0GbeAHHEHRbIA
HHCTHTYT
AAEPHbIX
mmMIHNMm: _ WECABA0BARHH

avea @ H‘n (SRR
_nyﬁua

A ‘30‘ — | ‘ E5-8{9—H09

V:M.Adamjan*, H.Neidhardt

ON THE SUMMABILITY OF THE SPECTRAL
SHIFT FUNCTION FOR PAIRS

"OF CONTRACTIONS ,

AND DISSIPATIVE OPERATORS

‘Submitted to "Journal of Operator Theory"

* Department of Theoretical Physics University
of Odessa, USSR -

1989



1. Introduction

The spectral shift function can be regarded as oné of the
fundémental notions of the perturbation theory. This function,
originally arisen in the physical literature, attracted attention
of mathematicians after the pioneering work by I.M.Lifshitz [20}.
rThé mathematical theory of this function was performed by M.G.Krein
[12-14], who has vintroduced the 'name of tﬁis function in the

literature. Let (H,H )} be a pair of self-adjoint operators on a

separable Hilpert épace b 'which are different bx a nuclear

operator. In [12) M.G.Krein has proved the existence of a summable
real function £(.) defined on ®Y such that for a certain class of

functions y¥(.) the relation
(1.1) tr{y(H) - ﬁ(Ho)) = I E(A) ¥/ (A) ar

holds. The function £(.) was calledrthé spéctral shift function of
the pair (H,Ho); and thé reiation ifself, the trace formula. In
[13]) this result was gxtended‘to.a-pair §f unifary operators (U,Uo)
which differ by a nuciear operator. It was shown that again for a

rsuitable‘qlass of functions p(.) there is a summable real function

u(f) defined on [~m,m) such‘that'the’trace formula
. . n a ie ;
(1.2)  tr(e(u) - p(u)) = [u(e) g5 p(e’”) ao
L

is wvalid. In coﬁtrast with the previous_case'the function up(.),

which is again called the spectral shift function of v,u,), is

determined by (1.2) up to a real constant.' Using the Ccayley
il +H i+ Hy

° :
transforms U = 35 § and U, = 13— H, - in  [13), M.G.Krein

established that (1.2) results in the relation (1.1) agsuming that

. | st

'

the resolvent difference of the self-adjoint operators H and H, is
nuclear. But the generalization is accompanied by weakening of the
summability 'of the spectral shift function because in this case

1 on'Rl, i.e. £(.) €

£(.) is summable only with the weight (1 + 2%)~
t}@®, 2 + 2%)7lda) instead of £(.) e LY(R',dr). Further
investigations of the spectral shift function were carried out in
[14] by M.G.Krein. Up to now.there is a lot of papers on this
subﬁect in which detailed information on this function can be found ,
[7,17,15,24). However, it must be remarked that in @gst of the
papers either a pair of self-adjoint operators or a pair of unitary
operators is considered. To include othef classes of operators in
the investigation of the spectral shift function is a rather new-
branch attracting more and more attention of mathematicians in the
last years.

One of the first going in this direction was H.Langer [19). A
further attempt was made by L.A.Sahnovié [28]. R.V.Akopﬁan {2,3,4]
tried to extend the vconcept of spectral shift function to
self-adjoint operators on Krein spaces. In [2] he found a pair of
non-negative bounded self-adjoint operators on a Krein space
differing - by a nuclear operator so that a summable spectral shift
function did not exist. In [10,11) P.Jonas was able to extend the
trace formula to a broad class of operators generalfzing the
spectral shift function to a distribqtion. .

_ In 1979 V.M.Adamjan and B.S.Pavlov [1]) made a start to extend
the trace formula to the class of maximal dissipative operators.
In the following this development was continued by A.V.Rybkin
[25-27]). Recently, a paper by M.G.Krein (16) has appeared which

was devoted to the same problem. Attention to this probieﬁ was
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also paid by H.Neidhardt in [21-23]. In [21,22] the pair
{H = Ho + V,Ho) was . considered where V is a nuclear dissipative

operator. It was found that a trace formula

1 2

(1.3 ) tr{(H - z) ~ - (H, - z)71y = -I EQ) (A - 2)7° aa,

im(z) > 0, makes sense if the nuclearity of V is strengthened; for
instance, if Im(V) € ﬂl/z(b).

0 < p < +», denotes the class of compact operators on b whose
+o .
elements are .characterized by ¥ sk(A)p < +@ where (sk(A));=1
: k=1

Here and in the following £p(b),

‘denotes the set of singular numbers of the compact operator A.
Despite thé stronger perturbatidn it was foﬁnd th;t in contrast
with [12] the reai spectral shift function £(.) belongs only to
Ll(Rl,(l + Az)_ldh) and ﬁence £(.) is defermined up to a constant
by (1.3). Furthermore, the representation ‘

(1.4 ) £() .= % lim Im log det(I + V(H, - A - i)™y + const.
£95+0

1 ( with respeét to the Lebesgue measure

was proved for a.e. A £ R
|.] on Rl) in [21,22]. Howevef, as it has been pointed dut in'[22]
the right-hand side of (1;4) makes senge assuming only that v is a
nuclear dissipative 'opefator. Thus, the possibiiity arises to
define a spectral shift function of (H,H ) forgetting the trace
formula (1.3). But doing so, it has been found in [22,Example 3.10]
that a spectral shift function thus defined is in general not
locally summable (compare with [2]). However, the arbitrariness of
the spectral shift function is limited by the condition that'E(.)
belongs to the class of weakly summable quCtions, i.e. E£(.) €

