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l. Introduction 

The spectral shift function can be regarded as one of the 

fundamental notions of the perturbation theory. This function, 

originally arisen in the physical literature, attracted attention 

of mathematicians after the pi~neering work by I.M.Lifshitz (20]. 

The mathematical theory of this function was performed by M.G.Krein 

(12-14), who has introduced the name of this function in the 

literature. Let (H,H
0

} be a pair· of self-adjoint operators on a 

separable Hilbert space ~ which are different by a nuclear 

operator. In (12] M.G.Krein has proved the existence of a summable 

real function((.) defined on 1R1 such that for a certain class of 

functions¢(.) the relation 

(1.1 } tr(¢(H) - ¢(H
0
)} = Im((A) ¢'(A) dA 

m , 

holds. The function((.) was called the spectral shift function of 

the pair (H,H
0
): and the relation itself, the trace formula. In 

(13) ·this result was extended to a pair of unitary operators {U,U } 
. 0 

which differ by a nuclear operator. It was shown that again for a 

suitable class of functions JI (.) there is a·· summable real function 

/.L(.) defined on (-rr,rr) such that·the trace formula 

(1.2) L d i8 tr(9(U) --J>(U )} = µ(8) QB 9(e ) d8 
o rr . 

is valid. In contrast with the pr-evious. case the function ll (. ) , 

which is again called the spectral shift function of (U,U
0
}, is 

determined by (1.2) up to a real constant.. Using the Cayley 

'I + H iI + Ho 
transfonns U = ~I H and u = I H in [13), M.G.Krein 

l. - 0 l. - 0. 

established that (1.2) results in the relation (1.1) assuming that 

() 

0 
,,.) 

t.-

il_; 

! 

l 
l 

the resolvent difference of the self-adjoint operators Hand H
0 

is . 
nuclear. But the generalization is accompanied by weakening of the 

summability_ ·of the spectral shift function because in this case 

((.) is summable only with the weight (l + A2 )-l on·IR1 , i.e. ((.) e 

L1 (1R1 , (1 + A2}-ldA) instead of ((.) e L1 (1R1 ,dA) •. Further 

investigations of the spectral shift function were carried out in 

[14.] by M.G.Krein. Up to now. there is a lot of papers on this 

subject in which detailed information on this function can be found 

[7,17,15,24). However, it must be remarked that in m~st of the 

papers either a pair of self-adjoint operators or a pair of unitary 

operators is considered. To include other classes of operators in 

the investigation of the spectral shift function is a rather new. 

branch attracting more and more attention of mathematicians in the 

last years. 

One of the first going in this direction was H.Langer [19). A 

further attempt was made by L.A.Sahnovi~ [28). R.V.Akopjan [2,3,4) 

tried to extend the concept of spectral shift function to 

self-adjoint operators on Krein spaces. In [2] he found a pair of 

non-negative bounded self-adjoint operators on a Krein space 

differing by a nuclear operator so that a summable spectral shift 

function did not exist. In [10,11) P.Jonas was able to extend the 

trace formula to a broad class of operators generalizing the 

spectral shift function to a distribution. 

In 1979 V.M.Adamjan and B.S.Pavlov [l) made a start to extend 

the trace formula to the class of maximal dissipative operators. 

In the following• this development was continued by A.V.Rybkin 

[25-27). Recently, a paper by M.G.Krein [16] has appeared which 

was devoted to the same problem. Attention to this problem was 

l u~,..-__ ... ,.,,~ , .. _.lo.. H m __ icmryr 1· 
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also paid by H.Neidhardt in [21-23). In [21,22) the pair 

{H = H
0 

+ V,H
0

} was.considered where Vis a nuclear dissipative 

operator. It was found that a trace formula 

(1.3 ) 
-1 -1 1.. -2 

tr{ (H - z) - (H
0 

- z) } = - ~(A) (A - z) dA, ., 

Im(z) > o, makes sense if the nuclearity of Vis strengthened, for 

instance, if Im(V) e E
112

(1:>}. Here and in the following Ep(I:>), 

O < p < +m, denotes the class of compact operators on I) whose 
+m 

elements are .characterized by L sk(A)p < +m where {sk(A)};=l 
k=l 

denotes the set of singular numbers of the compact operator A. 

Despite the stronger perturbation it was found that in contrast 

with [ 12) the real spectral shift function ~ (.) belongs only to 

L1 (R1 ,(l + A2 )-ldA) and hence~(.) is determined up to a constant 

by (1.3). Furthermore, the representation 

(1.4 ) ~(A} = ¾ !!!
0

Im log det(I + V(H0 - A - ic)-l} + const. 

