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Ona MogmenH B3aHMOOEHCTBVYIOMHX CMHMHOB C TaMHIBHOHHAHOM

H-= %‘ 21 ?(j-k)a ak,r‘ue OOHH H3 IepHOOO0B ?—_(bym(unu Beiiep-
Mk
mrpacca paBeH N, HaiimeHw AOMOJIHUTENIbHbIE HMHTEI Pallbl nsaxe Ha
" H npeacTaBlIeHHe Haxca. llemouku Teiizen6epra u XongeiHa—
llacTpH ABnAwTCA npedenbHbMH CIIyUYasiMM 3TOH MoOenH, c00TBeT-
“CTBYWIHMH HEeKOTODbM 3HAUeHHsM BToporo nepuopna. HaiifgeHsn
coGCcTBEHHbe BEKTOpPH raMUNbTOHHAHA, OTBeYalmHe COCTOAHHAM
paccesHHs OBYX CHHHOBHIX BOJIH, KaK [OJIT KOHEYHbIX CHCTeM, Tak
H ansa HxX GecKoHeyHOMEpPHOr'o aHamora.

PaGoTa BhmonHeHa B JlaBopaTopHH TeopeTHYecKoil GH3HKH
OHSIH, o _
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On the Connection between the One-Dimensional
s =1/2 Helsenberg Chain and Haldane-Shastry
Model

Extra integrals of motion and the Lax representation
are found for interacting spin systems .with the Hamilto-

N :
nian H=.élj kzl P (j-k)&’j&’k, where one of the periods of the
N 'j ; K .

Weierstrass P-function is equal to N. The Heisenberg and
Haldane-Shastry chains appear as limiting cases of these
systems at some values of the second period. The simplest
eigenvectors and eigenvalues of H corresponding to the
scattering of two spin waves are presented explicitly for
these finite-dimensional systems and for thEIr 1nf1n1te-
dimensional version. - . '

The investigation has been performed at the Laooratory
of Theoretical Physics, JINR,
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1. INTRODUCTION

This paper is devoted to the study of the problem on integ-
rability of the one- d1men51onal S = 1/2 spin chains with the
Hamlltonlan

h(G-k) 7o , h(x) = h(-x), x € Z,

H=-
2 1
k

Jc

j (1)

‘H\“MZ

which for a long time have been used as a model. of ferromag-
nerism and antiferromagnetism. The simplest possible model of
the type (1) is the famous periodic Heisenberg chain/! with
the interaction only between nearest neighbours Ce

h(x) = 8,, + 0<x<N. ' (2)

N-1,x *
It is well known that this model can be included in the
Yang - Baxter scheme and has transfer matrix with the depen-
dence on a complex parameter. All the local integrals of mo-
tion can be generated as derivatives of the logarithm of the@/
transfer matrix on this parameter evaluated at a fixed point’ %,
The spectrum is relatively complicated and.can be obtained by
solving the set of transcendental equations of the Bethe an-

satz. ' ‘

Recently Haldane’/3/ and Shastry’/4’ have constructed a num-
ber of eigenvectors of the Hamiltonian (1) with the "poten-
tial"

a2

h(x) = .
stinz(-nﬁ-) , (3)
N .

The spectrum of this model seems to be completely equidis-
tant, the most of the energy levels are highly degenerated.
There is no doubt about integrability of such a system, but
the extra integrals of motion have not been found.