Li(Rl,dh). We recall that a measurable function'f(.)'on’Rl‘belongs

.

to Li(Rl,dh) if its distribution function

me(s) = |{r € rl: | £(s) |>s>0)| obeys the condition sup(s me(s)) <+,
o s>0

Obviously, the inclusion Ll(Rl,dh) < Li(Rl,dh) holds. It s
well-known that functions of Lé(Rl,dh) allow singularities of the
type (A - a_)"L.
o

As it was pointed out in [23], these results allow an
extension to a pair of contractions {T,T,) defined on h. Denoting
by 6 the set of all functions on n = (z € cl: |z] =1) -derivation
of which possesses adbsolutely convergent Fourier series and

introducing the decomposition

. +w s . N

(1.5) (e’ L & e A Can I CI

. +w .
(1.6 ) ¢ ('t =1 aellt,

+ ! .

. +o0 .

(1.7)  p_(e'f) = a_ '™,
m=1

t e [~m,m), p(.) € Gn’ the existence of a summable sbectral shift

function u(.) € Ll(—n,n), such that the trace formula

(1.8)  tr{e (T) + ¢_(T") - ¢, (T,) - ¢_(To)) =

n
= [ ute) g5 0(e*) ae,
T

holds, can be proved under the condition
- 2
(1.9 ) T - T, €2 (b)

and the nuclearity of the deféct operators DT’ DT*, DT ’ DT* [29].
. ° o -



An attempt to avoid the additional conditions D;, D;*, D% .

[«}

D2* € &
[

- 2(b) was made in the same paper. Assuming only (1.9), a

1/
so;ution of this problem was obtained by using the concept of an
intejrated spectral spift function and a certain modification of
thebtrace'formula (1.8).

v In the following, we are interested in the original form

(1.8) of the trace formula. To this end we introduce the ideal
ﬁg(b) of the algebra of all b;unded operators 8(h) on b consisting
’of‘all compact operators A on b singular humbers (sj(A));=1 of
which satisfy the condition

: + 1
(1.10) jElsj(A) log E;TXT < 4o,

Obviously, we have the inclusions

I o \ :
(1-11)v £.(h) c £/(h) c £;(h), O0<r <1,
Assuming in addition to’ (1.9) D;, D%* € ﬁg(by we establish that
o

there is a summ&ble spectral shift function u(.) such thaf the
trace formula (1.8) is valid. via the cayley trgnsform we carry
over the result to maximal dissipative operators. At the end, we
give an application of the results to the dissipative
Schrédinger operator on Lz(Rn,dx),n =1,2,3, showing that theiusual
fallihg off condition |q(x)| = donét.(1+[x|)_(n+c), n=1,2,3, of
the potential q(.) guaranteeing the ﬂuclearity of the resolvént
difference of the dissipative Schrédinger operator and the Laplace

operator is strong enough to guarantee‘also the existence of a

summable spectral shift function of the class Ll(Rl,(1+A2)-1dx). We

.

remark that because of [23], a natural modification of the
Birman-Krein formula [6] is valid in these cases provided T, is a

unitary operator or the unperturbed operator is-a self-adjoint one.

2. Trace formula

Let (T,To) be a pair of contractions on the separable Hilbert

spacé h obeying (1.9).In [23,Theorem 2.5] it was shown that the

limit

(2.1) u(e) = -lim % In log det(I + (T-T,)(T, - rei®)1)
r-1+0

exists for a.e. 6 € [—n,n),where a branch of the logarithm was

-1

fixed by the condition lim log det(I + (T-TO)(T° - 2) 7) = 0. In

lzl—o+m
the following, we give a new proof of this fact under a slightly

stronger condition working out in such a way further information
about the limit (2.1) which will be useful in the sequel.

Proposition 2.1.If the pair of contractions (T,T,} obeys

. * -
(2.2 )¢ I -7TT, €L (h)
and
(2.3 ) I - TT, € £ (H), ’

then the limit (2.1) exists for a.e. @ € [-n,m) and u(.) belongs
1 . .

to Lw(fn,n).

Proof. First of all we note that the conditions (2.2) and (2.3)

allow one to divide the existence problem into three independent

problems with a special structure. Since



' * s
(2.4 ) 1-1T +1-T,T-=

* * * - * - a .
I-TT+1I-TT, + (T T_) (T = Tg) € £ (h)

* .
we obtain I - T*T € 21(b) and I - TOT° € 21(b). Considering the

*
polar decompositions T = V|T|, [T|] = (T T)l/z, and T, = V°|T°|,
= (p*p y1/2-

IT | = (T_T )™/, we find
(2.5 ) I-|T| eg(b),
(2.6 ) I - |T,] €2, (h)
and

: *
(2.7 ) I-VV, egh).

Using (2.3), (2.5) and (2.6) we get
*
(2.8 ) I - W, et(h.