1 •, 
was proved for a.e. Ac R ( with respect to the Lebesgue measure 

l•I on R1 ) in [21,22). However, as it has been pointed out in [22) 

the right-hand side of (1.4) makes sense assuming only that Vis a 

nuclear dissipative operator. Thus, the possibility arises to 

define a spectral shift function of {H,H
0

} forgetting the trace 

formula (1.3). But doing so, it has been found in [22,Example 3.10] 

that a spectral shift function thus defined is in general not 

locally summable (compare with [2]). However, the arbitrariness of 

the spectral shift function is limited by the condition that~(.) 

belongs to the class of weakly summable functions, i.e. ~(.) e 

1 1 , 1 
t;(R ,dA). We recall that a measurable function f(.) on R belongs 

4 

to L1 {R1 ,dA} if its distribution function w 

mf(s) = l{_A e R1 : lf(s)l>s>Oll obeys the condition sup(s mf(s})<+m. 
s>o 

Obviously, the inclusion L1 (R1 ,dA} ~ L!(R1 ,dA) holds. It is 
, 1 1 

well-known that functions of Lw(R ,dA) allow singularities of the 

-1 type (A - A
0

) • 

As it was pointed out in [23), these results allow an 

extension to a pair of contractions {T,T
0

) defined on I). Denoting 

by G the set of all functions on rr = {z e c1 : jzj =l} ~erivation rr 

of which possesses absolutely convergent Fourier series and 

introducing the decomposition 

't + .. ilt it -it (1.5) rp(e1 
> = r a 1 e = 'P+(e ) + rp_(e ), 

l=-., 

(1.6 ) 
it +m ilt 

'P+(e ) = L a 1e 
l=o 

. +.. . 
(1.7) rp_(eJ.t) = L a_m eimt 

m=l 

t e [-rr,rr), rp(.) e mrr, the existence of a summable spectral shift 

functionµ(.) e L1 (-rr,rr), such that the trace formula 

(1.8 ) * * tr{rp+(T) + rp_(T) - 'P+(T0 ) - rp_(T
0

)} = 

rr 

I d ie 
rrµ(8) de rp(e ) de, 

holds, can be proved under the condition 

(1.9 ) T - T
0 

e E1 (I)) 

and the nuclearity of the defect operators DT' DT*, DT, DT* [29]. 
0 0 
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An attempt to avoid the additional conditions o;, o;•, o;, 
0 

o;• e e112 (~) was made in the same paper. Assuming only (1.9), a 
0 

solution of this problem was obtained by using the concept of an 

integrated .spectral shift function and a certain modification of 

the trace formula (1.8). 

In the following, we are interested in the original form 

( 1. 8) of the trace formula. To this end we introduce the ideal 

f~(~) of the algebra of all bounded operators B(~) on b consisting 

'of all compact operators A on ~ singular numbers (sj (A) }j=l of 

which satisfy the condition 

., 
(1.10) + 1 E sj(A) log -(A}< +m. 

j=l sj . 

Obviously, we have the inclusions 

(1.11) fr(b) c f~(b) c f 1 (b), o < r < 1. 

Assuming in addition to (1.9) o;, o;• e f~(~)' we establish that 
0 

there is a summable spectral shift function l.l(.) such that the 

trace formula ( 1. 8) is valid. Via the Cayley transform we carry 

over the result to maximal dissipative operators. At the end, we 

give an application of the results to the dissipative 

Schr~dinger operator on L2 (~n,dx),n = 1,2,3, showing that the usual 

falli~g off condition jq(x) I :s const. (l+jxj )-(n+c), n = 1,2,3, of 

the potential q(.) guaranteeing the nuclearity of the resolvent 

difference of the dissipative Schr8dinger operator and the Laplace 

operator is strong enough to guarantee also the existence of a 

summable spectral shift function of the class L1 (~1 ,(1+~2)-1d~). We 

6 

remark that because of (23], a natural modification of the 

Birman-Krein formula (6] is valid in these cases provided T
0 

is a 

unitary operator or the unperturbed operator is. a self-adjoint one. 

2. Trace formula 

Let (T,T
0

} be a pair of contractions on the separable Hilbert 

space b obeying (1.9) .In (23,Theorem 2.5] it was shown that the 

limit 

(2 .1 ) l.l(B) = -lim ! Im log det(I + (T-T )(T - reia)-l) 
r➔ l+0 rr o o 

exists for a.e. a e [-rr,rr) ,where a branch of the logarithm was 

fixed by the condition lim log det(I + (T-T )(T - z)-1 ) = o. In 
jzj ➔+m o o 

the following, we give a new proof of this fact under a slightly 

stronger condition working out in such a way further information 

about the limit (2.1) which will be useful in the sequel. 

Proposition 2.1.If the pair of contractions {T,T
0

} obeys 

(2.2 * I - T T
0 

e e1 (b) 

and 

(2.3 * I - TTO E fl(b), 

then the limit (2.1) existsfora.e. Be [-rr,rr) and/.l(.) belongs 

1 to Lw(-rr,rr). 

