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1. INTRODUCTION

A wide-spread problem in the theory of nonlinear evolution
equations (NEE) 1is to find the exact solutions of complicated
algebraic systems. For example, let us consider the following
evolution systems

U, = AU, + F(U,U,..U_ ), u=u(x,t)y=(u',..u", Ui=tu‘(U), D=d/dx

1
F=(F',...F"), A=diag (A ,...A,), A20, A=A, (i#]). )
The general symmetry approach to checking up the integrability and
classification of integrable NEE (see the reviews [1,2] and references
therein) allows to obtain the integrability conditions which are
related to existence of higher order symmetries and conservation laws
in a fully algorithmic way.

The implementation of these algorithms in a form of FORMAC program
FORMINT have been given for scalar equations (M=1 in (1)) in [3] and
for the general case (M>1) in [4]. Using this program one can
automatically obtain the equations in right hand side of (1) which
follow from the necessary integrability conditions. The integrability

conditions for the right hand side with arbitrary functions have the

form of systems of differential equations, the procedure of solving
these equations is not generally algorithmic. But in the important
particular cases when the right hand side Fi are polynomials and the
integrability conditions are reduced to a system of nonlinear
. algebraic equations in coefficients of the polynomials. Recent
intensive investigations in computer algebra [5] and, particularly, in
algorithmization of analysis and construction of exact solutions of
nonlinear algebraic systems [6] allow to solve the necessary
conditions of integrability <for polynomial nonlinear evolution
eguations (1) by a computer.
The fundamental algorithms are based [6] on the explicit
construction of the so-called standard or Groebner basis (GB) of a
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polynomial ideal, which is generated by the initial polynomial system.
The GB which contains the full information of ideal under
"consideration, including the one of the roots of the polynomial
system, leads to essential reduction of complexity when solving many
computational problems in commutative polynomial algebra [6,7). In the
case of null dimensional ideal, i.e. when we have a finite number of
solutions the knowledge of GB in lexicographic ordering of variables
makes the procedure of finding solutions very simple. In the case
of "separable" GB [6] the problem is reduced to determination of the
roots of the polynomial in a single variable.

Let us introduce the following notations: fi((x)), i=1,...N is the
set of polynomials and {xy=(x,,..x) is the set of variables. Let
gﬁ(x)), j=1,..K be the GB of the corresponding system fl. In this
case we can write

GB{(fl,...f"),(xi,...xn)} = {g1,...gx} .

Note that the choice of variable ordering has an essential influence
on practical computations. It defines a particular form of GB and
also determines its structure [6,15]. Therefore, in arranging the
variables we shall use the chosen ordering i.e. X >R > LK.

A more complicated problem is the solution of nonlinear polynomial
systems with an infinite number of solutions,i.e. when we have a
positive dimension. In this case we select some of variables as
.parameters. We note that the construction of GB in rest of variables
is very cumbersome procedure. It is related to appearing complicated
rational coefficients in parameters.

As a useful example let us consider the algebraic system which
appears in the process of finding the algebraic curve (Riemann
surface) for finite-gap elliptic potentials of Lame type and its
generalizations [8). Let introduce Lame potential

u(x) = n(n+l)P(x) ¢ n=4, (2)

where P(x) is the P-function of Weierstrass.
This paper is organized as following. In sect.2 we give the basic
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equations of type (1) and in sect.3 we demonstrate the usefulness of
Groebner basis method and computer algebra for solving the systems of
equations, which appear in the classification problem of polynomial
non-linear egquations (1) of uniform rank. In sect.4 we study the
algebraic system with parameters, which corresponds to potential (2)
and discuss some computational aspects of its solving with the help of

computer algebra systems. Some conclusions are given in sect.5.