But (2.7) and (2.8) imply the nuclearity of the defect operators

D,

v’ DV*, D, D,* which are'projections in this special case.

’
Yo Vo
Obviously, we have

(2.9 ) V-V, et (h).

We consider the pairs (T,V), (V,Vo) and (TO,VO).

1. Let (ej)§~1'be the orthonormal systems of eigenvectors of the

. . N
operator I - |T| corresponding to the nonzero eigenvalues (Aj)j=1'

N = 4w, such that

N
2.10 I-|T| = As(.,el)e..
(2100 1= 7] =T agCepe

In order to extend the results pointed out in the introduction it
is only sufficient to consider the case N = +», With respect to the

pair (T,V) we set

Q =V n=o0,
(2.11) n
Q =V -7 A.(.,e. . = *
R AVCENINP P
Since I - |T| € ﬂl(b), i.e.
-
j£1kj = tr(I ~ |T]) = 1T = |T|I, < +=,

the sequence of contractions {Q )m converges to T in the trace

n’'n=0
norm. In particular, we obtain

det(I + (T-v)(v-z)~1) =
(2.12) :

lim det(I + (Qn—v)(v-z)'1

nataw

)l

p

lz] > 1. Taking into account the multiplicative property of the

perturbation determinant we get

det (I + (Qn-v)(v-z)‘l) -

(2.13),

n :
I d - -1
M det(I + (0-0) 1) (@) y-2) 7",

lz] > 1. By (e,.85) =0, 3 =1,2,...,1-1, and (2.11) we find Q%
= Ve, which yields



det(I + (9 - 0_)(Q_, - 27 =
(2.14) 1= 2,0Qy, - 2270, 40 .0)) =
1-Laym+ ! I+1g 1-1 )7t )
Q=g Ay, (T4 2 Q) =2 Q) "ol

|z[ > 1. Let

ny = !
= =
1727 =%

l1=1,2,... .

Obviously, we have 0 < My = 1, 0 < My = Al <1, 1 =1,2,..., and
] «

(2.15) I LAy < 4w

We set

X,(z) = ((I+ 20 ))(I - 20, ) Yej,e), |z| < 1.

Since Q1 is a contraction and e is a normalized vector X, (z)

obeys the properties

1+ |2z
(2.16a) |X1(z)| s I —t1 lz| < 1,
(2.16b) Re(Xl(z)) z0, |z| <1,
(2.16c) X;(0) = 1.
Moreover, by (2.12) - (2.14) we obtain the representation
(2.17) det(I + (T-V)(v-z)"Y) = cF(1/z), |z| > 1,

introducing the quantities

10

= det(3(I + |T]))

and

(2.18) F(z) =1 (1 + ulxl(z)), |z] < 1.
1=1

Notice that by (2.15) and (2.16a) the last infinite product
converges absolutely and uniformly in every disk |z} < r < 1. On
account of Re(l + ulxl(z)) 2 1 and 1 + ulxl(o) =1 + By > 1 the
function 1 + ulxl(z) is an outer one [9] and, hence, the
representation )

it

'
1 et + z
(2.19) log(1 + 1%, (2)) = 37 [ﬂ e

log|1l + u1X(e1t)| at
-2

takes place, where the branch of the logarithm is fixed by the
condition Im log(l + ulxl(o)) = 0. From (2.18) and (2.19) and the

inequality
log|1l + wX; (e™®)| = log Re(1 + ulxl(elt)) z 0

we derive the representation

7 it
+
(2.20) log(F(z)) = %ﬁ S n(e) at,
T e

-z
where h(.) € Ll(—n,n) is given by
o it
(2.21) h(t) = I log|l + 1y X (e Y] zo0
1=1

for a.e. t € [-m,m). Since h(.) € Ll(-n,n) the limit

T . ) ]
lin - 2z _sin(6-t) h(-t) dt exists for a.e. 6 € [~m,m)
r-1-0 2" in 1+r°-2r cos(e-t)

[(18,III C 1° and 2°]. Hence, we obtain the existence of the limit

u(T,V) e),

11



_ v 1 -1_ie, -1
“(T,V)(a) = iiT—o T Im log det(I+(T-V)(V - r e ") 7) =
(2.22) -
lim -1—_[ 2 _sin(6-t) h(-t) at
r-+1-0 2n T 1+r°-2r cos(6-t)

for a.e. 8 € [-7,m). Moreover, taking into account the Kolmogorov

Theorem [18,V C 1°], we find that the distribution function

m“(T,V)(A) = |(8 e [-n,m): |u(T,V)(8)| = A)| can be estimated by
(2.23) n () = X uoglFpn .
iz, v) > L

. : 1
But (2.23) implies “(T,V)(') € € Lw(—n,n).
2. Similarly, prescribing zero-index to the quantities connected

with the pair (TO,VO) we establish the existence of u () for

. (Ty/ Vo)
a.e. 6 € [-m i i -

[-m,m), the inclusion “(To’vo)(.) € Lw( n,n) and
representations of type (2.20) and (2.21)." .
3. Concerning the pair (V,Vo) we note that on account of Dy, Dv*,

Dvo, DV; € El(b)vand (2.9) the limit “(V’Vo)(e) exists for a.e. @

- ' 1 1 .
€ [-m,n) and‘“(V,Vo)(') € L (-n,n) S Lw(-n,n), as was pointed out
in the introduction.
We complete the proof using the multiplication property of

the perturbation determinant, i.e.