Proof. First of all we note that the conditions (2.2) and (2.3) 

allow one to divide the existence problem into three independent 

problems with a·special structure. Since 

7 
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ii 

(2.4 * * I - T T + I - T T 0 0 

* * * * . I - TT+ I - TOTO+ (T - To)(T - To) C fl(IJ) 

• * * a '- i • we obtain I - T T e £1 (I}) and I - T
0

T
0 

e "l (,,). Cons dering the 

polar decompositions T = VITI, ITI = (T*T) 112 , and T0 = V0 IT0 1, 

IT
0

1 = (T:T
0

)
11 2 ; we find 

(2.5 ) I - ITI e l!l(I}), 

(2.6 I - ITol e fl(I}) 

and 

(2.7 * I - V V0 e £1 (1}). 

Using (2.3), (2.5) and (2.6) we get 

(2.8 ) * I - W 0 e £1 (1}). 

But (2.7) and (2.8) imply the nuclearity of the defect operators 

Dv, Dv*• DV, 
·o 

Dv* which are projections in this special 
0 

Obviously, we have 

(2 .9 ) V - V
O 

e £
1 

(I}) • 

We consider the pairs {T,V), {V,V
0

) and {T0 ,V0 ). 

case. 

1. Let {ej)j=l·be the orthonormal systems of eigenvectors of the 

operator I - ITI corresponding to the nonzero eigenvalues {?..j}j=l' 

N s +=, such that 

8 

N 
(2.10) I - ITI = I :>...(.,e.)e .• 

j=l J J J 

In order to extend the results pointed out in the introduction it 

is only sufficient to consider the case N = +m. With respect to the 

pair {T,V} we set 

I Q _ "· n ••• 
(2.11) 

Q

0 

= V - [ :>...(.,e.)Ve., n = 1,2, .•• 
n j=l J J J 

Since I - ITI e £1 (1}), i.e. 

I :>.., = tr{ I - IT I) = III - IT I 11 1 < +m, 
j=l J 

the sequence of contractions {Qn)~=O converges to T in the trace 

norm. In particular, we obtain 

(2.12) 

-1 det(I + (T-V) (V-z) ) = 

-1 lim det(I + (Qn-V)(V-z) ), 
n➔+m 

I z I > 1. Taking into account the multiplicative property of the 

perturbation determinant we get 

(2 .13) 
det(I + (Qn-V) (V-z)-l) 

n -1 
IT det(I + (Ql-Ql-1) (Ql-1-z) }, 

l=l 

lzl > 1. By (e1 ,ej) = 0, j = 1,2, .•• ,l-l, and (2.11) we find Q
1

_
1

e
1 

= Ve1 which yields 

9 



....., 

(2.14) 

-1 
det(I + (Ql - Ql-l)(Ql-1 - z) ) 

-1 
l - Al.( (Ql-1 - z) Ql-1 el' el) 

1 Al 1 1 -1 
(l - 2 Al)[l + 2-A ((I+ z Ql-1) (I - z Ql-1) el,el)], 

1 

I z I > 1. Let 

µl 
Al 

~,l 
1 

1,2; ••• 

Obviously, we have o < µ1 ~ 1, o < µ1 ~Al~ 1, 1 1,2, .•. , and 

., ., 
(2 .15) E µl ~ E Al 

l=l l=l 
< + ... 

We set 

X1 (z) =((I+ zQ1_1 ) (I - zQ1 _1)-1e 1 ;e1 ), lzl < 1. 

Since Q
1

_1 is a contraction and e 1 is a normalized vector x1 (z) 

obeys the properties 

(2 .16a) 1x1 cz> I ~ i ~ 1~1• lzl < 1, 

(2.16b) Re(X1 (z)) "'o, lzl < 1, 

(2 .16c) X1 (o) = 1. 

Moreover, by (2.12) - (2.14) we obtain the representation 

(2.17) det(I + (T-V) (V-z)-l) CF(l/z), lzl > 1, 

introducing the quantities 

IO 

C II (1 _ 1 
l=l 2 Al) det<½<r + IT.I)) 

and 

., 
(2.18) F(z) = II (1 + µ 1X1 (z)), lzl < 1. 

l=l 

Notice that by (2.15) and (2.16a) the last infinite product 

converges absolutely and uniformly in every disk lzl < r < 1. On 

account of Re(l + µ 1X1 (z)) "'1 and 1 + µ1X1 (o) = 1 + µ1 > 1 the 

function 1 + µ 1X1 (z) is an outer one (9] and, hence, the 

representation 

(2 .19) 1 Irr eit + z it 
log(l + µ1X1 (z)) = 2rr it logll + µ1X(e )I dt 

rr e - z 

takes place, where the branch of the logarithm is fixed by the 

condition Im log(l + µ
1

X1 (o)) = o. From (2.18) and (2.19) and the 

ineqµality 

't 't 
logll + µ1X1 (ei) I "'log Re(l + µ1X1 (ei )) "'0 

we derive the representation 

(2. 20) 
rr it 

log(F(z)) = ~rr I eit + z h(t) dt, 
rr e - z 

where h(.) e L1 (-rr,rr) is given by 

(2. 21) h(t) = 
., . 't 
E logll + µ 1X1 (ei) I 

l=l 
"' 0 

for a.e. t e (-rr,rr). Since h(.) e L
1 (-rr,rr) the limit 

1 . 1 Irr 2r sin(B-t) 
im -

r➔ l-0 2rr rr l+r2-2r cos(B-t) 
h(-t) dt exists for a.e. 8 e [-rr,rr) 

