$89-38$

сообщвиия обьвдиивиного института пдврных исследовании дубна

E5-89-38

PŠTovírek

ON THE INITIAL CONDITION FOR INSTANTON SOLUTIONS

1. INTRODUCTION

This peper is addressed to the inftial condition in the sense of Tem kasaki for both local and global instanton bundles. Throughout the paper the gauge group is assumed to be U(r), $\mathrm{r} \geqslant 2$; and it is well known that it can be always reduced to $S U(r)$ in the global case. In what follows r denotes the rank of the holomorphic or instanton bundle under consideration and $c_{2}=c$ denotes its topological charge equal to the second Chern class. It appears to be convenient to treat the framed instanton bundies [1].

We shall prove that in the inverse scattering formalism we can distinguish a special "canonical" solution in every gauge equiwalence class, and particularly we cen introduce the notion of the canonical initial condition. Since the initial value problem has the unique solution $[2]$ we can eliminate gauge freedom in this way. Moreover, the reality condition is retained in this treatment. Using twistors we shall also describe a geometric construction relating the canonical initial condition to a distinguished and again called canonical transition function. All considerations associeted with the construction remain valid even in the more general case of framed holomorphic vector bundles over $\prod^{n}, n \geq 2$, and the mentioned transition function appears to be a rational matrix function on with some special properties.

Using this construction we are able to obtain explicit expressions for the canonical initial condition of the ADHM instantons and consequently to give the full transcription of the ADHM construction into the inverse scattering formalism. To the author's knowledge, despite of the fact that the ADHM construction became now classical such a transaription was nowhere derived and published until yet. Hopefully it will enable to check and further develop some previous concepts such as the Backiund transformation [3,4].

In other words we have found the explicit form for the embedding of the framed instanton moduli spaces $M\left(r, c_{2}\right)$ into the space r of canonical initial conditions. We advance this approach and show that there exists an injective holomorphic mapping of the moduli space into a finite-dimensional complex vector space with the image being
a (locally) analytic set. Following Crane [5], in Sec. 7 we shall consider the loop group action on the instanton transition functions. Particularly we shall discuss the infinitesimel action on the 1 instantons.

2. PRELIMINARIES

We choose in \mathbb{C}^{4} a basis (the standerd one) $\left\{e_{1}, \ldots, e_{4}\right\}$ and hence the coordinates $\left(z_{1}, \ldots, z_{4}\right)$, and also the real structure τ : $\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \longrightarrow\left(-\bar{z}_{2}, \bar{z}_{1},-\bar{z}_{4}, \bar{z}_{3}\right)$. This real structure is transferred to the projective space $\quad \mathbb{P}^{3}=\mathbb{P}\left(\mathbb{C}^{4}\right)$ as well as to the Grassmann manifold $\mathbb{G}_{2}=\mathbb{G}_{2}\left(\mathbb{C}^{4}\right)$ consisting of lines in \mathbb{P}^{3}, and also to the flag manifold $\mathbb{F}_{1,2}^{2}=\mathbb{F}_{1,2}\left(\mathbb{C}^{4}\right) C \mathbb{P}^{3} \times \mathbb{G}_{2}$. Every point in \mathbb{P}^{3} lies on the unique real line. the manifold of real lines in \mathbb{P}^{3} is the sphere S^{4} and the projection $\pi: \mathbb{P}^{3} \rightarrow S^{4}$ is the Penrose twistor transformation. We have the real analytic embeddings $S^{4} \xrightarrow{\longrightarrow} \mathbb{G}_{2}$ and $\mathbb{P}^{3} \longleftrightarrow \mathbb{F}_{r, 2}$. Denote by \mathbb{P}^{2} the 2-dimensional projective space embedded into \mathbb{E}_{2} and consisting of those lines in \mathbb{P}^{3} which contain the point $P_{0}=$ span e_{4}. Clearly, $S^{4} \cap \mathbb{P}^{2}=\left\{x_{0}\right\}$. The manifold $\operatorname{pr}_{2}^{-1}\left(\mathbb{P}^{2}\right) \subset \mathbb{P}^{3} \times \mathbb{P}^{2}$ is the blow-up of \mathbb{P}^{3} at the point P_{o} and it will be denoted by $\tilde{\mathbb{P}}^{3}$.

We distinguish the following objects in \mathbb{P}^{3} : the points $P_{0}=$ $\operatorname{span} e_{4}, P_{\infty}=\operatorname{span} e_{3}$, the real lines $L_{0}=\mathbb{P}\left(\left(e_{3}, e_{4}\right)\right)=\bar{P}_{0} P_{\infty}$, $L_{\infty}=\mathbb{P}\left(\left(e_{1}, e_{2}\right)\right)$, the planes $H_{\infty}=\mathbb{P}\left(\left(e_{1}, e_{2}, e_{3}\right)\right), H_{0}=\mathbb{P}\left(\left(e_{1}, e_{3}, e_{4}\right)\right)$. The real Iines L_{o}, L_{∞} considered as points in S^{4} will be denoted by x_{0}, x_{∞} (or $0, \infty$), respectively.

The restriction $\pi: \mathrm{H}_{\infty} \backslash L_{\infty} \rightarrow S^{4} \backslash\left\{x_{\infty}\right\}$ induces a complex structure on $S^{4} \backslash\{\infty\}$ which we shall regard as the standard one. We choose complex coordinates y, z on $S^{4} \backslash\{\infty\} \cong \mathbb{c}^{2}$ via the identification span $\left(y e_{1}+z e_{2}+e_{3}\right) \longmapsto(y, z)$, and we introduce coordinates $\xi=z_{1} / z_{4}, \eta=z_{2} / z_{4}, \zeta=z_{3} / z_{4}$ on $p^{3} \backslash H_{\infty}$. Denoting by $\lambda=$ z_{3} / z_{4} the coordinate on $L_{0} \backslash\left\{P_{\infty}\right\}$ we have the transformations $y=$ $(\bar{\xi} \overline{5}+\bar{\eta}) /(1+5 \bar{\xi}), z=(2 \bar{\xi}-\bar{\xi}) /(1+5 \bar{\zeta}), \lambda=5$, and $\xi=\lambda y-\bar{z}, \eta=\lambda z+\vec{y}$. So we have the possibility to express functions on \mathbb{c}^{3} in the coordinates y, z, λ or $\xi, \eta, 5$. Provided the letter ones are used the corresponding function will be underlined.

The fundamental theorem due to Atiyah, Hitchin and Singer [6] relates to every (local) self-dual gauge field a (local) instanton bundle F with $\sigma: \tau^{*} \vec{F} \rightarrow F$ being the holomorphic isomorphism inducing a Hermitian structure. We shall restrict our considerations to the framed instanton bundles with a distinguished orthonormal frame over the line I_{o}. To any such a bundle there corresponds
a gauge equivelence class of germs of local transition functions. Every local transition function G is defined on on open set $\mathcal{U} \times \mathcal{V} \subset$ \mathbb{c}^{3} with \mathscr{Q} and \mathscr{F} being neighbourhoods of the origin in \mathbb{C}^{2} and the unit circle in \mathbb{C}, respectively, and it has properties: (i) $G(0, \lambda)=1$, (11) $G\left(\xi, \eta, \zeta\right.$) is holomorphic, (iii) $G(x,-1 / \lambda)^{+}=$ $G(x, \lambda)$. The space of germs of local transition functions fulfilling (i-iii) will be denoted by ξ_{u}. This corresponcence can be established even if all reality conditions are omitted. The larger space of germs of local transition functions satisfying only the conditions (i), (ii) will be denoted by G.

The objects we are dealing with are real analytic in some neighbourhood of the origin in \mathbb{C}^{2} and hence they can be locally extended from \mathbb{C}^{2} to \mathbb{C}^{4}. In what follows the symbol x stands for four complex variables y, z, \bar{y}, \bar{z} in this order. Let ρ denote a subspace of $g 1(r, \mathbb{C}[[x]]) \times g i(r, \mathbb{C}[[x, \lambda]]) \times g \lambda\left(r, \mathbb{C}\left[\left[x, \lambda^{-1}\right]\right]\right)$ consisting of those matrices (J, W, \hat{W}) of formal power series which satisfy

$$
\begin{align*}
& W(x, 0)=\hat{W}(x, \infty)=1 \tag{2.1}\\
& J(0)=W(0, \lambda)=\hat{W}(0, \lambda)=1, \tag{2.2}
\end{align*}
$$

and solve

$$
\begin{align*}
& \partial_{z} W-\lambda J \partial_{\bar{y}}\left(J^{-1} W\right)=\partial_{y} W+\lambda J \partial_{\bar{z}}\left(J^{-1} W\right)=0, \tag{2.3}\\
& \partial_{\overline{\mathbf{y}}} \hat{W}-\lambda^{-1} J^{-1} \partial_{z}(J \hat{W})=\partial_{\bar{z}} \hat{W}+\lambda^{-1} J^{-1} \partial_{y}(J \hat{W})=0 \quad . \tag{2.4}
\end{align*}
$$