-1 1

(2.24) det(I + (T - T )(T, - z) ') = det(I+(T-V)(V-z)"

det(1+(v—vo)(vo—z)'lj(det(I+(To;v°)(vo-z)'l))'l,

lz] > 1. on account of the previous steps formula (2.24)
immediately yields the existence of the limit (2.1) for a.e. 6 ¢

[-n,m). Moreover, the equality

12

(2.25) (o) = Mg, yy(®) + Hiy,y (O = Hip v y(®

holds for -a.e. 6 € [-m,m). Obviously, from (2.25) we obtain u(.) €
€ Li(-n,n).-

In accordanqe with [23] we call every real function on
[-m,n), which differs from u(.) by a constant, a spectral shift
function of the pair (T,T ). In particular, the- function u(.)
itself is a spectral shift function of (T,To).

It is easy to see from the proof of Proposition 2.1 that the
nonsummability of the épectral shift function u(.) arises from the

nonsummability of the spectral shift functions “(T V)(') and
’

u (.).
(T, V)

Theorem 2.5. Let V be a partial isometry and let T = V|T| be a
contraction such that T'T = |T|2 and I - |T| € 21(5). The pair
{T,V) possesses a summable spectral shift function “(T,V)(')’i'e'
“(T,V) € Ll(—n,n), such that the trace formula (1.8) (wvhere To is
replaced by V) holds for every ¢(.) € Gﬂ if and only if the

condition
+ - 1
(2.26) h(t) log h(t) € L™ (-m,m)

is satisfied.

Proof. We note that on account of (2.22) “(T V)(') is the harmonic
. ’

conjugate function of % h(-t). Moreover, since h(-t) > 0 Zygmund

and Riesz theorems [18,V C 3° and 4°] imply that u €

(r,vy )
Ll(—n,n) and (2.26) are equivalent.

13



In order to prove the trace formula (1.8) we introduce the

function H(.),

1 T eit + 2z
(2.27) H(z) = 3= [ St 2 nety at,  |z| < 1.
m e - 2

1

Since h(t) log+h(t) € Ll(-n,n) we get H(.) € H [18,V C 3°].

Moreover, by (2.17) and (2.20) we have

1

(2.28) H(%) = log det(I + (T-V)(V - z)7") - log det(%(I+|T|)),

|z] > 1. Now H(z) can be represented by its imaginary part,

s moit :
i e + 2z it
(2.29) H(z) = 3— [n Spe2 In H(e'™") dt + Re H(0),

|z] < 1. calculating Im H(elt) we find

(]

i, _ .. ie, _ _ -
(2.30) Im H(e ") = iiT-oIm H(re™") "“(T,V)( e)

for a.e. 8 € [-n,m). Thus, the representation

. it
(2.31) H(Z) = 5 [n :1t t : Hip vy (E) dt + Re H(0),

[z} > 1, holds. Deriving (2.28) by z and using formula (1.14) of
{9,IV §1] we get

b4 it

1o w274 = —i[ — Hp,v) () at,

2.32 tr((T-z)
( ) (T-2)  (oftom)

J]z| > 1. But from (2.32) we derive the trace formula (1.8) in a
stahdard manner.ms

Inigeneral, the following theorem takes place.

Theorem 2.3. The pair of contractions (T,To) obeying (2.2) and
(2.3) possesses a summable spectral shift funétion u(.) such thét
the trace formula (1.8) is valid for every ¢(.) € Gn if the

condition

14

Ry S

(2.33) [n(t) - ho(t)] log'|n(t) - ho(t)| € L (-n,m)

is satisfied.
Proof. Taking into account (2.22) and a similar relation for
u (.) we get
(Ty/ Vo)
def

v(e) u e) - g) =
(r,v) (&) = Hp_,y y(O)
(2.34) x _
lim 1 [ 2r_sin(o-t) [he-t) - h_(-t)] dt
r+-1-0 2n T 1+r“-2r cos(6-t)- )

for a.e 6 € (-w,m). By the Zygmund theorem we conclude that v(.)
Ll(—n,n). Introducing the analytic function »

m it
(2.35) H(z) = 1 [ € -+ 2 h) - h (t)] at, |z| <1,
(s

2n elt -3

we again obtain H(.) € H! and repeating the considerations of the

previous theorem we find

n it
tr((r - 2)™ - (1, - 2)7Y) = -i[ —E—— w(t) dt +
(2.36) T (e - 2)
tr((v - 2)7t - (v - 2)7hy,

lz| > 1, v(8) = —% In(H(e %)), o ¢ (-m,m). Since (V,V ) obeys the

trace formula

n it
-1 - -1, _ _; e
(2.37) tr( (V- z) V-2 1[n T B,y ) (E)dt,

[z] > 1,. we obtain (1.8) using (2.36) and (2.37) and introducing

the spectral shift function u(t) = u(v v )(t) + v(t), t e [-n,n);l
’
<)

3. Simple sufficient conditions
The assumptions of Theorem 2.2 or Theorem 2.3 are far from

being simple. Naturally, the problem arises to find conditions

15



involving only T and T, in a simple manher and guaranteeing the
summability of the spectral shift function. The task of the present
chapter will be to give a satisfactory solution of this problem.
Theorem 3.1. Let V be a partially isometric operator and let T =
V|T| be a contraction such that ' = [T|2. If T - |T| e ﬁ:(bL.
then the pair {(T,V)} possésses a summable spectral shift function
such that the traée formula (1.8) (where To is replaced by V) holds
for every ¢(.) € 6".