(18,III c 1° and 2°]. Hence, we obtain the existence of the limit 

µ{T,V}(B), 

11 



(2.22) 
µ{T V}(8) = -lim ¼ Im log det(I+(T-V} (V - r-lei8 )-l) 

' r➔ l-0 

lim ½ Irr 2r ;in(8-t) h(-t) dt 
r➔ l-0 2rr rr l+r -2r cos(8-t) 

for a.e. 8 e [-rr,rr). Moreover, taking into account the Kolmogorov 

Theorem [18, V C 1 °1, we find that the distribution function 

m p.) = I {8 e [-rr,rr): lµ{T V} (8) I a: A} I can be estimated by 
µ{T,V} ' 

(2. 23) m (>.} :s ~ lllogfFI IILl. 
µ{T,V} 

But (2.23) implies µ{T,V}(.) e e L;(-rr,rr). 

2. Similarly, prescribing zero-index to the quantities connected 

with the pair {T0 ,V0 } we establish the existence of µ{T ,V }(8) for 
0 0 

a.e. 8 e [-rr,rr), the inclusion µ{T V }(.) e L;(-rr,rr) and 
o' o 

representations of type (2.20) and (2.21). 

3. Concerning the pair {V,V
0

} we note that on account of Dv, Dv*• 

DV , Dv* e E1 {Ii) and C.2.9) the limit µ{V V } (8) exists for a.e. 8 
0 0 I 0 

e [-rr,rr) and µ{V,V }(.) e L1 (-rr,rr) ~ L;(-rr,rr), as was pointed out 
0 

in the introduction. 

We complete the proof using the multiplication property of 

the perturbation determinant, i.e. 

(2.24) det(I + (T - T
0

} (T
0 

- z)-1 ) det(I+(T-V} (V-z}-l 

det(I+(V-V
0

} (V
0
-z}-1 )(det(I+(T

0
-V

0
)(V

0
-z)-l))-l, 

lzl > 1. On account of the previous steps formula (2.24) 

immediately yields the existence of the limit (2.1} for a.e. e e 

[-rr,rr}. Moreover, the equality 

12 

(2.25} µ(8} = µ(T,V)(8} + µ(V,Vo)(8} - µ{To,Vo}(8} 

holds for ·a.e. 8 e [-rr,rr). Obviously, from (2.25} we obtainµ(.) e 

1 
e Lw(-rr,rr) . ■ 

In accordance with [23) we call every real function on 

[-rr, rr) , which differs from µ (.) by a constant, a spectral shift 

function of the pair (T,T
0

). In particular, the· function µ{.) 

itself is a spectral shift function of (T,T
0
). 

It is easy to see from the proof of Proposition 2.1 that the 

nonsummability of the ~pectral shift functionµ(.) arises from the 

nonsummability of the spectral shift functions µ(T,V}(.} 

µ(T V ) (.). 
o' o 

and 

Theorem 2.2. Let V be a partial isometry and let T = VITI be a 

contraction such that T*T = ITI 2 and I - ITI e E1 (Ii}. The pair 

(T,V} possesses a summable spectral shift function µ{T,V) (.},i.e. 

µ{T,V} e L1 (-rr,rr), such that the trace formula (1.8} (where T
0 

is 

replaced by VJ holds for every rp (.} e Grr if and only if the 

condition 

(2.26} + ' 1 h(t) log h(t) e L (-rr,rr) 

ls satisfied. 

Proof. We note that on account of (2.22} µ{T,V)(.} is the harmonic 

conjugate function of ¼ h(-t}. Moreover, since h(-t} > 0 Zygmund 

and Riesz theorems' [18,V C 3° and 4°) imply that µ{T,V)(.} e 

L1 (-rr,rr} and (2.26) are equivalent. 

13 



In order to prove the trace formula ( 1. 8) we introduce the 

function H(.), 

(2.27) H(z) 
1 Irr it - e + z 
2rr it h(t) dt, 

rr e - z 
lzl < 1. 

Since h(t) log+h(t) e L1 (-rr,rr) we get H(.) e H1 [18,V C 3°]. 

Moreover, by (2.17) and (2.20) we have 

(2.28) H(½l = log det(I + (T-V) (V - z)-1 ) - log det(½Cr+ITI)), 

lzl > 1. Now H(z) can be represented by its imaginary part, 

(2. 29) 
. Irr it ·t 

H(z) = ~rr eit + z Im H(e1 ) dt + Re H(O), 
rr e - z 

lzl < 1. Calculating Im H(eitl we find 

(2. 30) 
. ·e 

Im H(e
19

) = lim Im H(re
1

) = -rrµ{T,V)(-e) 
r➔ l-0 

for a.e. e e [-rr,rr). Thus, the representation 

(2.31} 
1 i Irr eit + z 

H(i) = J it µ{T V}(t) dt + Re H(O), 
rr e - z ' 

lzl > 1, holds. Deriving (2.28) by z and using formula (1.14) of 

[9,IV §1] we get 

(2.32) -1 -1 ·Irr eit 
tr{ (T-z) - (V-z) } = -1 it 2 µ{T VJ (t) dt, 

rr (e -z) ' 

lzl > 1. But from (2.32) we derive the trace formula (1.8) in a 

standard manner. ■ 

In -general, the following theorem takes place. 