2. THE BASIC EQUATIONS

In this paper we shall consider the important subclass of equations
of type (1} with polynomial nonlinear right hand sides with uniform
rank {19]. Hence we suppose that Fi(U,..) in (1) are sums of monomials
of the foliowing type:

d d
2

) %...(U

i d
Ny ™ 4= 0, 1=i =M, (k=1,..N-1), AeC,
N-1 k k

i‘l 1 i?
Aoty Y

such that the ranks of all monomials are equal (including linear terms

in the right hand side (1)). The rank R of the differential monomial

d 4 d
u aUll..Ukk (for simplicity we miss the vector indexes i

U(x,t)) is called the following number

X of functions

R=WD+ WI,
D 1

where WD u W are the weights of the corresponding vector function U
(which are equal for all components) and the spatial differentiation
operator d/dx. The degree D of the monomial and the full number of
differentiations I are given by

k k
D =% d, I-= ¥y id4,.
1=0 )=
Further we call the polynomial - homogeneous eguations the nonlinear
evolution equations with uniform rank.

Let us consider some multiparametric polynomial - homogeneous



equations. The integrability test of such equations is reduced to
solving a nonlinear algebraic systems.
1) The scalar NEE’s of degree 7 of Korteweg-de Vries (KdV) type.
The classification problem for these equations

_ 2 3 3
u =u +A uu +A _ uu + +
(U, A uug Az Y Aauzu3 Adu u3+lsuu1u2+ksul+l7u u, (3)

and for equations degree 9 have been solved in [10].
2)The scalar NEEs of degree 7 of modified KAV (MKdV) type

_ 2 2 2 2 2, 2
u =u +a (uu +3u u +2u’)+ u‘u + +
t 7 1( 15 2 4 3) A2( s 6uu1u4 6ulu3+7u1u2)+ka(2u1u2+u1u3)+

(4)

2 2 2 2 14 4 3 2 3 6,
A (3u™u u_+1l2uu’+3uu+ +
4( Ly 1 u, 2u1) A (u u3+8u u u_ +6u u1)+A6u u,

are investigated in [11],

3)The system of two coupled nonlinear equations of KdV type [12, 13)

u =a u_+a uu +a_vv + 8 #*
t 03 1 1 2 1 aauv1+¢4vu1, a, bo' a0*0' b0*0'

(5)

vt=bov3+blvvl+b2uul+b3vu1+b4uv1, ai,b‘ec (i=0+4).

The nonlinear algebraic equations in the next section follow from
some first necessary conditions of integrability. These conditions are
related to the existence of the nontrivial local conservation laws
(within the canonical series [1,2]) of the following type

1j i R .
=Y d=1,2.0.., §=1,...M, (6)

dt dx

The polynomials R” can be computed in terms of polynomials in the
right-hand side of (1) using the algorithmic procedure [4] implemented
in computer algebra system FORMAC. In the examples given above (see
examples 1)-3)) R” are differential polynomials in the components of
the vector-function U whose coefficients are polynomials in numeric
parameters of the NEE. Due to (6), the time derivatives of

conservation laws can be the total derivatives with respect to spatial

variables of a local function. Hence, we obtain nonlinear algebraic
equations in parameters of NEE. Note that the process of generation
of these equations is fully automated using the FORMINT
program.[3,4].

The problems closely related to this classification analysis of NEE
(3)-(5) arise in the theory of NEE with finite-gap elliptic potential.
For example, let us consider the following spectral problem for Hill’s
equation with Lame finite-gap potential

2
[ - n(+1)P(0)]¥ = Av, 2
dx

The construction of the so called Baker-Akhiezer function [8] ¥(x,a)
is based on the slightly improved Hermite ansatz

n-1
¥(x,2)=exp (kx) [a (A, k,@) 8 (x,0)+ La (A% 0D (x,0)], (8)
=1

where
& (x,a)=¢(a-x) /(o (a)o(x))exp({(a)X),

and o,{ are the Weierstrass elliptic functions. The function &(x,«) is
a solution of equation (7) when n=2. Using the Laurent expansion of
$(x,a) at x=0, we can obtain [8] the overdetermined linear system of
algebraic equations in a from (8). Solving this system we obtain the
new system of two nonlinear polynomial equations of the following type

F, (K, A, P(a) P’ (@) =F,(k,A,P(a), P’ (2))=0, ()

where F1 and F2 are polynomials in their arguments, and P(«) and P’ («)
are connected with relation [14]