Nothing is known also about the analog of the transfer
matrix and the connection of the model with the Yang-Baxter
equations. :

It is natural to suppose that the integrability of the spin
1/2 chains like (1) and of one-dimensional systems of interac-
ting particles in classical mechanics is based on essentially
the same Lie-algebraic ground. One can expect a deep analogy
between them, as mentioned also in 4/. One of the purposes of
this paper is to exploit the methods known in classical dyna-
mics for investigations of the quantum systems (1). I shown
that the "potentials" (2) and (3) are connected in a simple
but unusual way. The systems' (1) with them have some common
properties. Some extra integrals of motion for the Haldane -
Shastry model are also presented. '

2. THE LAX REPRESENTATION

The integrability in classical dynamics in most cases is
associated with the existence of the Lax representation of the
equations of motion, i.e., the equivalence of these equations
to the bilinear matrix relation -

— ={Hg,L}=[L,M], (4)

where L and M are quadratic (possibly infinite) matrices de-
pending on dynamical variables, [...] is the matrix commuta-
tor, Hgy is the classical Hamiltonian, [{...} is the Poisson
bracket. As a consequence of (4), all the invariants of L,
for example I, =trﬂ;k ) sk € Z, belong to the variety of classi-
cal integrals of motion. o o

For the systems of particles interacting with each other
through the pair potentials, the structure of matrices L and M
was established in’/%/ . In the case of interacting spins it is
natural to construct the operator-valued matrices L and M
obeying the quantum analog of equation (4)

[H,L]=[L,M], (5)

where the elements of the matrix {H,L] on the left-hand side
are commutators of the Hamiltonian and matrix elements of L.
The proper modification of the classical ansatz’/5/ in this ca-
se is the following: the dimension of L and M is equal to the

number of spins, N, and

Ljg = (=85 ) £(j ~k) {1+ SjZk ),

(6)

M- ._(1 > 1 . N. ) > o
o= Hroyo ) (L-8,)g(~k) + 8y Sz,éjz(j‘s)(“”j”s)v

where & is the usual Kronecker symbol (all the diagénal‘ele-

stiEuE?on”of (1) and (6) into (5) that the ""quantum Lax repre-
sentation”’ exists if the following conditi i

ions i
for all nonzero X,y €2: - are satistied

Z(x) =-h(x),  (7a2)
f® e - (e® =1z +y O) -hE) , | (7b)

(®) g(-%) ~1(-x) g(x) = f(x+N) g(-x ~N) = f(~x - N) g(x+N). (7¢)

. Ths first two conditions appear also in the classical theo-
y,bw ere the arguments x and y are arbitrary real or complex
222 EE:. T?e 1§st condition of periodicity, (7c¢), appears only
spin chains and is completel i

g pli y absent for continuum

The general solution to (7a-b) is well known’6/,

g . Up to ;-
vial exponential factor it is given by the formulas P FO tri
B(®) =-2(x) = £ (x) £(-x) + const = P(x) + const,

E(x) = - af(x) , . (8a)
ax .
o(x —a) .
f(x) = — Do :
O(X) 0((2) 'exp(xé(a))’ - ! (8b)

where ?(x) , .
functioég {(®) , 0(x) are the usual Weierstrass elliptic

; @ =-2), T .
P@x) = .%. 3 1 __1_)’ ) C(’f), < at x»0
X* yel (x-y)® 42 o - (9

ag’(x) = 4(x) o (%), -1 atx - 0,

X
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The sum in (9) runs over all points of the lattice I' on the
complex plane,

except of the origin of the coordinate system m,;=m =0.

The "spectral parameter'" a is defined on a complex torus c/T.
The function (8b) obeys also the elliptic Lame equation’®/.
The last gondition (7c) is satisfied if and only of one of the
periods of Weierstrass functions (for example, wi) is equal to
N. The choice of the second period, @, in the imaginary axis,

wy Ew =ik, Imk=0 (1.0)
guarantees that ?(x) is real at real x. For definiteness we
shall choose k to be positive. Finally, we have shown that
the systems (1) with a real "potential' h(x) = ?(x) depending’
on an arbitrary real parameter « have a "quantum Lax represen-
tation" of the type (5-8).