Proof. By (2.20) - (2.22) it is sufficient to prove that log F(z) €

H!. To this end we use the representation

(3.1) log F(z) =

-
ir~18

log(1 + ulxl(z)), |z} < 1.
1

We consider the harmonic functions

(3.2 ) wl(reie) = log|1 + ulxl(reie)|
and
(3.3 ) El(reie) = Im log(l + ulxl(reie)),

0 <r < 1. By (2.16) we have |1 + u.X (rele) = 1 and, hence,
171

we find

(3.4 ) |El(reie)| = 3.

Taking into ;ccount (2.19) we get

(3.5 ) iyl = [:|wl(eie)| de = [:wl(eie) ae = 2 log(1l + u,)-

But (3.4) and (3.5) imply wl + iEl e HY. Moreover, the estimate

16

-

. no ie . :
"wl + 1w1HL1 = I |w1(e1 )y + iwl(ele)l de =
(3.6 ) : "

P L T
T I 19, ()] ae
11
holds. Let ml(.) be the distribution function of El(e),

m (A) = (8 € (-m,m): |E1(eie)| > A).

Since wl(e) z 0 the improved Kolmogorov theorem {18,V C 1°) yields
the estimate

amw iy n 1

(3-7) m (d) = T ¥ 2

Using (3.7) we get
T s n/2 n/2 ‘
[ 19, (e'®)] a6 = - J A dm (a) = J m(2) ax =
(3.8 ) n 0 0
: Wy o+ n?

2Hw1HL1 log ——WWIFZT——— .

But (3.5), (3.6) and (3.8) yield

by, + iy s 1
¥y + 1P, 1 = 2w log(1+p)) [1 + 2log(l + 2log(1+u1))]'

Now the function g(x) = wx[1 + 2log(l + %)], Xx > 0, |is

nondecreasing. Using this fact and the estimate log(1l + ul) sy o=

Al we obtain

o 1
(3.9) My + i0p1 s mg[1 + 2log(1 + II)] s mA, + 2mlog %I,
where by (AI)I=1 we denote the eigenvalues of I - |T|. Now the
condition I - [T] e gi(b) implies

- 1

L A,log =~ < +w,

1= TN

17



Hence the series (3.1) converges in Hl_and, consequently, log F(z)
€ Hl.l

Remark 3.2. Example 3.10 of ([22] shows that in order to obtain a

summable spectral shift function the assumptions of Theorem 3.1

cannot be essentially improved.

Theorem 3.3. If I - |T| e £3(b), I - |T,

ol € 2?(b) and T - T_ €

[o]
£l(b), then (T,To) possesses a summable spectral shift function
u(.) such that the trace formula (1.8) holds for every ¢(.) € Gn.
Proof. First of all we establish (2.2) and (2.3). We have I - T*To
=(x+ [Th(x - |7)) - (T, - T) e (b) and I =~ TT, =
(I + |T;|)(I - |T;|) - (T - T;)T; c ﬁl(b). Furthermore, using the
polar decomposition T, = V |T,| we find I -~ ]T;| =1I - V;vo +
V;(I -]t V. Since I - V;VO € %,(h) this operator is a finite
dimensional projection. Thus, I - |T°| € ﬁg(b). From Theorem 3.1
and Theorem 2.2 we conclude h(t) log+h(t) € Ll(—n,n) and
h (t) log*h,(t) e L (-m,m). since h(t), h (t) = 0 we find
[n(t)-h_(t)] log'[h(t)-h,(€)] = h(t) log'h(t) +
(3.10)
h (€) log'h(t),
t € [-m,n). Hence we have shown |h(t) - ho(t)| log+|h(t) - ho(t)l €
Ll(—n,n). Applying Theorem 2.3 we complete the proof.s
Remark 3.4. Since the inclusion (1.11) holds all conclusions of
Theorem 3.1 and Theorem 3.2 remain true if the conditions I = T*To

€ &p(h) and I - TT; € Eq(b), 0 < p,g < 1, are satisfied.

4. Dissipative case

Let H be a maximal dissipative operator on b, i.e. Im(Hf,f) = 0, £
il + H

€ dom(H). By T we denote its Cayley transform, i.e. T = {5—- It

18

is well-known that T is a contraction on h. Furthermore, we

introduce the set of functions ER' We say ¥(.) € ER if W(iEIE—:—l)
E . : e +1
_ it, _ ,..eft -
€ Gn, t e [-n,n), and lim Y(A) = O. Let p(e” ") = W(1~Eif———), t e
Aot e + 1
€ [-mn,m), and ¥(.) € ER. Taking into account the decompositien
(1.5) - (1.7) and setting y,(A) = p+(§—§-%)' we obtain a

decomposition in GR’