We shall write $W(x, \lambda)=1+\sum_{j=1}^{\infty} W_{j}(x) \lambda^{j}, \hat{W}(x, \lambda)=1+\sum_{j=1}^{\infty} \hat{W}_{j}(x) \lambda^{-j}$, where $\left.W_{j}(x), \hat{W}_{j}(x) \in g\right](r, \mathbb{C}[[x]])$ and $W_{j}(0)=\hat{W}_{j}(0)=0$. An involution denoted again by σ acts on φ. It interchanges $J(x)$ with $J(x)^{\dagger}$ and $\hat{W}(x, \lambda)$ with $\left(W(x,-1 / \lambda)^{\dagger}\right)^{-1}$. The σ-invariant subspace consisting of (J, W, \hat{W}) fulfilling

$$
\begin{equation*}
J(x)^{\dagger}=J(x), \quad \hat{W}(x, \lambda)^{-1}=W(x,-1 / \bar{\lambda})^{\dagger} \tag{2.5}
\end{equation*}
$$

will be denoted by φ_{n}. The gauge transformations

$$
\begin{align*}
& J(x)^{-1} \mapsto \Gamma(x, 0)^{\dagger} J(x)^{-1} \Gamma(x, 0), \\
& W(x, \lambda) \longmapsto \Gamma(x, 0)^{-1} W(x, \lambda) \Gamma(x, \lambda) \tag{2.6}
\end{align*}
$$

make sense on φ_{u} provided $\Gamma \in g l(r, \mathbb{C}[[x, \lambda]])$ satisfies $\Gamma(0, \lambda)=1$ and

$$
\begin{equation*}
\left(\lambda \partial_{\bar{y}}-\partial_{z}\right) \Gamma=\left(\lambda \partial_{\bar{z}}+\partial_{y}\right) \Gamma=0 \tag{2.7}
\end{equation*}
$$

For $G \in G$ we choose the Birkhoff decomposition in the form

$$
\begin{equation*}
G(x, \lambda)=(J(x) \hat{\mathbb{W}}(x, \lambda))^{-1} w(x, \lambda), \tag{2.8}
\end{equation*}
$$

where $W(x, \lambda)$ and $\hat{W}(x, \lambda)$ are holomorphic in λ on neighbourhoods of the discs $\{|\lambda| \leqslant 1\}$ and $\left\{\left|\lambda^{-1}\right| \leqslant 1\right\}$, respectively, provided x is close enough to 0 , and they are normed by $w(x, 0)=\hat{W}(x, \infty)=1$. It is well known $[7,8]$ that in this way we get embeddings $\mathcal{G} \subset \varphi$ and $\mathcal{G}_{u} \subset \varphi_{u}$.

3. THE CANONICAL INITIAL CONDITION

We can exclude J from (2.3) : $J \partial_{\bar{y}} J^{-1}=\partial_{z} W_{1}, J \partial_{\bar{z}} J^{-1}=-\partial_{y} W_{1}$. Takasaki's approach provides a method how to solve these equations in the realm of formal power series together with a given initial condition

$$
\begin{equation*}
W(y, z, 0,0, \lambda)=w^{(0)}(y, z, \lambda) . \tag{3.1}
\end{equation*}
$$

In accordance with (2.1), (2.2) the initial condition $w^{(0)} \epsilon$ $\mathbb{E}^{1}(r, \mathbb{C}[[y, z, \lambda]])$ is required to fulfil $W^{(0)}(y, z, 0)=W^{(0)}(0,0, \lambda)=1$. The initial value problem has the unique solution $W(x, \lambda)$ unambiguously determined by the condition

$$
\begin{equation*}
W(\mathbf{x}, \lambda) W^{(0)}\left(y-\lambda^{-1} \bar{z}, z+\lambda^{-1} \bar{y}, \lambda\right)^{-1} \in g 1\left(r, \mathbb{C}\left[\left[x, \lambda^{-1}\right]\right]\right) \tag{3.2}
\end{equation*}
$$

We shall complete this result. proposition 3.1. It holds

$$
w(\bar{x}, \lambda) W^{(0)}\left(y-\lambda^{-1} \bar{z}, z+\lambda^{-1} \bar{y}, \lambda\right)^{-1}=J(x) \hat{W}(\mathbf{x}, \lambda),
$$

where \hat{W} is normed by $\hat{W}(x, \infty)=1$ and (J, w, \hat{W}) solve (2.3), (2.4) and (2.2), i.e., $(J, w, \hat{w}) \in \mathscr{\mathcal { C }}$.
Proof. In fact we shall prove also the Takasaki's result in an alternative way. Put $H(x, \lambda)=w^{(0)}\left(y-\lambda^{-1} \bar{z}, z+\lambda^{-1} \tilde{y}, \lambda\right)^{-1} \in g l\left(r, \mathbb{C}\left[\left[x, \lambda, \lambda^{-1}\right]\right]\right)$. Then $H(0, \lambda)=1$ and the m-th homogeneous term H_{m}, in the variables x does not contain powers of λ lower than λ^{-m}. Consequently $H(x, \lambda)$ is well defined. It also follows that for any $R \in$ $g 1(r, \mathbb{C}[[x]])$ there exists the unique solution $X \in g l(r, \mathbb{C}[[x, \lambda]])$ to the following problem: $X(x, \lambda) H(x, \lambda) \in \operatorname{gl}\left(r, \mathbb{C}\left[\left[x, \lambda^{-1}\right]\right]\right), X(0, \lambda)=$ $R(0)$ and $X(x, 0)=R(x)$. Really, write X in the form $X(x, \lambda)=$ $R(0)+\sum_{k=1}^{\infty} X_{k},(x, \lambda)$ with the terms X_{k}, being k-homogeneous in the variables x, to get the relations $X_{k}, \sum_{j=1}^{k} H_{j}, X_{k-j}, \epsilon$ $g 1\left(r, \mathbb{C}\left[\left[x, \lambda^{-1}\right]\right]\right), k \geq 1$, which enable to compute recursively and together with the condition $X(x, 0)=R(x)$ unambiguously all terms $X_{\mathbf{k}}$, Hence the condition (3.2) together with $W(0, \lambda)=W(x, 0)=1$ has the unique solution W and it c an be easily seen that this W also fulfils the initial condition (3.1). Now decompose
$W(x, \lambda) H(x, \lambda)=J(x) \hat{W}(x, \lambda)$ with the given normalization. Clearly, $\left(\partial_{z}-\lambda \partial_{\bar{y}}\right) H=0$ and hence $\left(\partial_{z}-\lambda \partial_{\bar{y}}\right)\left(J^{-1}(x) W(x, \lambda)\right) H(x, \lambda)=$ $\left(\partial_{2}-\lambda \partial_{\vec{y}}\right) \hat{W}(x, \lambda) \in g I\left(r, \mathbb{C}\left[\left[x, \lambda^{-1}\right]\right]\right)$. At the same time it holds $\left(\partial_{z}-\lambda \partial_{\bar{y}}\right)\left(J^{-1}(x) W(x, \lambda)\right)_{x=0}=\partial_{z}\left(J^{-1}(x) W(x, 0)\right)_{x=0}=\partial_{z} \mathcal{J}^{-1}(0)$ and $\left(\partial_{z}-\lambda \partial_{\bar{y}}\right)\left(J^{-1}(x) W(x, \lambda)\right)_{\lambda=0}=\partial_{z} J^{-1}(x)$. But $\left(\partial_{z} J^{-1}(x)\right) W(x, \lambda)$ futfils the same relations and so according to the above observation we have the equality $\left(\partial_{z}-\lambda \partial_{\bar{y}}\right)\left(J^{-1}(x) W(x, \lambda)\right)=\left(\partial_{z} J^{-1}(x)\right) W(x, \lambda)$. Analogously we get $\left(\partial_{y^{+}}+\lambda \partial_{\bar{z}}\right\rangle\left\langle\mathcal{J}^{-1}(x) W(x, \lambda)\right)=\left(\partial_{y} J^{-1}(x)\right) w(x, \lambda)$, ie., the equations (2.3) are satisfied. Further, $\left(\partial_{z}-\lambda \partial_{\bar{y}}\right) \hat{W}(x, \lambda)=$ $\left(\partial_{z} \mathcal{J}^{-1}(x)\right) W(x, \lambda) H(x, \lambda)=\left(\partial_{z} J^{-1}(x)\right) J(x) \hat{W}(x, \lambda)$, and analogously $\left(\partial_{y}+\lambda \partial_{\vec{z}}\right) \hat{W}(\mathbf{x}, \lambda)=\left(\partial_{y} J^{-1}(\mathbf{x})\right) J(x) \hat{W}(x, \lambda)$. Hence the equations (2.4) are satisfied as well. The rest of the proof is evident.