Let us consider some limiting situations.
riod @ » =, the asymptotic behaviour of the

As the second pe-
P-function is

: ¢ 2
‘(P(x)la)-’m -3 ( 1 X -—L)
sin” =&
T

(11)

and we obtain, up o a trivial term proportional to the square
of the total spin S commuting with all the Hamiltonians (1),
the Haldane-Shastry chain. Another situation when the Weier-
strass functions are degenerated into trigonometric ones, is
the limit of a small second period. One finds

2m 27 - 27
( 78 1 _-7ﬂ | ~?4N_XI e KIN+XJ ) +
?(x)lw_,o =-’-<-2-(-§+4(e + e : +
- 4| In-xl -3 IN+xl
+ O(e +e +8 , |x|<N,zxc2

By adding to the Hamiltonian (1) with h(x) = P(x) the term

2
‘JEL(4§2 -3N) , performing renormal1zat10n' of the constantJ
6« :
J in (1), IxF GXp(—-), and taking the limit w- 0, we ob-

4r 2

4 .

w2
I =lm1w1 +m2(¢)2} (ml,m2€ Z, a)l,a)zGc, Imz)—-l-,-é 0)

s,

bers, i.e.
needs a new way to construct nontrivial integrals.

tain

H

hg(®) =

2 2 7 ?
lm (S exp—=) (P (X) = ) =8, +y_ ,X€Z,
w->0 4172 P K ( 3K2 1X. N-1,x

0<x<N

that is the "potential' of the periodic Heisenberg chain. We
see that both the models (2) and (3) can be obtained from (8a)
as some limits and also have a Lax-representation of the type
(5-8). The situation is completely analogous to the case of
continuum classical models where the periodic Toda and Suther-
land particle systems can be treated as the limits of the sys-
tems with interaction through an elliptic potential ’

Finally, when the namber of spins and, consequently, the‘
real period of ? tend to 1nf1n1ty,

and we get a model for an infinite one-dimensional magnetic
chain with short-range interaction depending on the parameter
Ks ' ‘ :

oy

hoo(x) = (12)

« Zsinh %(7X)
K

Taking the limit «x-+0 after a trivial renormalization of J

2 27
K P
in (1), J -~ z:ke , we obtain an infinite Heisenberg chain

treated by Bethe/¥/.

3. THE EXTRA INTEGRALS OF MOTION

Contrary to the classical models, the existence of the Lax
matrices does not guarantee that the invariants of L would be
integrals of motion in the quantum case. For the matrix L of
the form (6) the situation is even more pes51mlst1c. it is easy
to show that the first two invariants U(L )Yare tr1v1a1 c-num-
they do not depend on spin operators {o } . One



Let us consider the 2N x 2N operator-valued matrix

Ik, af

where
1 -

t =-(1 +0g0y )

and the Greek indices of A stand for elements of the extra

Pauli matrices {aol . The matrices tj have usual properties

ts =1, miyty= ——(1+ajak)

()]
X . -»> 3 I3
(tr denotes the trace over the indices of 0y the multiplica-
)

tion of t’s is performed so that {o;} are treated as operator
coefficients of 00) For the operator (13) there is no analog
of the Lax equation (5). However, it is easy to show that, up
to the total spin, S R

N
wA*en -2 2 h(- majk,:m-k)=m-Mfm—n.
2 jk=1,hk

where Tr denotes the trace over both the Latin and Greek in-
dices of A. The calculation of the next invariant of A, Tr A3,
gives, up to a constant additive term,

N

TrA® - -1

_12_ ef(j-k)f(k—ﬂ)f(_ﬂ—j) (@jogoyg) +..

J#k#
N N (14)

7 p il £G - k) (& - £) (0 ~ fk—j)f((l k)£ =0)1,
+4j§k%”kggk (G -k) T - 0) £(€ - §) +£(

where the operator (a = 31 -(;kxai) is completely antisym-
metric in the indices 83kl)

By the direct calculation of the commutator of these inva-
riants I have obtained the following result: if f(x) and h(x)
obey the conditions (7b-c) guaranteeing the existence of the

Lax representation (5), then
[TrA®, TrA®] = 0. : (15)

The terms quartic in the spin operators disappear in the
commutator if the functional equation (7b) is satisfied. The

6

terms of third and second orders in spin operators are absent
if the periodicity (7c)-also takes place.