[P () 1°=4[P(a) 1’~g,P () -g,, (10)

where 9,,9, are elliptic constants [14]. Taking k and A as a variables

in (9) we shall consider the rest variables as parameters. Solving (9)



we can obtain the following algebraic curve (8]

L L-1 L-
C: R(k,a)=k"” + ¥ r (a)k" =0, (11)
g y=1 J

where rj(a) are meromorphic functions on the elliptic curve (torus)
c: (P’ (a) ,P(a)), which is defined by (10). The problem is to find the
curve (11) which is the L-fold covering of torus (190).

3. ALGEBRAIC SYSTEMS IN THE CLASSIFICATION PROBLEMS

In this section we study some nonlinear algebraic systems which
arise from the several first conditions of integrability (6) in
classification problem for NEE (3)-(5). As we noted above, the program
FORMINT (3,4] is used for automatic calculations of the conservation
law densities in terms of right-hand sides in equations (3)-(5) and
for checking the conditions (6) after that, i.e. the generation of the
corresponding algebraic equations.

Below we consider systematically the examples 1)-3) of sect.2. For
more details see refs. {10,13].

Example 1. Let us consider the explicit form of R in (6) for
equations with numbers i=1,3,5,7 (all the conditions (6) with even
numbers are satisfied identically, and we omit the vector index j=1)

_ - 2_ = 2 3 = 2 2 4
Rl—klu, R3 (2/7 Al A‘), R5 au+au”, R7—b1u2+b2uu1+b3u , (12)
where
- 2 _ 2_ o - 3
al— 2A1+A1A2+2A1A3 Az 7A5+21A6, a2—7A7 2A1A4+3/7 Al,

b= (52 ~32_+A)), b=a (2 -43), b=A 2.

Substituting (12) in (6), we obtain the following system of 13
equations

2 2
- = - - -2 )= - A=A+
Al(A‘ AS/2+A6) (2/7 A1 14)( 10A1+5A2 Aa) (2/7 11 AQ)(3 . AS Aé) o,
al(—3A1+2A2)+21a2=a1(2A4—2A5)+a2(—45hl+15hz—313)=0,

2a,A *a (12X, =32,+24,)=b (22,~2 )+7b,=b A +7b =0,
(13)
b (-21,-22,) +b_ (22 =81 ) +84b =0,

b,(8/3 A_+6A)+b (11 -17/3 A,=5/3 A )~168b_=0,
15bA_+b,(5A,=2)_) +b (~1202 +30X_-63 )=0,
=3bA_+b_(=A,/2+A /4-2 /2)+b (24X -61,)=3b_A +b_(40A =8 +4A)=0.

The system (13) is one of nonlinear algebraic systems arising in
the problem of NEE classification, which have been firstly solved in a
fully automatic way using computer ( IBM 3081D ) by means of
Buchberger’s method of constructing GB using SAC-2 [15]. The optimal
ordering for example 2) as well as for example 1) is the lexicographic
one i.e. A‘>AJ (i<j). This is in a good agreement with empirical
strategy (see [15]). Being rather cumbersome, the system (13) have
establish
that, using the well known invariance property u=gu. After fixing the

moreover an infinite number of solutions. It is easy to

arbitrary parameters and finding GB, the solutions of the system are
exactly the same as in [10]. Further we follow the papers ([11-13],
where various alternative possibilities to reduce the initial system
to simpler subsystems are given .

In the present paper we use the computer algebra system REDUCE 3.2
on the IBM PC. Due to that we have no possibility to solve the general
system (13) because of memory restrictions. We note that in [15] this
example is already have been computed for 55 sec. at IBM 3081D.