As a rule the gauge equivalence in the inverse scattering approach is usually quoted but not systematically developed. In the reminder of this section we shall try to show that such a more detailed discussion leads to some rather useful consequences. The condition (2.7) on Γ means that $\Gamma^{\prime}(x, \lambda)=\Gamma(\lambda y-\bar{z}, \lambda z+\bar{y}, \lambda)$, where $\Gamma(\xi, \eta, 5) \in g 1(r, \mathbb{C}[\{\xi, \eta, 5]])$. Hence $\Gamma^{(0)}(y, z, \lambda):=T(y, z, 0,0, \lambda)=$ $\bar{\Gamma}(\lambda y, \lambda z, \lambda)=r+\sum_{j=1}^{\infty} \Gamma_{j}^{(0)}(y, z) \lambda^{j}$, where $\Gamma_{j}^{(0)}(y, z)$ is a polynomial with the zero absolute term and of degree at most equal to j. Clearly, knowing $\Gamma^{(0)}$. we sire able to reconstruct Γ and hence Γ as well. The gauge transformation of the initial condition takes the form $W^{(0)} \longmapsto W^{(0)} \Gamma^{(0)}$. It follows that for each $(J, W, \hat{W}) \in \varphi_{u}$ there exists the unique gauge transformation Γ_{c} such that ${ }_{u} \mathbb{w}^{(0)}$ having been transformed satisfies $W_{j}^{(0)}(y, z) \in g I\left(r,(y, z)^{j+1}\right)$, where $W_{j}^{(0)}(y, z):=W_{j}(y, z, 0,0)$ and $\quad(y, z)^{j+1}$ is the $(1+j)-$ th power of the ideal $(y, z) \subset \mathbb{C}[[y, z]]$ generated by y, z. This condition eliminates gauge freedom. The unique gouge transformation Γ_{c} will be called canonical and we shall derive an explicit formula for it. Lemma 3.2. Assume that $(J, v, \hat{W}) \in \varphi$ end
$J(y, z, 0,0)=\hat{W}(y, z, 0,0, \lambda)=1$. Then
(i) $\hat{W}_{k}(x) \in g I\left(r,(\bar{y}, \bar{z})^{k+1}\right), k \geq 1$, where (\bar{y}, \bar{z}) is now an ideal in $\mathbb{C}[[x]]$, and
(ii) $W(x, \lambda) W^{(0)}\left(y-\lambda^{-1} \vec{z}, z+\lambda^{-1} \vec{y}, \lambda\right)^{-1}=J(x) \hat{W}(x, \lambda)$.
proof. (i) We have to show that $\partial_{\overline{\mathrm{y}}}{ }^{i} \partial_{\overline{\mathrm{z}}}^{j} \hat{W}_{k}(y, z, 0,0)=0$ for $0 \leqslant$ $i+j \leq k$. According to the assumption the assertion is valid for $i=j=0$. The equations (2.4) are equivalent to $\partial_{\bar{y}} \hat{W}_{k}=\partial_{z} \hat{W}_{k-1}+\left(J^{-1} \partial_{z} J\right) \hat{W}_{k-1}, \partial_{\bar{z}} \hat{W}_{k}=-\partial_{y} \hat{W}_{k-1}-\left(J^{-1} \partial_{y} J\right) \hat{W}_{k-1}, k \geq 1$.

Put $\bar{y}=\bar{z}=0$ in these relations to verify the assertion for $k=1$. Further we proceed by induction in k. It suffices to differentiate these equations by $\partial_{\bar{y}}^{i-1} \partial_{\bar{z}}^{j}$ or by $\partial_{\overline{\mathrm{y}}}{ }^{i} \partial_{\overline{\mathrm{z}}}{ }^{j-1}$, respectively. (ii) According to proposition 3.1 the left-hand side in (3.3) equels to $J^{\prime}(x) \hat{w}^{\prime}(x, \lambda)$ with $\left(J^{\prime}, W, \hat{W}^{\prime}\right) \in \varphi$. It is sufficient to show that the initial condition on J, \hat{w} determines them unambiguously. But this is an immediate consequence of the following two easily verifiable assertions: Let (J, W) and (J^{\prime}, \hat{W}) solve (2.3) and satisfy the corresponding boundery conditions in (2.1),(2.2). Then $J^{\prime}=J X$ with $X \in \operatorname{gl}\left(x, \mathbb{C}[[y, z] j), X(0)=1\right.$. Let $(J, \hat{W}),\left(J, \hat{W}^{\prime}\right)$ solve (2.4) and satisfy the corresponding boundary conditions in (2.1), (2.2). Then $\hat{W}^{\prime}(x, \lambda)=Y\left(y \sim \lambda^{-1} \bar{z}, z^{+} \lambda^{-1} \bar{y}, \lambda\right) \hat{W}(x, \lambda)$ with $Y(\xi, \eta, \zeta) \in g I\left(r, \mathbb{C}\left[\left[\xi, \eta, \zeta^{-1}\right]\right]\right)$ and $Y(0,0,5)=1$.
Theorem 3.3. Let $(J, W, \hat{W}) \in \varphi_{u}$ and J, \hat{W} fulfil

$$
\begin{equation*}
J(y, z, 0,0)=\hat{w}(y, z, 0,0, \lambda)=1 \tag{3.4}
\end{equation*}
$$

Then $W^{(0)}$ satisfies

$$
\begin{equation*}
W_{j}^{(0)}(y, z) \in g I\left(r,(y, z)^{j+1}\right), j \geq 1, \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
w^{(0)}(\bar{\lambda} \vec{z},-\bar{\lambda} \vec{y},-1 / \bar{\lambda})^{+}=w^{(0)}(y, z, \lambda) \tag{3.6}
\end{equation*}
$$

On the contrary let $W^{(0)}$ satisfy (3.5),(3.6). Then there exists the unique solution $(J, W, \hat{W}) \in \mathcal{Y}_{\mathrm{u}}$ with $W^{(0)}$ being the initial condition for W and, moreover, this solution fulfils (3.4). Remark. $w^{(0)}(\bar{\lambda} \bar{z},-\bar{\lambda} \bar{y},-1 / \lambda)^{\dagger}$ makes sense owing to (3.5). (3.6) is the anounced reality condition.
proof. (\Rightarrow) Validity of (3.5) Pollows from Lemma 3.2 ad(i), and from the equality $W^{(0)}(y, z, \lambda)^{-1}=\hat{W}(0,0, \bar{y}, \bar{z},-1 / \bar{\lambda})^{+}$. By the assumption the equality (3.3) holds. Set $y=z=0$ in it and make use of (3.4), (2.5) to get $W^{(0)}\left(-\lambda^{-1} \bar{z}, \lambda^{-1} \bar{y}, \lambda\right)^{-1}=\hat{W}(0,0, \bar{y}, \bar{z}, \lambda)$. Now it is sufficient to replace λ by $-1 / \bar{\lambda}$ and to perform Hermitian conjugation and inversion of both sides in the last equality. $\Leftrightarrow \Leftrightarrow$, We relate to $W^{(0)}$ a solution $(J, W, \hat{W}) \in \mathscr{\varphi}$ according to proposition 3.1. From (3.6) it follows $W^{(0)}(y+\bar{\lambda} \bar{z}, z-\bar{\lambda} \bar{y},-1 / \lambda)^{+}=$ $W^{(0)}\left(y-\lambda^{-1} \bar{z}, z+\lambda^{-1} \bar{y}, \lambda\right)$. The $\mathrm{k}-\mathrm{th}$ homogeneous term of $W^{(0)}\left(y-\lambda^{-1} \bar{z}, z+\lambda^{-1} \bar{y}, \lambda\right)$ in the variables x contains powers of λ not lower than ($-\mathbf{k}+1$) and not greater than ($\mathbf{k}-1$). Consequentily we are allowed to multiply the equation (3.2) from the right by this expression. So we have $J(x)^{-1} W(x, \lambda)=\hat{W}(x, \lambda) W^{(0)}\left(y-\lambda^{-1} \bar{z}, z+\lambda^{-\dagger} \bar{y}, \lambda\right)$. Replace λ by $-1 / \bar{\lambda}$ and conjugate and invert both sides of this equality to find that $\left(\hat{W}(x,-1 / \lambda)^{+}\right)^{-1}$ is again a solution with the same initial condition $W^{(0)}$. By uniqueness we have
$\left(\hat{k}(x,-1 / \bar{\lambda})^{+}\right)^{-1}=W(x, \lambda)$ and $J(x)^{+}\left(W(x,-1 / \bar{\lambda})^{+}\right)^{-1}=J(x) \hat{W}(x, \lambda)$. Hence $(J, w, \hat{w}) \in \rho_{u}$. Valicaity of (3.4) follows immediately from (3.2) and uniqueness is guarenteed by Lemma 3.2 ad(ii).

Definition 3.4. A solution $(J, w, \hat{w}) \in \varphi_{u}$ will be called cenonical provided it fulfils (3.4). The subspace of canonical solutions will be denoted by φ_{c}. An initial condition $w^{(0)}$ will be called canonical provided it fulfils (3.5),(3.6). The space of canonical initial conditions will be denoted by W.