The use of an explicit form of f(x) (8b) simplifies (14).
With the help of addition theorems for.?,{-funtions and the
well-known in the theory of sigma-function formulas

: , 1 Px) ?° x)
U(X—a)a(x+a) 1 ?(x)

c2(®) olla |1 P

o(x~a)a(y-alo(x-y) 1
: = 19 P
o %(x) 03(y) 03(a) z » 7w

1 Pa) P(a)] >

one can show that the second term in (14) is proportional to
the square of §, and

TrAS =--%(f1?(a) +f2) +const-§2, ‘ (16)
where
-~ ' N L
Iy = 2 [4G-k) +{&-0)+ {U=-})](o;0,0p),
iFxél
.
‘fz - s [2({(] k) + (k- Y)+C(f J)) +P(-k) +9 (k—€)+? U-PIx
i# k#L ‘x(o akUg)-

Both the operators 11 and Ig commute with the Hamiltonian
because of eqs.(15), (16) and arbitrariness of the "spectral
parameter' a. They are functionally ‘independent. So, the spin
models are principally  different at this point from classical
particle systems where the trace of the (k+l1)th degree of the
L matrix comtains only one integral independent of the integ-
rals in traces of the first k degrees of L.

For the trigonometric degeneration corresponding’ to the
Haldane - Shastry model there are more simple combinations of
the limits of I, 12:

N o
S 4. 0-06,&-06 (L -]l o0y, =12,

—)

ST Andl

X o Sl
¢, = coth"_N, $,(%) = (sinh 'ﬁ')



So, the first four terms of a decomposition of the operator
r(A, a) = Tr[exp(AA(a))] a7

in the parameter A, give the integrals of motion for the mo-
del with the "potential" (8a). It is likely that (17) can be
treated as the generating function of these integrals depen-
ding on two parameters, A¢C and a€ C/I'. One may suppose that
this operator is a formal analog of transfer matrix for this
model (and the Haldane-Shastry model as a limiting case). The
full proof of this hypothesis finally confirming the. integra-

bility of the model is yet absent.

4. THE SIMPLEST EIGENVECTORS

Here we shall consider only the ferromagnetic case and in-
vestigate the state vectors corresponding to one or two spin
waves. Let us denote by |[0> the state in which all spins have
the same projection on the z-axis. Let the operator a* trans-
form |0> to the state in which the sign of the projection of
jth spin on the z-axis is opposite. It is convenient to begin
the consideration with a slightly more s1mp1e case of the in-
finite chain (12).

We shall use the Hamiltonian differing from (1) and (12)
by the constant term,

2 3j;k_1 ~
( ), H_|0>=0. (18)

m

M3

ﬁm =—i
2 jok
j#k

-0

xzsinhz(l;-(j - k)"
The calculation of the energy of a spin wave with the mo-
mentum p, '

- g, = I exp(ipk)ay 0> ' (19)
Kk =—o .

is based on the formula

00 ikp -~ ~
F@ - 5 I-° L) g p(EX L
k =woo :r<2[sinh—71(k+‘z)]A2 o(z-1p)
K
8

-~ -~ —~ ? ? f‘};’ .
<[P @ - P, + (LG,) - 4(—»( o T " T0) 20y
F@) -Fap Py

-

Hereafter o =ik ,rp-——- ? C are the Weierstrass func-

tions with the periods (1 ®). The derivation of (20) is based
?n ghe qua51per10d1c1ty of the sum in the left-hand side of
20

F(z+w) = F(z), F(z+1) = exp(-ip) F(2),

on the structure of its only singularity at the point Z=0

on a torus obtained by a factorization of a complex Z-plane

on the lattice of periods (1, ®), and on the Liouville theorem
for elliptic funct1ons -The substitution of (19) into the equa-
tion H_ wp ¢ gives

gl (% T 2 -~
(D 9@y 4 5o ,,) €ep) - =22 4
P w
(21)
2r

~ ~ 2 -~
P2 ) - =2 LD 4 = 2.