Theorem 2.3. The pair of contractions {T,T
0

} obeying (2.2) and 

(2.3) possesses a summable spectral shift functionµ(.) such that 

the trace formula ( 1. 8) is valid for every ip (.) e Qirr if the 

condition 

14 

l 

t 

J 
1l 

(2.33) + • 1 
lh(t) - h 0 (t) I log lh(t) - h

0
(t) 1.e L (-rr,rr) 

is satisfied. 

Proof. Taking into account (2. 22) and a similar relati.on 

µ{T V )(.) we get 
o' o 

def 
v(B) µ{T,V)(e) - µ(To,Vo}(9) = 

(2.34) 

lim ½ Irr 2r ;in(B-t) [h(-t) - ho(-t)] dt 
r➔l-0 2rr rr l+r -2r cos(e-t)· 

for 

for a.e e e [-rr,rr). By the Zygmund theorem we conclude that v(.) e 

L
1

(-rr,rr). Introducing the analytic function 

(2. 35) 
rr it 

H(z) = ;rr I eit + z [h(t) - h
0

(t)] dt, 
rr e - z 

lzl < 1, 

we again obtain H(.) e H1 and repeating the considerations of the 

previous theorem we find 

(2.36) 

-1 -1 Irr eit 
tr{(T - z) - (T

0 
- z) } = -i it 2 v(t) dt + 

rr (e - z) 

-1 -1 
tr{ (V - z) - (VO - z) } , 

lzl > 1, v(e) = ; Im(H(e-i9 )), e e [-rr,rr). Since {V,V
0

} obeys the 

trace formula 

(2.37) 
rr it 

tr{ (V- z)-1 - (V - z)-1} = -iI t e 2 µ{V V } (t)dt, 
0 

rr (e
1 

- z) ' o 

lzl > 1,. we obtain (1.8) using (2.36) and (2.37) and introducing 

the spectral shift function µ(t) = µ{V,V
0

}(t) + v(t), t e [-rr,rr). ■ 

3. Simple sufficient conditions 

The assumptions of Theorem 2.2 or Theorem 2.3 are far from 

being simple. Naturally, the problem arises to find conditions 

15 



I 1 
I 

Ii 

: I 

I 
I 

I 
i 

ii 
i 

i 
I 
I 

I 
I 

involving only T and T
0 

in a simple manner and guaranteeing the 

summability of the spectral shift function. The task of the present 

chapter will be to give a satisfactory solution of this problem. 

Theorem 3.1. Let V be a partially isometric operator and let T 

VITI be a contraction such that T*T = ITl 2 • If I - ITI e l!~(I:>),. 

then the pair {T,V} possesses a summable spectral shift function 

such that the trace formula ·c1.8) (where T
0 

is replaced by V) holds 

for every~(.) e ~rr· 

Proof .. By (2.20) - (2.22) it is sufficient to prove that log F(z) e 

tt1 • To this end we use the representation 

(3 .1 ) log F(z) = E log(l + µ1X1 (z)), 
l=l 

I zl < 1. 

We consider the harmonic functions 

(3.2 
ie ie ¢1 (re ) = logll + µ1X1 (re ) I 

and 

(3.3 
- w w ¢1 (re ) = Im log(l + µ1X1 (re )), 

ie I . 0 < r < 1. By {2.16) we have ll + µ1X1 (re ) ~ 1 and, hence, 

we find 

(3.4) I ii\ (reie) I s !!. 2· 

Taking into account (2.19) we get 

(3. 5 ) 111{J
1

11L1 = Irr1¢1 (ei8 )1 de= (l{J1 (ei8
) de;= 2rr log(l + µ1 ). 

rr rr 

But (3.4) and (3.5) imply ¢1 + i¢1 e H1 • Moreover, the estimate 

16 

(3.6) 
Irr ·e 

111/Jl + i¢111Ll = ll/11 (ei ) 
rr 

I
rr . 

111/JlllLl + rr l¢1(e1e) I de 

+ i¢1 (ei8 ) I des 

holds. Let m1 (.) be the distribution function of ¢1 (e), 

- ie m1 (:>.) = {0 e [-rr,rr): 11/11 (e ) I > :>.}. 