Hence $W^{(0)} \in \mathbb{W}$ iff it holds

$$
w^{(0)}(y, z, \lambda)=1+\sum_{k=1}^{\infty} \sum_{n=k^{+}+1}^{\infty} \sum_{j=0}^{n} w_{n j k}^{(0)} y^{j_{z} n-j} \lambda^{k}
$$

where $w_{n j k}^{(0)} \in g l(r, \mathbb{c}), w_{n j j k}^{(0)}=(-1)^{n+j+k} w_{n, n-j, n-x^{\prime}}{ }^{\text {(}}$
Suppose $(J, W, \hat{W}) \in \varphi_{u}$. We introduce a gauge transformation $\Gamma_{c}(x, \lambda)=\Gamma_{-c}(\lambda y-\bar{z}, \lambda z+\bar{y}, \lambda)$, where

$$
\begin{equation*}
I_{c}(\xi, \eta, 5)=W(0,0, \eta,-\xi, 5)^{-1} J(0,0, \eta,-\xi) . \tag{3.7}
\end{equation*}
$$

Having performed this gauge transformation we get another solution $\left(J_{c}, w_{c}, \hat{w}_{c}\right) \in \varphi_{u}$. From (2.6) it follows that J_{c}, \hat{w}_{c} satisfy (3.4) and according to Theorem 3.3 the initial condition $\mathbb{F}_{c}^{(0)}$ fulfils (3.5). Hence the relation (3.7) yields the announced explicit form of the canonical gauge transformation.

We have just constructed a projection

$$
\operatorname{pr}_{c}: \varphi_{u} \longrightarrow \varphi_{c}:\left(J, w, \hat{w}^{\prime}\right) \longmapsto\left(J_{c}, w_{c}, \hat{w}_{c}\right),
$$

which, moreover induces a one-to-one mapping of the quotient $\varphi_{\mathrm{a}} /$ gauge transformations onto φ_{c}. According to Theorem 3.3 the mapping $\varphi_{c} \rightarrow W:(J, w, \hat{W}) \longmapsto W^{(0)}$ is one-to-one and so we have

$$
\begin{equation*}
\varphi_{\mathrm{u}} / \text { gauge transformations } \cong \varphi_{c} \cong T \text {. } \tag{3.8}
\end{equation*}
$$

In other words, gauge equivalence classes of local self-dual solua tions are parametrized by the points from the space W.

Denote by $\mathcal{G}_{C} \subset \mathcal{G}_{u}$ the subspace of germs of those transition functions G such that $G(y, z, 0,0, \lambda) \in W$. Ey restriction we obtain the projection

$$
\begin{aligned}
& \mathrm{pr}_{\mathrm{c}}: \mathcal{G}_{u} \rightarrow \mathcal{G}_{\mathrm{c}}: G=(J \hat{\eta})^{-1} W \mapsto G_{c}, \text { where } \\
& \underline{G}_{c}(\xi, ?, \zeta)=W^{(0)}(\xi / \zeta, \eta / \zeta, \zeta)(J(\bar{\eta},-\bar{\xi}, 0,0) \hat{W}(\bar{\eta},-\xi, 0,0,-1 / \xi))^{+} .
\end{aligned}
$$

Again this projection induces a one-to-one mapping

$$
\begin{equation*}
\mathcal{G}_{u} / \text { gauge transformations } \cong \mathscr{G}_{c} \text {. } \tag{3.9}
\end{equation*}
$$

We have a simple relation between the canonical transition
function G_{c} and the canonical initial condition $w_{c}^{(0)}$:

$$
\begin{align*}
& G_{c}(\xi, \eta, 5)=w_{c}^{(0)}(\xi / 5, \eta / 6, \zeta), \text { i.e., } \\
& G_{c}(x, \lambda)=w_{c}^{(0)}\left(y-\lambda^{-1} \bar{z}, z+\lambda^{-1} \bar{y}, \lambda\right), \tag{3.10}
\end{align*}
$$

and vice versa

$$
W_{c}^{(0)}(y, z, \lambda)=G_{c}(\lambda y, \lambda z, \lambda)=G_{c}(y, z, 0,0, \lambda)
$$

proposition 3.5. The isomorphism class of a global framed instanton bundle F over \mathbb{P}^{3} is unambiguously determined by its local restriction to $\mathscr{x}^{-1}(\mathbb{U})$ with \mathscr{U} being any neighbourhood of x_{0}. proof. Gram matrix of the Hermitian form expressed in a holomorphic frame is real analytic. Owing to this fact the distinguished orthonormal frame over L_{o} can be extended as an orthonormal real analytic trivialization $\left\{t_{1}, \ldots, t_{r}\right\}$ of F over $\mathbb{P}^{3} \backslash L_{\infty}$ in the following way. The sections t_{j} are defined on $H_{\infty} \backslash L_{\infty} \cong \mathbb{C}^{2}$ as horizontal lifts over the segments $\overline{P_{\infty} Q}$, and then they are extended as global holomorphic sections over each real line. Using this trivialization we get a connection A on $\mathbb{C}^{2} \cong \mathbb{R}^{4}$ with the self-dual curvature and with the finite topological charge equal to $c_{2}(F)$. At the same time A depends only on the isomorphism class of F and is real analytic and hence it is unambiguously determined by its germ at the origin. Using now Uhlenbeck Theorem [9] to remove the singularity at ∞ and applying the Penrose transformation we conclude that A determines F uniquely up to isomorphism.

It follows that having in mind (3.8), (3.9) we can relate to every isomorphism class the unique point from the space W. In this way we get an embeding of the framed instanton moduli spaces $M\left(r, c_{2}\right)$ into W. Explicit expressions will be given in Sec.5.

4. THE GEOMETRIC INTERPRETATION

Despite of the local way of its definition the canonical initial condition will be shown to have a clear geometric interpretation in the twistor framework. The global embedding of S^{4} into G_{2} and the pull-back of the instanton bundle $\mathrm{pr}_{1}^{*} \mathrm{~F}$ on $\mathrm{F}_{1,2}$ corresponds to the local analytic extension from \mathbb{C}^{2} to \mathbf{c}^{4}. The initial condition, i.e., the local restriction to the 2 -dimensional subspace $\overline{\mathbf{y}}=\bar{z}=0$, has a counterpart on the giobal level in the restrictions from \mathbb{G}_{2} to \mathbb{P}^{2} and from $\mathbb{F}_{1,2}$ to \boldsymbol{x}^{3}. Really, in the local coordinates y, z, \bar{y}, \bar{z} on \mathbb{G}_{2} at the point x_{0} introduced $v i a$ the mapping $(y, z, \bar{y}, \bar{z}) \longrightarrow \mathbb{P}\left(\left(y e_{1}+2 e_{2}+e_{3} ;-\bar{z} e_{1}+\overline{\mathrm{y}} e_{2}+e_{4}\right)\right)$, it holds : S^{4} is locally determined by the equations $\overline{\mathbf{y}}=c . c \cdot \bar{y}, \bar{z}=c . c . z$, and \mathbb{P}^{2} is locally determined by the equations $\overline{\mathbf{y}}=\overline{\mathbf{z}}=0$.

The following construction and its consequences are formulated in a more general setting for the n-dimensional projective spaces $\mathbb{P}^{n}, n \geq 2$, with a fixed line L_{o} and for the framed holomorphic rank-r vector bundies F over $\mathbb{F}^{n}, r \geq 2$, with a distinguished holomorphic trivialization on L_{o}. For such vector bundies the first Chern class $c,(F)$ venishes and according to Grothendteck Theorem the vector bundle F decomposes over every line L as $F \mid L=$ $\sigma\left(i_{1}\right) \oplus \ldots \oplus \sigma\left(i_{r}\right), i_{1} \geq \ldots \geq i_{r}, i_{1}+\ldots+i_{r}=0$. Hence $i_{1} \geq 0$ and $i_{1}=0$ iff F is holomorphicaliy trivial on L. The set S_{F} of jumping lines, i.e., consisting of lines over which F is not holomorphically trivial, is a proper closed analytic set in G_{2} (cf. [10],Chp. I). Fix two different points $P_{0}, P_{\infty} \in L_{0}$ and denote by S_{0}, S_{∞} the sets of jumping lines passing through P_{0} and P_{∞}, respectively. Let $\operatorname{sing}\left(P_{0}\right) \subset \mathbb{P}^{n}$ be the union of all lines belongtng to S_{0}, analogously define $\operatorname{Sing}\left(P_{\infty}\right)$. Agein the sets S_{0}, S_{∞} are proper closed enslytic sets in the ($n-1$)-dimensionsl projective spaces consisting of lines in \mathbb{P}^{n} containing P_{o} or P_{∞}, respectively. Consequently $\operatorname{Sing}\left(P_{0}\right)$ and $\operatorname{Sing}\left(P_{\infty}\right)$ are proper closed analytic subsets in \mathbb{P}^{n}.