Example 2. The first three odd ‘densities (all even densities are

not informative ) for equation (4) are given by

2 2 4 2 3 2 2 6
R=A_u”, R=au'+au, R =bu+bu+bu“u’+b u, (14)
1 2 3 11 2 S 12 21 3 1 4



where

——4A +a - 2 .- 2 P b.o6x A =27 A ~TA + 3
a1 412 13 2/7 ll, a, As 2/7 AZ, . 7)2, - GAIAZ 2X1X3 714 3/7 Xl,
(15)
b ==42X ~6A A —2A A+ 2} 11622, b =-2A A 47A + 3
3 42A5 61114 2A1A3 9/7 AIAZ 1612, A 21215 7l6 3/7 Az.

The application of FORMINT program in [11] shows that the condition
(6) for density R, is fulfilled identically and reduced to the
following system of equations for R, and R,

alkl=alxz+14 a2=a1}\‘=a1 (6A2+2A3+3 A4) +16!3a2=a1 7&5+5a27«2=0 ,
(16)
5b1A1+2 1b2=1obl12+14b3=105b4—5b1As-b312=5blx‘+2bzxz=o .

It is easy to see that system (15)-(16) have in general an infinite
number of solutions, due to invariance of 6-parametric family (4)
under the scale transformation usfu. Below we shall check this by
direct calculation of GB for the cases when all the densities (14) are
not zero.

To simplify computation of solutions of (15)-(16) we consider the
following alternative cases [11].

2.1) R1=R3=R5=0. It follows from (14)-(16) that A,=A.=0. In this case
system (15)-{(16) can be rewritten as a =b =b =b =0. Now we give the
result of GB computations, using the notation of sect.l

GB{ (alrb21b3rb4) ’ (A11A31A41A6) } =

{a2-772 A ,a a+1an ,aa 28,0 A%
1 37173 [ TR - W Ay S B

Hence we obtain immediately that A =0 (i=1+6) is the single solution
of the system (15)-(16) and corresponds to the trivial case u =u, in

equation (4).

2.2) R #0 (i=1,3,5). From equations (14)-(16) we obtain that A =A,=0.

m— EE—

Keeping non-identical equations and using computer algebra
calculations we obtain the explicit form of the initial system and the
corresponding GB

2 2 2 3 2
GB{ (8A2-A2A3-14?«5,36A2+A2}\]—13-84?«5,10?«2-7?«2?«5-7h37«5, 21)&2—2A2A3—42A5,
3 2 =
2907+22°2 ~203A A 47354 ), (A, A A A ) b =
2 2 2
{A5-14/5 A, A2 -42/5 A, AN <TA A A ~2/5 AJ, A -126/5 A,
AA_-21a a2 -6/5 a%,a%-35/2 A%}
37s 6'"3"6 s'"s sl *
The variables in this GB are not separated, hence it is the case with
an infinite number of solutions [6]. Let us fix the value of a
variable, say, 7‘2' If we put Az=0 then the GB structure leads to zero
values of the rest variables. It means that all densities (14) vanish
in contradiction with the initial assumption. Therefore, to cancel the
numeric denominators in (15) ( note that the concrete choise of A0 is
not essential) let A2=7 and then we can again compute the GB
2
GB{(—7)3—14A5+392,-13+713—84AS+1764,—7A3A5—49A5+3430,—14)3—4ZAS+1029,
982,-1421A.+7354 +9947), (A, A, A ) } =

{Ar,-21,2_-35/2,a ~35/2} .

So we obtain the known solution A1=0, x2=7, 7«3=21, A4=0, AS=35/2,
A,=35/2 see [l11].

2.3) R1=0,R3=0,RS=0. Let us fix one of the variables. When A1=0, we
obtain b2=0 from (16) and )«4=0 from (15). Hence we have one of the
above cases which leads tc the contradiction. So we can set, for
example, A1=7, as in [11]. Then we have

2 2
GB((412-h3+14,212-7l5,23)2—613-3A‘+63,2112—21213+63A2—42X‘ 42)5,



—

3 2 2 2
- - - +
29)‘2+27\2A3 63A2+42A214 203A2A5+73516,127«2 47«213+31214 427&2)

(Az,x3,x‘,x5,x6)} = {A2+7,x3+14,x4+14/3,x5—14,16+28/3} R

It gives the solution A1=7,A2=—7,13=—14,A4=-14/3,AS=14,16=—28/3 which
is the same as in [11). Those solutions are obtained by different
methods.