(4.1)  YA) =¥, (A) + Y_(-A),

*
A e Rl. We set ¢+(H) = ¢+(T) and w_(-ﬂ*) =¢9_(T ).
Theorem 4.1. Let (H,Ho) be & pair of maximal dissipative operators

on h. If the conditions

(4.2 ) @4y - eyl 2iqatn tE-0 7 e £5(h),
(4.3 ) (H;+i)-1- (Ho-i)'1+ 21(30-1)'1(H:+i)'1 e 2,
and

(4.4 ) -1t - - 07t e g )

are satisfied, then there is a real measurable function £(.) €

€ Ll(Rl,(1+A2)-1dA), which is called the spectral shift function

of the pair (H,H), such that the trace formula

(4.5 ) Eru, () + V_(-H) = u () - v_(-H)) =

- I ) v a
o !

is valid for every ¥(.) € Bp-
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Proof. Denoting by T and T° the cCayley transform of H and H,

respectively, it is easy to see that (4.2) and (4.3) are
s o * o

equivalent to I - |T}| e ﬂl(h), I - |T°| € ﬁl(h) and T - T €

€ ﬂl(b). Thus, using Theorem 3.3 we get

(4.6 ) tr(u, (H) + ¥_(-H") - ¥, (H)) - ¥_(-H3)) =

tr(p, (T) + 9_(-T") = ¢,(To) - ¢_(Tg)} =

'3 .
[ue) g5 0(e®) ao,
T

v(.) € BR' where p(.) is the spectral shift function of the pair
(T,TO), u(.) e Ll(-n,n). Setting 6 = -2 arctg A and £(a) =
~u(-2arctg 1), A € RY, we find £(.) e LY(RrY, (1+2%)"ar) and (4.5).m

Corollary 4.2. If the conditions

1 1 1

(4.7 ) i) - @ - T 4 20("+1) "H 1) e 25(h),

1 1 1

(4.8) . (@-i)~' - (Ho+i)~ -2i(H-i)’1(H;+i)' e 22(h),

are satisfied, then (H,Ho) possesses a spectral shift function £(.)
of class Ll(Rl,(1+12)dh) such that the trace formula (4.5) holds
for every y¥(.) € BR'

Proof. In a standard manner we show that the conditions (4.7) and
(4.8) imply (4.2) and (4.3) and (H - i)~! - (H, - )7t e £22(h) .
Since ﬂ?(b) < ﬂl(b) we complete the proof applying Theorem 4.1.m
Corollary 4.3. Let V be a nuclear dissipative operator, i.e. V €

ﬂl(b), and let Ho be a self-adjoint operator. Denoting by V1 the
_1

. 1 231 7

{H = H° + V,Ho) possesses a summable spectral shift function £(.) €

imaginary part of V, i.e. V (v - V*) =< 0, the pair

20

»

‘ Ll(Rl,(1+12)—1dx) such that the trace formula (4.5) holds if

(4.9 ) ‘vl log(-V,) € £ (b).

Proof. Since V e'&l(b) the condition (4.4) is fulfilled. Taking
into account that H, is self-adjoint the condition (4.3) |is
obvious. In order to apply Theorem 4.1 it remains to verify the
condition (4.2). To this end we use the representation

1

1 1

oy o w2 s ) m- 7t =

(4.10) -

2i* + 1)1 1

vy (H - i{_ .

By (4.9) we obtain V, e £J(b). Since sg(h) is an ideal in 8B(h) we

1
have shown (4.2).m
Remark 4.4. Corollary 4.3 essentially iméroves .the results of
[22];

5. Application

In the following we give a simple application of the abstract
results to the Schrddinger operator. To this end we set ‘h =
LZ(Rn,dx), n=1,2,3, and Ho = -A, wheré -A .is the Laplace operator
on Lz(Rn,dx), n=1,2,3, and V is a multiplication operator induced
by the bounded complex function g(.) via (Vf)(x) = q(x)f(*), X. €
Rn, f e Lz(Rn,dx), n = 1,2,3. In order to obtain a maximal
dissipative operator we assume Im(q(x)) = O for a.e.x € Rn, n =
1,2,3. Setting H = H, +V, dom(H) = dém(Ho), we obviously obtain a
maximal dissipative operator. '

Theorem 5.1. If there are constants C > 0 and € > 0 such that

(5.1)  lam] s c@+ [xpTME),
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is'valid for a.e. x € an, n = 1,2,3, then the pair (H,Ho)
possesses a spectral shift function £(.) belonging to
Ll(IRl,(1+A2)—1dA) such that the trace formula (4.5) holds for
every ¥(.) € ?le.

Proof. Since H, is a self-adjoint operator we find that the

conditions (4.7) and (4.8) are equivalent to

(5.2 ) -7 - - )7 e 220).