Since ¢1 (0) ~ 0 the improved Kolmogorov theorem (18,V C 1°] yields 

the estimate 

(3.7 ) 
4rr" 11¢1 11Ll 

ml(:>.) s 111/J II 1 + 2rr1 
1 L 

Using (3.7) we get 

(3.8 ) 
Irr - ie 

II/J1 (e ) I de= -
rr 

ti~ 
0 

2111/JlllLl log 111/JlllLl + rr2 
111/Jl IILl 

But (3.5), (3.6) and (3.8) yield 

dm1 (:>.) 
rr/2 J m1 (:>.) d:>. s 
0 

111/Jl + i¢l11Ll s 2rr log(l+µ1 )[1 + 2log(l + 2log71+µ
1
))]. 

Now the function g(x) = rrx(l + 2log(l + i)], x > o, is 

nondecreasing. Using this fact and the estimate log(l + µ
1

)_s µ
1 

s 

:>. 1 we obtain 

(3.9 ) 111/Jl + i¢1 11Ll s rr:>.1 (1 + 2log(l + ! )] s rr:>.1 + 2rr:>.1 log ! , 
1 1 

where by { :>.1 } ~=l we denote the eigenvalues of I - IT I • Now the 

condition I - ITI e l!~(I:>) implies 

1 E ;>.llog X- < +.,. 
l=l 1 
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Hence the series (3.1) converges in H1 and, consequently, log F(z) 

E H1 . ■ 

Remark 3.2. Example 3.10 of [22) shows that in order to obtain a 

summable spectral shift function the assumptions of Theorem 3.1 

cannot be essentially improved. 

Theorem 3.3. 
0 - * 0 

If I - ITI e E1 (1)), I - IT
0

1 e E1 (1J) and T - T0 e 

E
1 

(IJ), then {T,T
0

} possesses a summable spectral shift function 

µ(.) such that the trace formula (1.8) holds for every~(.) e @rr. 

Proof. First of all we establish (2.2) and (2.3). We have I - T*T 
0 

=(I+ ITI) (I - ITI) - T*(T - Tl e E1 (1J) and I - TT* 
0 0 

* * * * (I+ IT
0
l)(I - IT

0
1) - (T - T

0
)T

0 
e l:1 (1J). Furthermore, using the 

polar decomposition T = V IT I we find I - IT*I = I - v*v + 
0 0 0 O 00 

v:(I -IT
0

1 )V
0

• Since I - v:v
0 

e E1 (I)) this operator is a finite 

dimensional projection. Thus, I - IT
0

1 e E~(IJ). From Theorem 3.1 

and Theorem 2.2 we conclude h(t) log+h(t) e L1 (-rr,rr) and 

h
0

(t) log+h
0

(t) e L1 (-rr,rr). Since h(t), h
0

(t) ~ 0 we find 

lh(t)-h
0

(t) I log+lh(t)-h
0

(t) I ~ h(t) log+h(t) .+ 

(3.10) 
+ h

0
(t) log h(t), 

t e [-rr,rr). Hence we have shown lh(t) - h
0

(t) I log+lh(t) - h0 (t) I e 

L1 (-rr,rr). Applying Theorem 2.3 we complete the proof. ■ 

Remark 3. 4. Since the inclusion ( 1. 11) holds all conclusions of 

* Theorem 3.1 and Theorem 3.2 remain true if the conditions I - T T0 

e E (IJ) and I - TT* e E (IJ), O < p,q < 1, are satisfied. 
p O q 

4. Dissipative case 

Let H be a maximal dissipative operator on I), i.e. Im(Hf,f) ~ o, f 
. iI + H 

e dom(H). By T we denote its cayley transform, i.e. T = iI _ H" It 

18 

is well-known that T is a 

introduce the set of functions 

contraction• on I). Furthermore, we 
it 

iJIR. We say¢(.) e iJIR if ¢(ie1t -
1

) 
·t e + 1 

e @rr' t e [-rr,rr), and lim ¢(A) 
A➔ ±m 

= o. Let ~(eit) = ¢(ie
1

t - 1), t e 
e 1 + 1 

e [-rr,rr), and ¢ ( • ) e iJIR. Taking into account the decomposition 

(1.5) (1.7) and setting ¢±(A) ~±(~ ~ ~) we obtain a 

decomposition in iJIR' 

(4 .1 ) ¢(A) = ¢+(A) + ¢_(-A), 

1 * A e IR. We set ¢+(H) = ~+CT) and ¢_(-H) ~_(T*). 

Theorem 4.1. Let {H,H
0

) be a pair of maximal dissipative operators 

on I). If the conditions 

(4.2 ) (H*+i)-l - (H-i)-l + 2i(H*+i)-1 (H-i)-l e E~(I)), 

(4.3 (H:+i)-1- (H
0
-i)-l+ 2i(H

0
-i)-1 (H:+i)-l e E~(IJ), 

and 

(4.4 (H - i) -l - (H
0 

- •i) -l E f 1 (I}) 

are satisfied, then there is a real measurable function ((.) e 

e L1 (1R1 , (l+A2 )-ldA), which. is called the spectral shift function 

of the pair {H,H
0
), such that the trace formula 

(4.5 ) * * tr{¢+(H) + ¢_(-H) - ¢+(H0 ) - ¢_(-H0 )} 

1:/;(A) ~A ¢(A) dA 

is valid for every¢(.) e iJIR. 
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Proof. Denoting by T and T
0 