The cases 2.1)-2.3) considered above exhaust all solutions of
system (15)-(16) [11]. To verify that it is sufficient to construct GB
for other alternative possibilities when some of densities R ,R R,
vanish. Let, for instance, R1=R3=0,R5:0. Then the construction of GB
gives immediately Ai=0 (i=1-6) which contradicts the assumption RS*O.

Example 3. In [13] we already gave a detailed analysis and solved
the nonlinear algebraic system on the parameters ax’bx (1=0+4) in (5),
which follows from the first 8 conditions (6), i.e. i=1+8 (j=1,2).
This result was obtained in [12] using FORMINT program (4] at ES-1061
computer. Further we can solve the same problem in two steps.

At the first step we consider the system which is a result of the
first four and partially fifth conditions. We <can study the
alternative <cases and subcases, searching equivalent set of
subsystems, which is simple to solve on the personal computer using the
method of computation of the cor}esponding resultants and the great
common divisors. To do this we use the REDUCE 3.2 system (interactive

mode) at the ES-1061. As a result we obtained four classes of

solutions
a1=a3=a‘=b1=b2=0, az*o, b4=2b3, (17.1)
a3=a‘=b1=b2=0, a1$0,a2$0, b4=-(bo/ao)al, (17.2)

(a -b }2a®-12a b®-2a%(a _+2b )a b_=0,
0 0 1 o 3 0 [] [] 1 3
a3=a4=b1=b2=b3=0, al¢o, azzo, b4=-al, (17.3)

a2=a3=a4=b1=0. (17.4)

We note that the direct construction of GB for initial system is not

possible because of very cumbersome calculations.
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At the second step we consider the auxiliary algebraic equations
which follows from the basic conditions of integrability of (6). The
final conclusion about solutions of (17.1)-(17.3) was possible when
taking the fifth (i=5) condition of integrability. The most cumbersome
calculations are related to checking solutions of (17.4) for the basic
conditions of integrability up to i=8. Next we write the explicit
form of the auxiliary system of equations on the rest parameters of
the solutions (17.4) when a1=0 and b0=a°—1, to exclude the arbitrary
rule related to the invariance of the family (5) with respect to the

scale transformations t=at,xs8x,usuu,vsvv:

— 3 2 2 2 2
E.=-2a b’+3a b>-2b°-6a b.b +6b_b +6a b- —6b°~a b =0,

1 0 4 0 4 4 0 3 4 34 0 3 3 0 4
E_=18a°b’-9a b’-18a°b_b°+18a b_b°-18a°b°b -18a b’b -27a°b>+24a b’

2 0 4 0 3 0 3 4 0o 3 4 0 3 4 0 3 4 0 a 0 4

-5b%+63a’b_b ~78a b_b +15b_b +9a°b -63a°b°+78a b -15b°=0, (18)
4 0 3 4 0 3 4 34 0 4 0o 3 0o 3 3
— L 2 2 2 2. 3 3
E_=-8a b'+12b b°~12a b b°-12b’b +12a b’b ~b°+6a b>+18b_b -18a b_b
3 0 4 3 4 0 3 3 3 4 0 3 4 4 0 a 3 4 0 3 4
2 2 2 2 _
18b3+18a0b3-4b‘+5a0b4-3a0b‘—0,

_ 2_ .12 2_ 2_ 2 2 3_ 3_
E,=b b +3a b -3b +3a b b’-5b b’-a b +15bb -15a b’b +10a b -10b3=0.

In [13] the system (18) was solved by the standard method of
elimination of variables using resultants (certainly with the help of
the computer algebra system REDUCE). But it is required to verify
whether the roots were really solutions. The construction of GB allows
to eliminate that cumbersome step. In this case we have

GB{ (E,E,,E_,E,) (b,a,b)} =

2 3 2 2 , 3 2
{b3 b3b4+1/8 b4+1/8 ba'aob3+5/3 b3b4+2b3b‘-5/6 b4—5/6vb‘,

3 2 3 2 2 4.2
b3b4+b3b4—1/2 b4-1/2 b4,b3b4+1/3 bd,bﬂ-b‘} .