Taking the limit « » 0 after the multiplication of (21) by

2 .
_5_§exp(f§1) we get the standard dispersion relation for the
K e

4n, .
spin wave in an infinite Heisenberg chain.

Before constructing two-magnon states note that formula -
(20) admits the following evident generalization (£ & Z)

o w e lkp Frd
: coth—(k +L+2) =
k = —oo x%smm%&+zﬂ2 K

I CLL Y. exp (-—c(—» x _ .
a(z—ﬁ) K. ’ (22)
~ ~ - o, ~ L
x[P(2) = D) + (LG ) - ——L(2) + "'"I"é'T"(l _etelyy o
@, snh(—:—

P - Fey) ey
T(z) - ?(\' p) §’ (rp)

X



The scheme of the proof for (22) is the same as for (20).
The structure of this formula shows that the two-magnon state
is described by the vector

(e0) | oy i(pyky+pgko)
= S le VU Reimh T ik, Ky 4
" P1P2 Ky kg=—ce K n
ky# kg

(23)

. Frd L -1 3 +
+e sth(kl-kz—-%y)](smh-’:l(kl-kz)) aklak2|0>

o (o) @ | ()

substitution of which to H“¢plp = eplpzz/;plnglves
) 2

@ .M, -
‘bpg Py by’ 4 - (24)

where e},l) are calculated accoprding to (21), and the phayse

v is connected with impulses p; and p, by the relation

cothy = [C(z )—é’( )+p

1=P2r o
T

=

In the limit @=+0 it is just the expression for the Bethe
phase in the Orbach parametrization. As for the infinite
Heisenberg ferromagnet, according to (24), the additivity of
magnon energies, takes place.

In the case of finite spin systems con51der the Hamlltonlan

= e — 2 k ,‘ 0>= .
2 j#k G- 2 :
k=

It the same way as for (20), (22) one can obtain the formu-
las for the sums of Weierstrass functons,

" 24:(%) mz)

N~-1 . ~ (‘;(Z.*_l‘m)”

3 expClimk) Fkez) = - — exp ( NP @ - Pa)+
k=0 N a(z'-rm)
' hﬂ (25a)
7 2r > .‘P(z)_?(r) ?"(rm))]
+ (r)-—- (-—-))(-—-———-——-:—-—-——-—-——j:-;——'-— '
P2y -P(p) ey

“10

where m& Z, m<N;

wm
m= N

N-1
-{ , - 5
S Pk+z) Mexp(iak) - all-y) Z(Z+ ray) ) x
k=0 ok - £+2) ‘ a(l)  G-rg,)
)y +1§(—-)a]l[?(z) - ?(ray (25b)
'~’ _“ ’ § ~ - —
+(?‘EZ) fi'(l‘ay)_ _ (l'ay))(é_(ray)_*_ (e 2y) (D)
Pl2)=PGay)  F7(gy)
iaf o (D) ' ((—5) §(-22)y +i{(—;’-)a
e _
SRR ek TY) —1,
20(L -vy) . 4rni
where g and y are connected by the relation
' -1, -1
empliaN + yd( =1, £€2Z; 1, =-0n lao +i vl

The expression for the energy of the spin wave (19) for
which the quasimomenta {p} are quantized according to the pe-

riodicity condition, p_= 2y , 0<mgN-1, m&Z, can be easily
found from (25a), N

6(1)(pm) = ¢ ), l'm=-—(§£—, '
80 = 7@ + (70 - 3'_4(_“’))+2(¢(r)—¢(-“§’).2—a§) + 2N

0
Let us search the vectors of two-magnon states in the form
analogous to (23), :

s g [6!P1E 1+P 2k2) ok -k2+y)+ i(pok +p ok -kz-y)]
P1Pe Kk, kp=1 ok, -k,) ok, -k F
kyf kg : (26)
The quasimomenta Py» Pg and the phase y must be determi-

ned from the periodicity conditions and gy (1) = € %,?,2 '/’p(Fp)z
By using eq.(25b) one makes sure that (26) is just the eigen-
vector of H with the eigenvalue