More information provides the following theorem due to Barth generalized to higher orders. Denote by \mathcal{F} the locally free ranis-r sheaf of germs of holomorphic sections in F. We redenote the projections $p=\mathrm{pr}_{1}: \mathbb{F}_{1,2} \rightarrow \mathbb{P}^{n}$ and $q=\mathrm{pr}_{2}: \mathbb{F}_{1,2} \rightarrow \mathbb{E}_{2}$. Theorem 4.1. The set S_{F} of jumping lines ${ }^{2}{ }^{2}$ is an analytic subset in the Grassman menifold \mathbb{E}_{2} of codimension 1 everywhere. The sheaf $\varepsilon=R^{1} q_{*} p^{*}(\xi(-1))$ determines in G_{2} a divisor D_{F} of degree $c_{2}(F)$ and such that $S_{F}=\operatorname{supp} \varepsilon=\operatorname{supp} D_{F}$.
proof. In [10],Chp.II there is given a proof for the case $r=$ rank $F=2$. The main part of the proof may be reproduced almost verbatim also in the general case. We shall not do this and notice only the last part in which the degree of the divisor is computed. It is sufficient to verify the equelity deg $D_{F}=c_{2}(F)$ only for the dimension $n=2$ and that will be assumed up to the end of the proof. In this case there exists a resolution

The line bundle corresponding to the divisor D_{F} is $\left[D_{F}\right]=$ det $E_{2} \otimes$ det $E_{1}{ }^{*}$; where $E_{1}=\oplus R^{\dagger} q_{*} p^{*} G\left(k_{i}\right), E_{2} \stackrel{F}{=} \oplus R^{\prime} q_{*} p^{*} \theta\left(m_{j}\right)$. Finally, $\quad c_{\gamma}\left(R^{1} q_{*} p^{*} O(k)\right)=-k(k+1) / 2$. Now we can compute deg D_{F} using the Whitney formula for this resolution:
$-r=c_{j}(F(-1))=\sum m_{j}-\sum k_{i}$,
$c_{2}(F(-1))=\frac{1}{2} r(r-1)+c_{2}(F)=\sum_{i<j} m_{i} m_{j}-\sum_{i<j} k_{i} k_{j}+r \sum_{1} k_{1}$ $\operatorname{deg} D_{F}=c_{1}\left(\left[D_{F}\right]\right)=c_{1}\left(E_{2}\right)-c_{j}\left(E_{1}\right)=\frac{1}{2} \sum\left(k_{1}{ }^{2}+k_{i}\right)-\frac{1}{2} \sum\left(m_{j}{ }^{2}+m_{j}\right)=$ $=c_{2}(F(-1))-\frac{1}{2} r(r-1)=c_{2}(F)$.
Corallary 4.2. Let $\tilde{\mathbb{P}}^{n} \subset \mathbb{P}^{n} \times \mathbb{P}^{n-1}$ be the blow-up of \mathbb{P}^{n} at the point $P_{a} . \mathbb{P}^{n-1}$ is considered as a submenifold in \mathbb{S}_{2}. Then $S_{0}=S_{F} \cap^{a n-1}$ is on analytic subset in F^{n-1} of codimension 1 everywhere and the sheaf $\varepsilon_{0}=R^{1} \operatorname{pr}_{2 *} \mathrm{pr}_{1}^{*}\left(T^{(-1)}\right)$ determines in p^{n-1} a divisor D_{0} of degree $c_{2}(F)$ and such that $S_{o}=$ supp $\mathcal{E}_{0}=$ supp D_{0}.
Proof. The proof follows from the standard application of the bese--change theorem (cf. $[11], 89$).

Owing to the distinguished frame on L_{o} we have a fixed basis in the fiber over P_{∞}. Extend this basis as a holomorphic trivialization oter each line containing P_{∞} and not belonging to S_{∞}. We get a holomorphic frame $\left\{s_{1}, \ldots, s_{r}\right\}$ over the open set $\mathcal{X}_{0}=$ $\|^{n} \backslash$ Sing $\left(P_{\infty}\right) \ni P_{0}$. Construct analogously the holomorphic frame $\left\{\hat{s}_{1}, \ldots, \hat{S}_{r}\right\}$ over $\mathscr{U}_{\infty}=\mathbb{P}^{n} \backslash \operatorname{Sing}\left(P_{0}\right) \rightrightarrows P_{\infty}$. The corresponding transition function defined on $u_{0} \cap \mathcal{U}_{\infty}=\mathbb{P}^{n} \backslash\left(\operatorname{sing}\left(P_{0}\right) \cup \operatorname{Sing}\left(P_{\infty}\right)\right)$ will be denoted by $G^{F}=\left(G_{j k}^{F}\right), s_{k}=\sum \zeta_{j} G_{j k}^{F}$.

Owing to Chow Theorem all the sets $S_{0}, S_{\infty}, \operatorname{Sing}\left(P_{0}\right)$, $\operatorname{Sing}\left(P_{\infty}\right)$ are projective varieties in the corresponding projective spaces, and awing to a generalization of the same theorem, F is an algebraic vector bundle on p^{n} (cf.[12], §1.3). According to the same principles, G^{F} is a matrix of rationel functions on \mathbb{P}^{n}. Corollary 4.2 suggests that in the homogeneous coordingtes G^{F} has the form $G(z)=1+S(z) /\left(\eta_{0}(z) \rho_{\infty}(z)\right)$, where $S(z)$ is matrix of homogeneous polynomials with degrees equal to $2 c \quad\left(c=c_{2}(F)\right)$ and such that $S(z) \equiv 0$ on the line $L_{o}, \mu_{0}, \mu_{\infty}$ are homogeneous polynomials with degrees equal to c and such that the projective set $\mu_{0}(z)=0$ (resp. $p_{\infty}(z)=0$) coincides with $\operatorname{sing}\left(P_{0}\right)$ (resp. Sing $\left(P_{\infty}\right)$) . By the construction G^{F} depends only on the isomorphism class of the framed vector bundle F.
Theorem 4.3. The isomorphism class of a framed holomorphic vector bundle F on \mathbb{P}^{n} is unambiguously determined by the matrix function G^{F}.
Proof. ${ }_{G}{ }^{F}$ considered as transition function determines the framed vector bundie F over the open set $W_{0} u \mathcal{U}_{\infty}=$
$\mathbb{P}^{n} \backslash\left(\operatorname{Sing}\left(P_{0}\right) \cap \operatorname{Sing}\left(P_{\infty}\right)\right)$, up to isomorphism. The analytic sets Sing $\left(P_{0}\right)$, Sing $\left(P_{\infty}\right)$ have dimensions equal at most to ($n-1$) and
their intersection has dimension equal at most to ($n-2$) . Really, provided dimension of the intersection equals to $(n-1)$, the analy-. tic sets $\operatorname{Sing}\left(P_{0}\right)$, Sing $\left(P_{\infty}\right)$, Sing $\left(P_{0}\right) \cap \operatorname{Sing}\left(P_{\infty}\right)$ are of the same dimension and have at least one comon irreducible component T again of dimension ($n-1$) (cf.[13], §1.3). The irreducible components of the analytic set $\operatorname{Sing}\left(\mathrm{P}_{0}\right)$ are in one-to-one correspondence with the irreducible components of the analytic set S_{0} and each of them contains the point P_{0}. Consequently $P_{0} \in T \subset \operatorname{Sing}\left(P_{\infty}\right)$ and we get a cuntradiction. Let $L: \mathscr{U}_{0} \cup \mathcal{U}_{\infty} \longrightarrow \mathbb{P}^{n}$ be the embedding. Owing to a consequence of Hartogs Theorem which guarantees removability of singularities of a complex analytic function provided the singular points are contained in an analytic set of codimension at least 2 , we have a natural isomorphism $l_{x} l^{*} \mathcal{F} \cong \mathcal{F}$. Hence F is determined by its restriction $F 1\left(U_{o} \cup U_{\infty}\right)$ in the unique way. Proposition 4.4. det $G^{F}=1$.
Proof. The line bundle det F on \mathbb{P}^{n} is holomorphically trivial. The choice of a frame of F over L_{o} induces a holomorphic frame of $\operatorname{det} F$ over L_{o} which extends to holomorphic trivialization over \mathbb{W}^{n} in the unique wey. From the construction of G^{F} as a transition function it follows immediately that det G^{F} is a transition fune tion of det F identically equal to 1 on $u_{0} \cap U_{\infty}$ and hence everywhere on \mathbb{P}^{n}.