In accordance with the factorization q = |q|]'/2 «,—(1|-|q‘1/2, where we

agree to set -'%]- = 1 for x € (x € R™: g(x) = 0, n = 1,2,3), we

1/2 1/2

obtain a factorization v = |v] 1v] where W is a unitary

operator induced by -l-—g-l- Introducing the bounded operator
G = (H, - i) (H* + i)-l we get the representation

~1 1

- (-7 = GM i) Ty /2 -1

1/2(H -7,

(5.3 ) (H-1i) wiv|

Taking into account that for A_ e 2r(b) and A, ¢ ﬁr(b) the product

1 2

29 .
A1A2 € Er/z(b), r > 0, and that 2r/2(b) S ~l(b), 0 < r < 2,. we

prove (5.2) showing |V|1/2(H°—i)_1 € £ _(b), r < 2. Denoting by f£(.)

and g(.) the functions f(x) = [q(x)]l/z, X € an, n = 1,2,3, and

g(k) = -—2#, k e an, n=1,2,3, we have to investigate the operator
k-1 .

|V|1/2 - i)_l = f(x)g(-iv), V = g; To this end, we introduce

-the sets

(5.4 ) 0f™ = (x ¢ R™: VA m = x| 5 VA (m + 1)),

m=0,1,2,..., n=1,2,3. By N (m) we denote the number of unit

(n)

cubeS‘Aa with the center at o e z" such that Aa n Olfln) # @, n =

n n n =
1,2,3. Because of Nn(m) = |Or£_:)|_ v om( )y ox$1+:)l.l' m = 1,2,3,...,

22

there is a constant C, such that the estimate N (m) =C mn-l, m =
1,2,3,..., n = 1, 2-3, holds. Taking into account the estimate

[£x) | = e+ [x]) (€2 1o 1,273, ve get

(5.5 ) x(f |£(x) 2ax) /2 s /2 z(f (1 + [x])~(O¥) gqT/2
aA o

[+ 4 . [#4
to 7 -
/2y oy o @+ xTOE) gy T2
n=0 Aa € Om A .

"

A

A
o

r/2 ‘ -(n+e) r/2
¢ ( X € o(n)‘{ (+ IxD dx) +
o

£

+o ~(n+e)r/2
I N (14 VA (m - 1)) ]
m=1

4o ’ .
= const. + cr/.2 cn T m“'l (1+ VA (m - 1))-(nfc)r/2.

n=1
Now the last series converges if (n+e)r/2 - (n—l) > 1, i.e. rsz:E <
<r, n=1,2,3. Thus, f( ) € I (L )y 5= <r, n =1,2,3. Because

n+c
of |g(k)| s £(1 + [k|)72 = c(1 + |k|)'("+‘:)/2 keRY n=1,2,3,

we obtain g(.) € lr(Lz),' —g4< r, n=1,2,3. S:ane € >0 r can be
chosen such that the inequal].ty max(n i_r:c) <r«< 2, n=1,2,3, is
satisfied. By Theorem 4.5 of [30] we get |V|1/2 - 7t -

f(k)g(-i\?) € Er(b), r < 2. Hence, we have proved (5.2).‘Applyinq

Corollary 4.2 we cdxixplete the proof.s ’

References

[1 ] Adamjan, V.M.; Pavlov, B.S., A trace formula for dissipative
operators (Russiah), Vestnik Leningrad. Univ, Mat. Mekh.

Astronom., 7(1979), 5-9.

23



(21

(3

—

(4]

(51

[7

—

Akopjan, R.V., On a trace formula in perturbation theory for
J-positiveroperators (Russian), Dokl. Akad. Nauk Armenian SSR,
57(1973), 193-199.

Akopjan, R.V., On the perturbation theory of J-non-negative
operators (Russian), Thesis, Univ. of Erevan.

Akopjan, R.V., On a trace formula for J-positive operators by
nuclear pertﬁrbation (Russian), Dokl. Akad. Nauk Armenian SSR,
77(1983), 195-200.

Baumgartel, H; Wollenberg, M, Mathematical scattering theory,
Akademie-Verlag, Berlin, 1983.

Birman, M.§.; Krein, M.G., On the theory of wave and
scattering operatofs (Russian), Dokl. Akad. Nauk SSSR,
144(1962), 475-480.

Birman, u.%.; Solomjak, M.Z., Remarks on';he spectral shift
function (Russian), Zap. Nau¥é, Sem. LQHi AN SSSR, 27(1972),

5-19.

{8 ) Gohberg, I.Z.; Krein, M.é., Introduction in the theory of

linear nonself-adjoint operators (Russian), Izd. "Nauka",

Moscow, 1965.

[9 ] Hoffman, K., Banach spaces of analytic functions, Prentice~

(10]

[11]

Hall, Inc., Englewood Cliffs., New York, 1965

Jonas, P., Die Spurformel der st8rungstheorie flr einige
Klassen unitdrer und selbstadjungierter Operatoren im
Kreinraum, Report R-MATH-06/86, Karl-Weierstrass-Institut far

‘Mathematik, AdW der DDR, Berlin, 1986.

Jonas, P., On tﬁe trace formula of perturbation theory I, Pre-
print P-MATH-16/87, Karl-Weierstrass-Institut fur Mathematik,

AdW der DDR, Berlin, 1987.

24

[12) Krein, M.G., On the trace formula in perturbation theory (Rus-
sian),'Hat. Sb., 33(1953), 597-626. '

[13] Krein, M;d., On- the perturbation determinant and the trace
formula for unitary and self-adjoint operators (ﬁussian),
Dokl. Akad. Nauk SSSR, 144(1962), 268-271.° '

[141 Krein. M.G., About some new investigations in per;urbation
theory for self-adjoint operators (Rﬁssian}, -First Summer
School of Mathematics, Kanaev, 1963.