the cayley transform of H and H
0

, 

respectively, it is easy to see that (4.2) and (4,3) are 

equivalent to I - ITI e l!~(IJ), I - IT:I e !!~(Ii) and T - T0 e 

e !!1 (1)). Thus, using Theorem 3.3 we get 

(4. 6 ) * * tr{¢+(H) + ¢_(-H) - ¢+(H0 ) - ¢_(-H0 )} = 

* * tr{~+(T) + ~-(-T,) - ~+(T0 ) - ~_(T0 )} 

Irr d ie 
= µ(e) de ~(e ) de, 

rr 

¢(.) e ~IR' whereµ(.) is the spectral shift function of the pair 

{T,T
0

}, µ_(.) e L
1 (-rr,rr). Setting e = -2 arctg A and ~(A) 

-µ(-2arctg A), A e IR
1 , we find~(.) e L

1 (1R1 ,(l+A2 )-1dA) and (4.5). ■ 

Corollary 4.2. If the conditions 

(4.7 ) (H*+i)-l - (H
0
-i)-l + 2i(H*+i)-1 (H

0
-i)-l e !!~(Ii), 

(4.8) (H-i)-l - (H:+i)-l -2i(H:i)-1 (H:+i)-l e !!~(Ii), 

are satlsfied, then {H,H
0

} possesses a spectral shift function~(.) 

of class L1 (1R 1 , (l+A2 )dA) such that the trace formula (4.5) holds 

for every¢(.) e ~IR. 

Proof. In a standard manner we show that the conditions (4.7) and 

(4.8) imply (4.2) and (4.3) and (H - i)-l - (H
0 

- i)-l e !!~(Ii). 

Since l!~(li) c !!
1

(1)) we complete the proof applying Theorem 4.1. ■ 

Corollary 4. 3. Let v be a nuclear dissipative operator, i.e. V e 

!!1 (Ii), and let H
0 

be a self-adjoint operator. Denoting by v 1 the 

' • f • 1 *> h . imaginary part o v, i.e. v
1 

= 21 (V - V :so, t e pair 

{H = H
0 

+ V,H
0

} possesses a summable spectral shift function~(.) e 
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L1 (1R1 ,(l+A2 )-ldA) such that the trace formula (4.5) holds if 

(4 .9 ) vl log(-Vl) E l!l(li). 

Proof. Since V e e
1 

(Ii) the condition (4.4) is fulfilled. Taking 

into account that H
0 

is self-adjoint the. condition (4.3) is 

obvious. In order to apply Theorem 4.1 it remain~ to verify the 

condition (4.2). To this end we use the representation 

(H* + i)-l - (H - i)-l + 2i(H* + i)-1 (H - i)-l 

(4 .10) 

2i (H* + i) -lV l (H - i).-l. 

By (4.9) we obtain v 1 e !!~(Ii). Since !!~(Ii) is an ideal in B(li) we 

have shown (4,2). ■ 

Remark 4.4. corollary 4. 3 essentially improves the results of 

[22]. 

s. Application ; 

In the following we give a simple application of the abstract 

results to the Schrodinger operator. To this end we set Ii = 

L2 (1Rn,dx), n = 1,2,3, and H
0 

= -A, where -A.is the Laplace operator 

on L2 (1Rn,dx), n = 1,2,3, and vis a multiplication operator induced 

by the bounded complex function q (. ) via (Vf) (x) = q (x) f (x) , x e 

IRn, f e L2 (1Rn,dx), n = 1,2,3. In order to obtain a maximal 

dissipat,ive operator we assume Im(q(x)) :s o for a.e.x e IRn, n 

1,2,3. _Setting H = H
0 

+ v, dom(H) = dom(H
0
), we obviously obtain a 

maximal dissipative operator. 

Theorem· 5. 1. If there are constants C > o and c > O such that 

(5.1) lq(x)I :s C(l + lxl)-(n+c), 
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is valid for a.e. x e Rn, n = 1,2,3, then the pair {H,H
0

) 

possesses a spectral shift function ~(-) belonging to 

L
1

(R
1

, (l+;\ 2)-1d;i.) such that the trace formula (4.5) holds for 

every 1/1 ( • ) e i}R. 

Proof. Since H0 is a self-adjoint operator we find that the 

conditions (4.7) and (4.8) are equivalent to 

(5.2) (H - i)-l - (H
0 

- i)-l e Ei(b). 

In accordance with the factorization q = lql 112 rn1q1 11 2 , where we 

agree to set rn = 1 for X E {X E Rn: q(X) = 0, n = 1,2,3), We 

obtain a factorization V = IV I 112 W IV I 112 where W is a unitary 

operator induced by ffi• Introducing the bounded operator 

G = (H
0 

- i) (H* + i)-l we get the representation 

(5.3 ) (H-i)-1 - (Ho-i)-1 = G*(Ho+i)-1IVl1;2WIVl1/2(Ho-i)-1. 