11



Hence we obtain all roots previously found in [13]: (ao,ba,bﬁ
={(§fc,o,0), (-1/3,1/2,1),(1/3,-1,-1) }. Note that the calculation of
GB in examples 2),3), including the case 2.3) which we do not

consider here, takes only 5 minutes on the IBM PC AT (10 Mgz).

4. AN EXAMPLE WITH PARAMETERS

In the cases above there are no free parameters in the nonlinear
algebraic systems. When we have such parameters the problem of solving
these systems is much more complicated. Constructing the GB we can
transform not numerical polynomial coefficients but complicated
algebraic expressions. It needs incomparably more computer resources.
such a situation takes place in example 4) of Sect.2. Let us consider
the explicit form of the algebraic system (9) for acne-dimensional
Schrédinger equation with Lame potential (7) ( n=4 in [8]).

Example 4).

F1=35k‘—k2(3ox+2 109)+1409’ k+3A°-1059°-2 19,+30PA=0
{19)
F,=(51-1409) K*+210p K7+ (-32%445PA+12 sg2-4201>3) k+70PP’ -25A9 =0

We recall that the variables here are k and A and the rest ones
DED(a),D'ED'(a),gZ are parameters ,besides, D u P’ are related with
algebraic equation (10) which contains one more parameter gs,. The
computation of GB of the system (19) on IBM PC is not possible because
of memory restrictions (640 KB for the computer algebra system REDUCE
at IBM PC and the compatible computers [16]. It is impossible to use
larger memory even on the 32-byte computers). Tc solve this problem we
have been used the most powerful computer algebra systems SCRATCHPAD
ITI which has the developed facilities to treat complicated algebraic
expressions (see review ([16]). In addition, wusing the system
SCRATCHPAD II we can take in account the relations like (10) at each
step of computations and thereby to simplify intermediate expressions.

12

As a result we can obtain
GB{ (F,F,) (2,k) b=

&

{246 (k,9,97,9,,9,) kK "-45Pk*+120P° K"+ (~6309°+399/4 g )K®  +5049p'K°

+(-10509°+1725/4 g9,+735/4 pgz)k‘+(3sopzp'-1ssp'g2)k3+(-189/4 gz

-3159%+2205/4 9°g,~855/2 1)g3)k2+(-163Dp’g2+1251)’g3+401)31)’)k
(20)
-9p°-75/4 P9’ -75/4 9,9,+9/4 9°g,+309/4 a9t

where G(k,p,p',gz,ga) is the polynomial in k of degree 9, coefficients
of which are the complicated rational expressions in parameters. These
calculations took 260 sec. of CPU time at IBM RT PC.

The second term of GB (20) is the desired algebraic curve (11).
Indeed, the structure of GB (20) shows "variable separation". It means
not only that system (19) has a finite number of solutions, namely ten
(counting multiple roots), but the fact that the first term of the GB
corresponds to elimination of A from (19) without appearing
superfluous roots. In the paper [8] algebraic curve (20) has been
found using the Moses elimination method (see HH-algorithm in [8]
implemented on the computer algebra system REDUCE as well). The method
generalizes the standard technique of sequential <calculating
resultants to the case of arbitrary polynomial systems and so,
generally, leads to superfluous solutions. As we mentioned above, the
solution test and the elimination of superfluous roots is rather
cumbersome procedure even for free-parameter case. For systems with

parameters this procedure is impracticable.
5. FINAL REMARKS
The above analysis shows that the GB technigque is very useful to

automate the process of solving nonlinear algebraic systems which
appear in study of NEE. This approach admits not only full al-

gorithmization and realization of GB construction on computer algebra

13
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systems, but also investigation of other principle problems. In
particular, the presence of a constant term (not depending on the
variables) in GB list indicates the incompatibility of an algebraic
system [6]. Moreover one can find the dimension of an algebraic
variety {18}, i.e. the dimension of the root space, for a given set of
polynomials. In classification problems it allows to determine the
number of variables which can be considered as arbitrary parameters
and to express the others in terms of them.