Let us now specify the construction for the framed instanton bundles on \mathbb{p}^{3}. In this case L_{0} is a real line, $\tau\left(P_{0}\right)=P_{\infty}$ and the distinguished frame is orthonormal. Moreover, $\tau\left(\operatorname{Sing}\left(P_{0}\right)\right)=$ Sing $\left(P_{\infty}\right)$ and the frame $\left\{\hat{s}_{1}, \ldots, \xi_{r}\right\}$ is related to the dual of the frame $\left\{s_{1}, \ldots, s_{r}\right\}$ by the isomorphism σ. It holds

$$
\begin{equation*}
G^{F}(\tau(Q))=G^{F}(Q)^{+} \text {on } U_{0} \cap \mathcal{U}_{\infty} \text {, } \tag{4,1}
\end{equation*}
$$

and hence the germ of G^{F} belongs to G_{u}.
Denote by $\widetilde{P}_{0}=\left(P_{0}, L_{0}\right)$ the point from the exceptional divisor in the blow-up $\tilde{\mathbb{P}}^{3}$. The pull-back of the metrix function $\mathrm{pr}_{1}^{*} \mathrm{G}^{\mathrm{F}}$ is holomorphic at the point \tilde{P}_{0}. Identify \mathbb{P}^{2} with the plane $H_{\infty} C$ (p) and introduce local coordinates on $\tilde{\mathbb{P}}^{3}$. via the mapping $(y, z, \lambda) \mapsto \operatorname{span}\left(\lambda y e_{1}+\lambda z \theta_{2}+\lambda \theta_{3}+e_{4}\right)$, span $\left(y e_{1}+z e_{2}+e_{3}\right)$; the values in \hat{P}_{0} are $y=z=\lambda=0$. Denote $\mathrm{pr}_{1}{ }^{*} \mathrm{G}^{\mathrm{F}}$ (0) expressed in these local coordinates by $w_{c}^{(0)}(y, z, \lambda)$. Clearly, $w_{c}^{(0)}(y, z, 0)=w_{c}^{(0)}(0,0, \lambda)=1$. From (4.1) it follows that equation ${ }^{c} w_{c}^{(0)}(\bar{\lambda} \bar{z},-\bar{\lambda} \bar{y},-1 / \bar{\lambda})^{+}=$ $w_{c}^{(0)}(y, z, \lambda)$ holds on an open set $u_{\times} V^{c}$, where \mathcal{U} and r are neighbourhoods of the origin in \mathbb{C}^{2} and of the unit circle in \mathbb{C}, respectively. Looking at the Lorain λ-expansion in this equality we
find the condition (3.5) to be valid as well as the reality condition (3.6). Hence $W_{c}^{(0)}$ is indeed the canonical initial condition correspanding to the framed instanton bunde F. G^{F} expressed in the local real analytic coordinates $(x, \lambda) \equiv(y, z, \bar{y}, \bar{z}, \lambda)$ satisfies $G^{F}(x, \lambda)=W_{c}^{(0)}\left(y-\lambda^{-1} \bar{z}, z+\lambda^{-1} \bar{y}, \lambda\right)$. Comparing this identity with (3.10) we conclude that ${ }_{G}{ }^{F}$ coincides with the canonical transition function G_{c}.

Note that the same construction of the canonical initial condition is applicable also ta the local case.

5. EXPLICIT EXPRESSIONS

For a quadruple $\left(\alpha_{1}, \alpha_{2}, a, b\right) \in \mathbb{C}^{c, c} \times \mathbb{T}^{c}, c \times \mathbb{T}^{r, c} \times \mathbb{T}^{c, r}$ and $z=$ $\left(z_{j}\right) \in \mathbb{C}^{4}$ set $R(z)=\left(\begin{array}{c}\alpha_{1} z_{1}+\alpha_{2}^{+} z_{2}-z_{3} \\ \alpha z_{1}-\alpha_{1}{ }^{+} z_{2}+z_{4} \\ a z_{1}-b^{+} z_{2}\end{array}\right), \quad \Delta(z)=R(z)^{+} R(z)$.
The moduli space $M\left(r, c_{2}\right)$ of framed instanton bundies on p^{3} is the quotient of the set of matrices $\left(\alpha_{1}, \alpha_{2}, a, b\right)$ satisfying
(i) $R(z)$ is of rank $c=c_{2}$ for all $z \neq 0$,
(ii) $R(\tau z)^{\dagger} R(z)=0$ for all z, or equivalently, $\Delta(\tau z)=\Delta(z)$ for all z,
by the action of $U(c): R(z) \longrightarrow \operatorname{diag}(g, g, 1) R(z) g^{-1}, g \in U(c)$ (cf.[1]). Let $Z \in \mathbb{P}^{3}$ be e point with homogeneous coordinates $z=$ $\left(z_{1}, \ldots, z_{4}\right)$. Then the fibre F_{Z} of the instanton bundle in the ADHM construction is given by (cf. [14,15]) $\quad F_{Z}=\operatorname{ker} R(\tau z)^{+} /$im $R(z)$. The Hermitian product in F_{Z} is given by ([s],[t]) = $s^{+}\left(1-R(z) \Delta(z)^{-1} R(z)^{+}\right) t$.
Lemma 5.1. Let L be a line in \mathbb{P}^{3} and $Y_{o}, Z_{o} \in L$ be two different points with homogeneous coordinates y_{0}, z_{0}, respectively. Then F|L is holomorphically trivial if and only if the matrix $R\left(\tau y_{\alpha}\right)^{+} R\left(z_{0}\right)$ is invertible.
Proof. (\Rightarrow) Fix a basis in the fibre over Z_{0} via the choice of a (2c+r)×r matrix N satisfying: $R\left(x z_{0}\right)^{t} N=0, \operatorname{rank}\left(N, R\left(z_{0}\right)\right)=$ $\mathbf{r}+\mathbf{c}$. Then the matrix function $S(Y)=$ $\left[1-R\left(z_{0}\right)\left(R\left(\tau y_{0}\right)^{+} R\left(z_{0}\right)\right)^{-1} R\left(\tau y_{0}\right)^{\dagger}\right] N$ modulo im $R(y), Y=\operatorname{span} y \in L$, is in fact a holomorphic trivialization of F over L. $\left(\Leftrightarrow\right.$ Suppose $R\left(\tau y_{0}\right)^{\dagger} R\left(z_{0}\right)$ is singular. We shall show that $F \mid L$ has a nontrivial section with at least one zero. Denote $K=$ $\operatorname{ker} R\left(\tau y_{0}\right)^{\dagger} R\left(z_{0}\right) \subset \mathbb{C}^{c}$. Let A be a projector onto $R\left(z_{o}\right) K \subset \mathbb{C}^{2 c+r}$ according to any direct summend. Since the restriction
$R\left(z_{0}\right): K \rightarrow R\left(z_{0}\right) K$ is on isomorphism we can define $A=$ $R\left(z_{0}\right)^{-1} \circ \Lambda \circ R\left(y_{0}\right): K \longrightarrow K$. Choose an eigenvalue $-x$ of the endomorphism A and a vector $f \in K \backslash i m\left(A^{+} \not x 1\right)$. Hence $R\left(z_{0}\right) f \neq$ $\left(R\left(y_{0}\right)+x R\left(z_{0}\right)\right) g$ for all $g \in K$. The section $s(Y)=R\left(z_{0}\right) f$ modulo im $R(y), Y=\operatorname{span} y \in L$, is holomorphic and $s\left(Z_{0}\right)=0$. Now it suffices to verify that $s(Y) \neq 0$, where $Y \in L$ is the point with homogeneous coordinates $y=y_{0}+x_{0}$. Really, provided $R\left(z_{0}\right) f=R(y) g=\left(R\left(y_{0}\right)+\mathcal{R} R\left(z_{c}\right)\right) g$ we have $0=R\left(\tau z_{0}\right)^{\dagger} R\left(z_{0}\right) f=$ $R\left(\tau z_{0}\right)^{\dagger} R\left(y_{0}\right) g=-R\left(\tau y_{0}\right)^{\dagger} R\left(z_{0}\right) g$, hence $g \in K$ and we get a contradiction.

$$
\text { Set } R_{0}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), R_{\infty}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), N_{0}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \text {, where the dimen- }
$$

sions of the matrices are $(2 c+r) \times c,(2 c+r) \times c$. and $(2 c+r) \times r$, respectively. The columns of N_{o} determine the distinguished frame over L_{o}. Follow now the construction of Sec.4. The fromes $\left\{s_{1}, \ldots, s_{r}\right\}$ and $\left\{\hat{s}_{1}, \ldots, \hat{s}_{r}\right\}$ are determined by the matrix functions $S(Z), \hat{S}(Z)$ modulo im $R(z)$, respectively, where $(Z=\operatorname{span} z), S(Z)=$ $\left[1-R_{\infty}\left(R(\tau z)^{\dagger} R_{\infty}\right)^{-1} R(\tau z)^{\dagger}\right] N_{0}, S(z)=\left[1-R_{0}\left(R(\tau z)^{+} R_{0}\right)^{-1} R(\tau z)^{\dagger}\right] N_{0}$. At the same time, as it should be, $\hat{S}(\tau Z)^{\dagger} S(Z)=1$. The canonical transition function is given by $G_{c}(Z)=S(\tau Z)^{\dagger} S(Z), G_{c}(Z)^{-1}=$ $\hat{S}(\tau Z)^{\dagger} \hat{S}(Z)$. Hence $G_{c}(Z)=$ $1-N_{0}^{+} R(z)\left(R(\tau z)^{t} R_{0}\right)^{-1}\left(R_{0}^{+} R(z)\right)^{-1} R(\tau z)^{+} N_{0}$. Taking (3.10) into account we get the canonical initial condition
$W_{c}^{(0)}(y, z, \lambda)=1+\lambda\left(2 y-b^{+} z\right)\left(1-\alpha_{1} y-\alpha_{2}^{+} z\right)^{-1}\left(1+\lambda\left(\alpha_{2} y-\alpha_{1}{ }^{+} z\right)\right)^{-1}\left(b y+e^{+} z\right)$,
Lemane 5.2. Let F be a local instanton bundie and let $\left\{t_{1}, \ldots, t_{r}\right\}$ be a holomorphic freme in a neighbourhood of the point $P_{0} \quad(y=z=\lambda=0)$. Then the Grom matrix $h=\left(\left(t_{j}, t_{k}\right)\right)$ has form

$$
h(x, \lambda, \bar{\lambda})=w(x, \lambda)^{+} J(x)^{-1} w(x, \lambda),
$$

where $J(x)=J(x)^{+}, W(x, 0)=1$ and J, W solve (2.3). proof. The assertion follows immediately from the form of the Birkhoff decomposition of the transition function (2.8).