[15] Krein, M.G.; JaYFjan, V.A., On the spectrallshift function
arising from the perturbation of a positive operator (Russian),
J. Operator. Theory, 6(1981), 155-191.

[16] Krein, M.G., On the perturbation determinant and the trace
formula for some classes of ‘pairs of operators (Russian), J.
Operator Theory, 17(1988), 129;187.

[17] Koplienko, L.S., Local existence conditions for the sﬁectral
shift function (Russian), Zap. Nau®. Sem. LOMI AN SSSR,
73(1977), 102-177.

[1aj Koosis,P., Introduction to &P spaces, London Math. Soc.
Lecture ﬁotevSeries 40, cambridge Univ. Press, London, 1980.

[19) 'Langer, H., Eine Engiterﬁng der Spurformel der StBrungstheo-
rie, Math. Nachr., 30(1965), 123-135.

[20] Lifshitz, I.M., About one problem of perturbation theory con-
nected with quantum statistic (Russian), Usp. Mat. Nauk,
7(1952), 171-180. ‘ 1

(21] Neidhardt. H., Eine mathematische Streutheorie fdr maximal
dissipative Operatoren, Report R-MATH-03/86, Karl-Weierstrass-

_Institut flr Mathematik, AdW der DDR, Berlin, 1986

25



[22)

(23]

[24)

(25}

[26)

[27)

(28]

(29]

[30]

Neidhardt, H., Scattering matrix and spectral shift of the
nuclear dissipative scattering theory, in Operators in
indefinite metric spaces, scattering theory end other topics,
Birkhduser Verlag, Basel, 1987, pp. 237-250.

Neidhardt, H., Scattering matrix and spectral shift of the
nuclear dissipative scattering theory. II, J. Operator Theory
19(1988), 43-62.

Peller, V.V., Hankel operators in perturbation theory of

unitary and self-adjoint operators '(Russian), Funkcional.

Anal. i. PriloZfen., 19(1985), 37-51.

Rybkin, A.V., A trace formula for dissipative and self-adjoint
operators - and spectral identities for resonances (Russian),
Vestnik Leningrad. Univ. Mat. Mekh. Astronom., 19(1984), 97-99.

Rybkin, A.V., Spectral shift function for dissipative and
self-adjoint operators and a trace formula for resonances
(Russian), Mat. Sb., 125(1984), 420-430. k
Rybkin, A. V., A trace formula for.contractive and unitary
operators (Russian), Funkcional. Anal. i. Prilo%en., 21(1987),
vyp. 4, 85-87.

Sahnovié, L.A., Dissipative operators with absolutely
continuous spectrum (Russian), Trudy Moscov. Mat. ob¥é. ,
19(1968), 211-270.
sz.-Nagy, B.: Foias, C., Harmonic analysis of linear operators
in Hilbert space, North-Holland, Amsterdam, 1970.

Simon, B., Trace ideals and their applications, Cambridge

Univ. Press, Cambridge-London-New York-Melbourne, 1979.

Received by Publishing Department
on June 6, 1989.

26

s

=Y

A.uauaﬁ B.M., Hatipxapgr X. E5-89-409

0 cyMMHDYEMOCTH ¢ynxunn CHEeKTpansHOTO CHABHrAa’
oJasa map cmumammnx H OHCCHIaTHBHBIX onepaTopos

PaGoTa nocsﬂmeua npoﬁneMe dopMyNBl clenoB nnﬂ ‘HeyHUTap~
HbHIX M HECaMOCONpSXeHHHX OnepaTopoB. l[loKasaHO, YTO CYMMH-
pyeMas BemecTBeHHas GYHKUHA CHEKTpalbHOro COBHIra MOXET
6uTHL BBEeOeHA LJif Napel CXaTHA TakK, 4YTO OCTaeTcs cnpaBefjH-
Bo#l ¢dopMysia clleqoB NIpPH YCIOBHH, UTO 3TH CXRATHA DasIHYawT—
cfl Ha omnepaTrop 6ojiee KOMHakKTHEEI, UeM safepHeli. Pes3yibTaThl
TPaHCGOPMHUPYIOTCS B KIIAaCC AHCCHNATHUBHBEIX onepaTopoB. Iipu-
MEHAKWTCS K onepaTopy mpennurepa.

Pa6oTa BemOJNHEHa B HaﬁopaTopnn1Teopeanecxoﬁ dbusHKH
0]515 ' ~ : ' '

' Mpenpuur O6beAHHEHHOTO MHCTHTYTa AAEPHBIX ncchenqaamu‘i. Hy6ua 1989

E5-89-409

On the Summablllty of the Spectral Shift Functlon
for Pairs of Contractlons and D1331pat1ve Operators,

AdamJan V.M., Neidhardt H.

The paper is devoted to the problem of the trace formu-
la for nonunitary and nonself—ad;oxnt operators. It is
shown that a summable real spectral shift function can
be introduced for a pair of contractions such that the
trace formula holds if both contractions differ by an ope-
rator which is sllghtly more compact than a trace class: :
operator. The result is carried over to dissipative ope-
rators. An application to the Schrddinger operator is gi-
ven. :

'The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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