Certainly, in general the solution process is not possible in the
full analytical way. However, the structure of GB shows that in the
case of finite number of solutions the problem is reduced to finding
roots of polynomials in a single variable. To solve this problem there
are effective numeric methods. For polynomials with the rational
coefficients one can efficiently obtain rational boundaries of real
roots by computer. In other words, one can compute a sequence of
disjoint intervals with rational end points, each containing exactly
one real root {19]. Besides, the recent great progress in
algorithmization of polynomial factorizing [20} and in its
implementation in highly developed computer algebra systems ({16]
simplifies the problem.

It is remarkable, that in the cases considered above which are
related to the classification analysis of integrable polynomial -
homogeneous NEE, the proklem of finding solutions of the corresponding
algebraic equations are completeiy solved. This is in accordance with
the fact that GB has sufficiently simple structure (see the examples
in Sect.3). There can be no doubt that it is closely connected with
the property of integrability.
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lepnt B.I., WapkoB A.H., Koctos H.A. E5-89-624
HenuHeiliHble 9BOJIWLLHOHHbIE YPaBHeHHA H DeleHHe
anre6padyecKHX CHCTEM: DOJIb KOMNbIOTEPHOH anrebps

B pa6oTe omHCaHO NpHMeHEHHe MeTO[0B KOMIBbITEepHOH anred-
pbl OSIf pemeHHs HesMHeHHbIX NOJHHOMMAJbHBIX CHCTEeM, BO3HHKAaW-
IMX IpH HCCJeJOBAaHHH HeJIMHeHHhX 9BOJIOLHOHHbIX YpAaBHEHHH.
PaccMOTpeH psp cHCTeM, KOTOphle [NONy4YawTcs NPH KjiacCcHpHka-—
UMM HHTEerpHpYyeMbX HeJMHeMHbIX 9BOJIOIHOHHBIX YPaBHeHHH O[HO-
pogHoro paura. [oJguHOMHANbHbIe CHCTEMbl gpYIrOH IMpHUpOObl CBaA-
3aHbl C HaxoxgeHHeM anrebpaniecKHX KpPHBbIX [JI1 KOHEUHO-—-30H—
HbIX SJUIMITHYeCKHX I[IOTeHIHMAaJ OB THIa noTeHuHana JlaMe H ero
obobmeHuii. Bce paccMaTpuBaemble B HacTosuweH paboTe NOJHMHO-
MHallbHble CHCTEeMbl pemeHbl MeToAOM, OCHOBAHHbBM Ha NOCTPOEHHH
6a3ucoB ['pefGHepa A NOMHHOMKANbHLIX HOeall0OB, eHepHupyeMmhix
HCXO[HOH CHCTEeMOH H peallH30BaHHHX B BHOe IporpamMM, HamH-
CaHHBIX Ha A3bIKAX aHaJIHTHYECKHX BbIUHCIEHHH.

Pa6ora BbmogHeHa B JIabopaTOpHH BbIUHCIIHTEJIBHOH TEeXHHKH
1 asTroMmarusanuu OHAH.

MNperpusT OOBeIHHEHHOTO HHCTATYTa ALePHLIX HccneRoBanwii. [lyoHa 1989

Gerdt V.P., Kostov N.A,, Zharkov A.Yu.
Nonlinear Evolution Equations and Solving
Algebraic Systems: the Importance
of Computer Algebra

In the present paper we study the application of compu-
ter algebra to solve the nonlinear polynomial systems which
arise in investigation of nonlinear evolution equations.
We consider several systems which are obtained in classi-~
fication of integrable nonlinear evolution equations with
uniform rank. Other polynomial systems are related with
the finding of algebraic curves for finite-gap elliptic
potentials of Lame type and generalizations. All systems
under consideration are solved using the method based on
construction of the Groebner basis for corresponding poly-
nomial ideals. The computations have been carried out using
computer algebra systems.

The investigation has been performed at the Laboratory
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