Now we apply this lemma. In coordinates (x, λ) we have $z=$ $(\lambda y-\bar{z}, \lambda z+\bar{y}, \lambda, 1)$, and so
$J(x)^{-1} W(x, \lambda)=S(z)^{+}\left(1-R(z) \Delta(z)^{-1} R(z)^{+}\right) S(z) \mid \bar{\lambda}=0$,
$J(x)=\left.\hat{S}(\tau z)^{\dagger}\left(1-R(\tau z) \Delta(z)^{-1} R(\tau z)^{\dagger}\right) \hat{S}(\tau z)\right|_{\lambda=\bar{\lambda}=0}$,
To get the explicit formulas we set

$$
\begin{align*}
& \Psi=a y-b^{+} z, \quad \Psi_{\sigma}=b y+a^{\dagger} z, \\
& \Phi=\alpha_{2} y-\alpha_{1}^{+} z, \Phi_{\sigma}=\alpha_{1} y+\alpha_{2}^{+} z, \tag{5.3}
\end{align*}
$$

and hereinafter

$$
\begin{equation*}
\Delta=\left(1-\Phi_{0}^{+}\right)\left(1-\Phi_{0}\right)+\Phi^{+} \Phi+\Psi^{+} \Psi=\left(1-\Phi_{\sigma}\right)\left(1-\Phi_{\sigma}^{+}\right)+\Phi \Phi^{+}+\Psi_{\sigma} \Psi_{\sigma}^{+} \tag{5.4}
\end{equation*}
$$

In this notation (5.1) is equivalent to $\Psi_{\sigma} \Psi=\left[\Phi, \Phi_{\sigma}\right]$ and (5.2) may be rewritten

$$
W_{c}^{(0)}(y, z, \lambda)=1+\lambda \psi\left(1-\Phi_{\sigma}\right)^{-1}(1+\lambda \Phi)^{-1} \Psi_{\sigma}
$$

Theorem 5.3. The following formulas together with (5.3), (5.4) provide the full transcription of the ADHM construction into the J, W-formalism of the inverse scattering approach.

$$
\begin{aligned}
\Psi(x, \lambda)= & 1+\lambda\left(\Psi+\Psi_{\sigma}^{+}\left(1-\Phi_{\sigma}^{+}\right)^{-1} \Phi\right) \Delta^{-1}\left(1+\lambda \Phi\left(1-\Phi_{\sigma}^{+}\right)^{-1}\right)^{-1} \times \\
& \times\left(\Psi_{\sigma}-\Phi\left(1-\Phi_{\sigma}^{+}\right)^{-1} \Psi^{+}\right), \\
J(x)= & 1+\Psi_{\sigma}^{+}\left(1-\Phi_{\sigma}^{+}\right)^{-1}\left(1-\Phi_{\sigma}\right)^{-1} \Psi_{\sigma}- \\
= & \left(\Psi+\Psi_{\sigma}^{+}\left(1-\Phi_{\sigma}^{+}\right)^{-1} \Phi\right) \Delta^{-1}\left(\Psi^{+}+\Phi^{+}\left(1-\Phi_{\sigma}\right)^{-1} \Psi_{\sigma}\right) .
\end{aligned}
$$

If we put $\hat{W}(x, \lambda)=\left(W(x,-1 / \bar{\lambda})^{+}\right)^{-1}$, then $(J, W, \hat{W}) \in \varphi_{c}$ is the distingulshed canonical solution defined in Sec.3.

The most familiar self-dual solutions are the 't Hooft's instantons with the gauge group SU(2). In this case $a=\binom{p}{0}, b=\left(0,-p^{t}\right), \rho=\left(\rho_{1}, \ldots, p_{c}\right),-\alpha_{1}=\operatorname{diag}\left(\bar{u}_{1}, \ldots, \bar{u}_{c}\right)$, $-\alpha_{2}=\operatorname{diag}\left(v_{1}, \ldots, v_{c}\right)$, where the constants p_{j} are positive and the points $\left(u_{j}, v_{j}\right) \in \mathfrak{c}^{2}, \mid \leq j \leq c$, are mutuaily different. The canonical indtial condition takes the form

$$
w_{c}^{(0)}(y, z, \lambda)=1+\lambda \sum_{j=1}^{c} \frac{\rho_{j}^{2}}{\left(1+\bar{u}_{j} y+\bar{v}_{j} z\right)\left(1-\lambda\left(v_{j} y-u_{j} z\right)\right)}\left(\begin{array}{cc}
y z & -y^{2} \\
z^{2}-y z
\end{array}\right) .
$$

6. CONSEQUENCES

Owing to the Donaldson's result we can consider the moduli space OM(r, c_{2}) of framed holomorphic vector bundles on \mathbb{P}^{2} instead of $M\left(r, c_{2}\right)$. The description of $G M\left(r, c_{2}\right)$ is similar to that of $M(r, c)$ (cf.[1]). Theorem 4.3 asserts that the points of $\mathcal{O M}(r, c)$ are in one-to-one correspondence with the restricted canonical initial conditions $W_{r e s}^{(0)}=\left.W_{C}^{(0)}\right|_{z=0}$. We introduce a new coordinate $w=\lambda y$ and define $\quad w_{r e s}^{(0)}(y, w)=w_{c}^{(0)}(y, 0, w / y)$. From (5.2) it follows $\mathrm{wres}_{\text {res }}^{(0)}(y, w)=1+y w a\left(1-\alpha_{1} y\right)^{-1}\left(1+\alpha_{2} w\right)^{-1} b$.

The Taylor expansion at the origin shows that a point from $6 M(r, c)$ corresponding to the equivalence class $\left[\left(\alpha_{1}, \alpha_{2}, a, b\right)\right]$ is unambiguously determined by the infinite double indexed sequence of matrices $a \alpha_{1}^{j} \alpha_{2}^{\mathbf{k}} \mathrm{b}, j, \mathrm{k}=0,1, \ldots$.
Lemma 6.1. Let $f(t) \in G_{0, f}$ be a rational function in one variable over any field f of characteristic zero and assume f to be regular at the origin. If f can be expressed as a quotient $f=p / q$ with p, q being polynomials of degrees less or equal to n then f is unambiguously determined by $2 n$ numbers $\frac{1}{j!} \frac{d^{j}}{d t^{j}} f(0), 0 \leq j \leq 2 n-1$. proof. The proof is simple and fully algebraic. We omit it. Proposition 6.2. The holomorphic mapping $G M(r, c) \rightarrow \mathbb{c}^{4 c^{2} r^{2}}:$ $\left[\left(\alpha_{1}, \alpha_{2}, a, b\right)\right] \rightarrow\left(a \alpha_{1}^{j} \alpha_{2}^{k} b ; 0 \leq j, k \leq 2 c-1\right)$ is injective. proof. Use the Cramer rule and apply twice Lemma 6.1. First putting $f=\mathbb{C}$ we reconstruct $a(1-\alpha, y)^{-1} \alpha_{2}^{k} b, 0 \leq k \leq 2 c-1$. Then putting $f=\mathbb{C}(y)$ - the field of complex rational functions in the variable y - we reconstruct $a\left(1-\alpha_{1} y\right)^{-1}\left(1+\alpha_{2} w\right)^{-1} b$.

Let us now consider another holomorphic injective and maybe more fruitful mapping. The Cramer rule implies
$w_{r e s}^{(0)}(y, w)=1+\left(1+\sum_{j=1}^{c} s_{j} y^{j}\right)^{-1}\left(1+\sum_{j=1}^{c} t_{j} w^{j}\right)^{-1} \sum_{j, k=1}^{c} S_{j k} y^{j} w^{k}$,
where $s_{j}, t_{j} \in \mathbb{C} . S_{j k} \in g l(r, \mathbb{C})$. The mapping
$\mathrm{BM}(r, c) \rightarrow \mathbb{C}^{2 c+r^{2} c^{2}}:\left[\left(\alpha_{1}, \alpha_{2}, a, b\right)\right] \rightarrow\left(s_{j}, t_{j}, s_{j k} ; 1 \leq j, k \leq c\right)$
is indeed holomorphic and injective. Moreover, the interpretation of $W_{\text {res }}^{(0)}$ as a transition function shows that this mapping is a homeomorphism onto its image. By Remmert Theorem (cf.[13], §IV.7) the image of $6 \mathrm{M}(\mathrm{r}, \mathrm{c})$ is a (locally) analytic set, irreducible and of dimension equal to $d^{i m} \mathbb{C}_{\mathbb{C}} 6(r, c)$ everywhere. Remind that the moduli spaces are known to be connected (cf.[10].Chp.II).