)

oy o ¢ @, y) +¢(r })+fP(y) + %),

11

0>.



where

-1 -1 -1 -1
fpy==@m @+ UG, tpy=-U4m) (o +i ¥,

and (p,.Py, ¥) 1s an arbitrary solution of the system of trans-
cendental equations

em(ip N + 2y0(3)) =1, emp(ipgN - 2¢(z) =1,

) 45(92-) | 44(5)y
§(2rv C(2rp y +T(rpzy—\frply)+ ~ -2¢(y) =

In the limit o »0 these equations coincide with the equa-
tions of the Bethe ansatz for the qua51momenta of two-magnon
states in periodic Heisenberg chain.

The investigation of the states with a larger number of mag-
nons can be performed in the case of the infinite chain-on the
basis of the summation formula for trigonometric series gene-
ralizing (22),

o0 n2 e ikp a(z+r3 -
b3 Il coth—(k+z+ﬂ ) = -—-—-exp( C(—))
k- &% (sinhZ(k + 2))° A ko o olzry)
n 0, ~ ~ 5’.’(2) - ?’(r ) 9-’.”(r )
x(/\ﬂ coth—”—-'\-){?(!)-?(rp)+( — - > e > ) x
=1 K ?(z)—?(rp) ?'(rp) , (27)
2rp 2772,, -1
X[C(l' )--—c(-)+—( E  (sinh ) -
K
n exp (-ipf,) n n 772
-3 ___.___( }z com—(e -2, ( n coth ) )]},
v=1
2 sin —

n
where {QV} are nonzero integers, H (ZA-QH) # 0. I know also

an analogous formula for the summation of a finite series con-
taining like (25) the elliptic functions.

But, contrary to the infinite chain, this formula is not
- useful for the construction of the eigenvectors of H. The si-
tuation bears a strong resemblance to the quantum systems of
particles on a line. In this case the wave functions can be
easily found for the trigonometric Sutherland systems, but for

12

elliptic potentials of pair interactions the single known re-
sult is a solution of the Lame equation for two-particle sys-
tems. At the classical level, the trajectories of particle
systems in an elliptic case were found by Krichever 78/ by the
methods of algebraic geometry and the solution containing the
multidimensional Riemann theta functions. As for my knowledge,
nobody for this time indicated the way of solution to the cor-
responding quantum problem.

5. SUMMARY

In this paper the simplest properties of the spin model ge-
neralizing the Heisenberg and Haldane-Shastry chain were found.
The most important problem in further investigation is, in my
opinion, the proof of the hypothesis on the existence of the
generating function of integrals of motion (17) and the fin-
ding of its connection with Yang-Baxter equations. As for pu-
rely calculation schemes, it would be interesting to indicate
a simple way of constructing the states with an arbitrary num-

‘ber of magnons, especially for the periodic chain.

It would be interesting also to investigate the possibility
of the destruction of SU(2)-symmetry of the Hamiltonian. In

" particular, one can expect in the XXZ case, as in the Haldane-

Shastry model, the conservation of integrability for values

m(m+ 1 1)

of the anisotropy parameter A = smcZ, m>1. These

numbers appear in the equations determining the Legendre poly-
nomials and Lame functions as parameters at which these equa-
tions have solutions without any branch points. For the prob-
lems of finding the eigenvectors of the Hamiltonian like (1)
this fact corresponds to the possibility of analyt1cal summa-
tion of the series of the type

2 exp (ikp)
2 [sinh-Z(k+2) ]

s

k== «

P (coth—::—(k +2))

and their generalizations like (25) and (27) (P denotes an ar-
bitrary polynomial). It is likely that the corresponding for-
mulas would be lengthy and complicated.

The author would like to thank Drs.E.K. Sklyanln ‘and-
A. L.Kuzemsky for useful d1scuss1ons
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