Taking into account that for A1 e Er(b) and A2 e Er(b) the product 

A1A2 e Er/2 (b), r > o, and that Er/2 (b) c Ei(b), o < r < 2, w~ 

prove (5.2) showing IVl 1/ 2 (H
0
-i)-l e Er(b), r < 2. Denoting by f(.) 

and g(.) the functions .f(x) = lq(x) 1112 , x e Rn, n = 1,2,3,. and 
1 n g(k) = - 2-, k e R, n = 1,2,3, 

k -1 

IVl 1/ 2 (H0 - i)-l = f(x)g(-i\7), 

•the sets 

we have to investigate the operator 

\7 = ~x· To this end, we introduce 

(5.4) o<n) = {x e Rn: v'n ms lxl s v'n (m + l)J, m 

m = 0,1,2, .•• , n = 1,2,3. By N(n)(m) we denote the number of unit 

cubes Aa with the center at a e Zn such that A n o<n) ~ 0, n = 
a m 

1 I (n) (n) (n) I ,2,3. Because of Nn(m) s om-l v om v om+l, m = 1,2,3, ••• , 

22 

there· is a constant en such that the estimate Nn(m) s cnmn-l, m = 

1, 2, 3, ••• , n_ = 1, 2, 3, holds. Taking into account the estimate 

jf(x) Is C(l + lxl)-(n+c)/2 , n= 1,2~3, we get 

(5.5 ) ref jf(x)l2dx)r/2 s cr/2 ref (1 + lxl)-(n+c) dx)r/2 s 
a A a A 

a a 

s cr/2 +., r 
m=0 

X E o<n) cf (1 + lxl)-(n+c) dx)r/2 s 
a m ·A 

a 

s cr/2 ( r cf (1 + lxl)-(n+c) dx)r/2 + 
A e o<n) 

a o Aa 

+., -(n+c)r/2) 
+ r N (m) (1 + v'n (m - 1)) s 

m=l n 

+.. . 
s canst.+ cr/2 c r mn-l (1 + v'n (m - 1))-(n+c)r/2• 

n m=l 

Now the last series converges if (n+c)r/2 - (n-1) > 1, i.e. ~~c < 

r 2 2n < r, n = 1,2,3. Thus, f(.) el (L ), n+c < r, n = 1,2,3. Because 

of jg(k)j s.c(l + jkj)-2 s C(l + jkj)-(n+c)/2 , k e Rn, n = 1,2,3, 

we obtain g(.) e lr(L2),· I< r, n =· 1,2,3. Since c > o r can be 

chosen such that the inequality max(¥, ~~c} < r < 2, n = 1,2,3, is 

satisfied. By Theorem 4.5 of (30] we get jvj 112 (H
0 

- i)-l = 

f(x)g(-i\7) e fr(b), r < 2. Hence, we have proved (5.2) •. Applying 

Corollary 4.2 we complete the proof. ■ 
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~aMHH B.M., Haii,cr;xap,cr;T X. ES-89-409 

O CYMMHpyeMoCTH ~YHK~HH cneKTpaJibHoro' cp;BHra· 
p;JIH nap CJKHMa10rqHX H,AHCcHnaTHBHbIX onepaTopoB 

PaooTa nocBHrqeHa npooneMe ~OPMYnw cnep;oB ,o;nH HeyHHTap­
HbIX H HeCaMoconpH~eHHhlX onepaTOPOB. IloKa9aHo, qTo CYMMH­
pyeMaH BerqeCTBeHHaH ~YHK~HH cneKTpanbHoro Cp;BHra Mo~eT 
ObIT!, BBep;eHa p;JlH napbI c~aTHH TaK' qTo OCTaeTCH cnpaBe,cr;nH­
BOH ~opMyna cnep;oB IlPH ycnoBHH, qTo 3TH c~aTHH pagnHqaIOT­
CH Ha onepaTop Gonee KOMnaKTHbIH, qeM H,cr;epHbIH. PegynbTaTbl 
TPaHC~OPMHPYIOTCH B Knacc AHCCHnaTHBHhlX onepaTopoB. IlpH­
MeHHIOTCH K onepaTopy llipep;HHrepa. 

Paooia BbmonHeHa B ITa6opaTopHH TeopeTHqecKoft ~H9HKH 
OIDIH. 

IlpenpHHT 061,eAHffeHHoro HHCTHTyTa R,D;epH&IX HCCJl~OB8HHH. ,ny6ea 1989 

Adamjan V.M., Neidhardt H. ES-89-409 

On the Sunnnability of the ·spectral Shift Function 
for Pairs of Contractions and Dissipative Operators 

The paper is devoted to the problem of the trace formu­
la for nonunitary and nonself-adjoint operators. It is 
shown tha.t a summable real spectral shift function can 
be introduced for a pair of contractions such that the 
trace formula holds if both contractions differ by an ope­
rator which is slightly more compact than a trace .class· 
operator. The result is carried over to dissipative ope­
rators. An application to the Schrodinger operator is gi­
ven. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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