 

solutions 

At the second step we consider the auxiliary algebraic equations 

which follows from the basic conditions of integrability of (6). The 

final conclusion about solutions of ( 17. 1) - ( 17. 3) was possible when 
taking the fifth (i=5) condition of integrability. The most cumbersome 

calculations are related to checking solutions of (17.4) for the basic 

conditions of integrability up to i=8. Next we write the explicit 

form of the auxiliary system of equations on the rest parameters of 

the solutions (17.4) when a =O and bo=ao-1, to exclude the arbitrary 

rule related to the invariance of the family (5) with respect to the 

scale transformations bat, x~@x,u*~u,v*vv: 

In [I31 the system (18) was solved by the standard method of 

elimination of variables using resultants (certainly with the help of 

the computer algebra system REDUCE). But it is required to verify 

whether the roots were really solutions. The construction of GB allows 

to eliminate that cumbersome step. In this case we have 

We note that the direct construction of GB for initial system is not 

possible because of very cumbersome calculations. 



As a result we can obtain 
Hence we obtain all roots previously found in [13]: (ao,b3,bi) 

={ (aosE,O,O), (-1/3,1/2,1) , (1/3,-1, -1) }. Note that the calculation of 

GB in examples 2), 31, including the case 2. 3) which we do not 

consider here, takes only 5 minutes on the IBM PC AT (10 Mgzl- 

4.AN EXAMPLE WITH PARAMETERS 

In the cases above there are no free parameters in the nonlinear 

algebraic systems. When we have such parameters the problem of solving 

these systems is much more complicated. Constructing the GB we can 

transform not numerical polynomial coefficients but complicated 

algebraic expressions. It needs incomparably more computer resources. 

Such a situation takes place in example 4) of Sect.2. Let us consider 

the explicit form of the algebraic system (9) for one-dimensional 

Schrodinger equation with Lame potential (7) ( n=4 in [ a ] ) .  

Example 4 1 .  

We recall that the variables here are k and A an? the rest ones 

p=p(a),pf=pf(al.g2 are parameters ,besides, p u P' are related with 

algebraic equation (10) which contains one more parameter g3. The 

computation of GB of the system (19) on IBM PC is not possible because 

of memory restrictions (640 KB for the computer algebra system REDUCE 

at IBM PC and the compatible computers [16]. It is impossible to use 

larger memory even on the 32-byte computers). To solve this problem we 

have been used the most powerful computer algebra systems SCRATCHPAD 

I1 which has the developed facilities to treat complicated algebraic 

expressions (see review [16]). In addition, using the system 

SCRATCHPAD 11 we can take in account the relations like (10) at each 

step of computations and thereby to simplify intermediate expressions. 

where G(k,p,Pf,g2,g3) is the polynomial in k of degree 9, coefficients 

of which are the complicated rational expressions in parameters. These 

calculations took 260 sec. of CPU time at IBM RT PC. 

The second term of GB (20) is the desired algebraic curve (11). 

Indeed, the structure of GB (20) shows "variable separation". It means 

not only that system (19) has a finite number of solutions, namely ten 

(counting multiple roots), but the fact that the first term of the GB 

corresponds to elimination of A from (19) without appearing 

superfluous roots. In the paper [8] algebraic curve (20) has been 

found using the Moses elimination method (see HH-algorithm in [8] 

implemented on the computer algebra system REDUCE as well). The method 

generalizes the standard technique of sequential calculating 

resultants to the case of arbitrary polynomial systems and so, 

generally, leads to superfluous solutions. As we mentioned above, the 

solution test and the elimination of superfluous roots is rather 

cumbersome procedure even for free-parameter case. For systems with 

parameters this procedure is impracticable. 

5 .  FINAL REMARKS 

The above analysis shows that the GB technique is very useful to 

automate the process of solving nonlinear algebraic systems which 

appear in study of NEE. This approach admits not only full al- 

gorithmization and realization of GB construction on computer algebra 



systems, but also investigation of other principle problems. In 

particular, the presence of a constant term (not depending on the 

variables) in GB list indicates the incompatibility of an algebraic 

system [6]. Moreover one can find the dimension of an algebraic 

variety [la], i.e. the dimension of the root space, for a given set of 

polynomials. In classification problems it allows to determine the 

number of variables which can be considered as arbitrary parameters 

and to express the others in terms of them. 

Certainly, in general the solution process is not possible in the 

full analytical way. However, the structure of GB shows that in the 

case of finite number of solutions the problem is reduced to finding 

roots of polynomials in a single variable.To solve this problem there 

are effective numeric methods. For polynomials with the rational 

coefficients one can efficiently obtain rational boundaries of real 

roots by computer. In other words, one can compute a sequence of 

disjoint intervals with rat.iona1 end points, each containing exactly 

one real root 1191. Besides, the recent great progress in 

algorithmization of polynomial factorizing [20] and in its 

implementation in highly developed computer algebra systems 116) 

simplifies the problem. 

It is remarkable, that in the cases considered above which are 

related to the classification analysis of integrable polynomial - 
homogeneous NEE, the problem of finding solutions of the corresponding 

algebraic: equations are completely solved. This is in accordance with 

the fact that GB h2s sufficiently simple structure (see the examples 

in Sect.3). There can be no doubt that it is closely connected with 

the property of integrability. 
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I n  t h e  p r e s e n t  paper  we s t u d y  t h e  a p p l i c a t i o n  of compu- 
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p o t e n t i a l s  of  Lame type and g e n e r a l i z a t i o n s .  A l l  sys tems 
under  c o n s i d e r a t i o n  a r e  s o l v e d  u s i n g  t h e  method based on 
c o n s t r u c t i o n  of t h e  Groebner . b a s i s  f o r  c o r r e s p o n d i n g  poly- 
nomial  i d e a l s .  The computat ions  have been c a r r i e d  o u t  u s i n ]  
computer a l g e b r a  sys tems.  
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