The 1 -instantons provide the most simple example. The moduli space $G M(2,1)$ is biholomorphically equivalent to $\mathbb{N}_{\text {reg }}^{(1)}$, the algebraic set $A^{(1)} \subset \mathbb{C}^{6}$ is determined by the equations: $\operatorname{tr} S_{11}=$ det $S_{11}=0\left(A_{\text {sing }}^{(1)}\right.$ consists of points for which $\left.S_{11}=0\right)$. proposition 4.4 characterizes partially the image in the general case. Substitute (6.1) into det $W_{r e s}^{(0)}=1$ to get

$$
\operatorname{tr} s_{11}=\operatorname{tr} s_{1 j}=\operatorname{tr} s_{j, 1}=0,2 \leq j \leq c,
$$

$$
\begin{align*}
& \left(1+\sum_{j=1}^{c} s_{j} y^{j}\right)\left(1+\sum_{j=1}^{c} t_{j} w^{j}\right) \sum_{j, k=2}^{c} t r s_{j k} y^{j-2} w^{k-2}+ \\
& +\operatorname{det}\left(\sum_{j, k=1}^{c} s_{j k} y^{j-1} w{ }^{k-1}\right)=0 \tag{6.2b}
\end{align*}
$$

Note that for rank-2 vector bundles ($6.2 a, b$) represent $2 c(2 c-1)$ equations and if we subtract this number from the number of independant variables we obtain exactiy $4 c=d i m_{\mathbb{C}} 6 \mathrm{M}(2, \mathrm{c})$. On the other hand, the algebraic set $A^{(c)} \subset \mathbb{C}^{2 c(2 c+1)}$ determined by the equations (6.2) contains the $(c+1)^{2}$ - dimensional algebraic subset: $\operatorname{tr} S_{j k}=\operatorname{tr}\left(S_{j k} S_{j}{ }_{j k}^{\prime \prime}\right)=0$ for all $j, k, j^{\prime}, k^{\prime}$.
7. ON THE LOOP GROUP ACTTON

The embedding of the space φ into the vector space $g l(r, \mathbb{C}[[x]]) \times$ gl($r, \mathbb{C}[[x, \lambda]]) \times g l\left(r, \mathbb{C}\left[\left[x, \lambda^{-1}\right]\right]\right)$ enables us to treat formally the Lie algebra $x(\varphi)$ of vector fields on φ. Denote by $G 1\left(r, \mathbb{C}\left[\lambda, \lambda^{-1}\right]\right)$ the Lie algebra of Lorain polynomials in λ with coefficients from the Lie algebra $g l(r, \mathbb{C})$. Dolan [16] and Chau, Ge, Sinhe and Wu [17] discovered an infinitesimal sction, i.e., a Lie algebra homomorphism $\delta: g l\left(r, \mathbb{C}\left[\lambda, \lambda^{-1}\right]\right) \rightarrow \mathcal{X}(\mathcal{Y}): T \lambda^{-k} \longmapsto \delta_{k}(T)$, where $k \in \mathbb{Z}$, $T \in g l(r, \mathbb{C})$. The components of $\delta_{k}(T)$ can be expressed with the help of $g l(r, \mathbb{C}[[x]])$ - velued functions $d_{k}(T), \hat{d}_{k}(T), k \in \mathbb{N}_{0}$, defined on φ and linearly depending on T, introduced by the reletions $W(\lambda) T W(\lambda)^{-1}=\sum_{k=0}^{\infty} d_{k}(T) \lambda^{k}, \hat{W}(\lambda) T \hat{W}(\lambda)^{-1}=\sum_{k=0}^{\infty} \hat{d}_{k}(T)(-\lambda)^{-k}$.

It was also recognized by Chau et al. that to get a well defined action on the subspace $\varphi_{u} \subset \varphi$ we must restrict $g 1\left(r, \mathbb{C}\left[\lambda, \lambda^{-1}\right]\right)$ to the subalgebre consisting of those elements $\sum T_{k} \lambda^{-k}$ which satisfy $\mathbf{T}_{\mathbf{- k}}=(-1)^{\mathbf{k}+1} \mathbf{N}_{\mathbf{k}}{ }^{+}$.

Let Ω be the loop group of holomorphic mappings from \mathbb{C} to $G L(r, \mathbb{C})$ defined on a neighbourhood of the unit circle. Crane discovered [5] that one is able to exponentiate the infinitesimal action if we replace φ by its subspace of convergent power series \mathcal{G}. Let $G=(J \hat{W})^{-1} W \in \mathcal{G}, \quad \mathcal{F}=\sum \mathrm{T}_{\mathbf{k}} \lambda^{-\mathbf{k}} \in g 1\left(r, \mathbb{C}\left[\lambda, \lambda^{-1}\right]\right)$, $\left(J^{\prime}, W^{\prime}, \hat{W}^{\prime}\right)=(J, W, \hat{W})+\varepsilon \delta(\mathcal{T}), \varepsilon=$ infinitesimal. Then we get after some algebra $G^{\prime}:=\left(J^{\prime} \hat{W}^{\prime}\right)^{-1} W^{\prime}=(1+\varepsilon T) G(1-\varepsilon T)$ (mod ε^{2}). Hence the global action of Ω on g should be defined as:

$$
(g \cdot G)(x, \lambda)=g(\lambda) G(x, \lambda) g(\lambda)^{-1}
$$

where $g \in \Omega, G \in g$. This definition is easily seen to be correct. Crane defined the action of Ω on \mathscr{G} as follows $(8 \cdot G)(x, \lambda)=g(\lambda) G(x, \lambda) g(-1 / \bar{\lambda})^{+}$.

Clearly, this result requires an additional specification. The global action will be correctly defined on the subspace $G_{u} \subset \mathcal{G}$ provided we restrict the group Ω to its subgroup Ω_{u} consisting of those elements $g(\lambda)$ which satisfy $g(-1 / \bar{\lambda})^{+}=g(\lambda)^{-1}$.

The loop group action is gauge dependant and the moduli spaces $M(r, c)$ embedded into φ_{c} ere not invariant with respect to this action. Let us notice more closely the infinitesimel action on the 1 -instanton moduli space $M(2,1)$. The action of Ω_{u} includes as a special case the ad(U(2)) - transformations corresponding to the choice of the distinguished frame and there is no necessity to persue them further. Because $d_{\mathbf{k}}(1)=\hat{a}_{\mathbf{k}}(1)=0$ for $k>0$, it is enough to consider only the vector fields $\delta(\mathcal{T})$, where $T=$ $\sum_{k \geq 1}\left(T_{k} \lambda^{-k}+(-1)^{\mathbf{k}+1} T_{\mathbf{k}}^{+} \lambda^{\mathbf{k}}\right), T_{k} \in \operatorname{si}(2, \mathbb{C})$. Denote $\tilde{\delta}_{\mathbf{k}}(T)=$ $\delta_{\mathbf{k}}\left(T \lambda^{-\mathbf{k}}+(-1)^{\mathbf{k}+1} \mathbf{T}^{+} \lambda^{\mathbf{k}}\right)$, and $\delta_{\mathbf{k}}^{(0)}(T)=\operatorname{prcx}_{\boldsymbol{x}} \widetilde{\delta}_{k}(T), \mathbf{k} \geq 1$. Since $\varphi_{c} \cong W$ we can regard the vector field $\delta_{k}^{(0)}(T)$ as being defined on W. We shall try to answer the following question: Which vector fields $\widetilde{\delta}(\mathcal{T})=\Sigma_{k \geq 1} \widetilde{\delta}_{k}\left(T_{k}\right)$ having been restricted to $M(2,1)$ are tangent to $\operatorname{pr}_{c}{ }^{-1}(M(2,1)) \subset \varphi_{u}$, i.e., which vector fields $\delta^{(0)}(\mathcal{T})$ are tengent to $M(2,1) \subset \mathcal{W}$? Roughly speaking, we ask when the loop group action preserves infinitesimally the topological charge finite end equal to 1 .

To this end we derive some necessary formulas. Let (J, W, \hat{W}) $\in \varphi_{c}$ and $W_{c}^{(0)} \in W$ be the corresponding canonical initial condition. Then it holds: $\hat{d}_{k}\left(\mathbf{x} ; T^{+}\right)=d_{k}(x ; T)^{\dagger}$ and $\hat{d}_{k}(y, z, 0,0 ; T)=0$ for $k \geq 1$. Use these relations to get

$$
\begin{aligned}
\delta_{k}^{(0)}(T)= & -\sum_{j=1}^{\infty} d_{k+j}^{(0)}(y, z ; T) \lambda^{j} W^{(0)}(y, z, \lambda)- \\
& -W^{(0)}(y, z, \lambda) \sum_{j=1}^{\infty} d_{k+j}^{(0)}(\bar{\lambda} \bar{z},-\vec{\lambda} \bar{y} ; T)^{\dagger}(-\lambda)^{j}
\end{aligned}
$$

where by definition $d_{k}^{(0)}(y, z ; T)=d_{k}(y, z, 0,0 ; T)$. The infinitesimal canonical gauge transformation (J, W, \hat{W}) $+\varepsilon \widehat{\delta}_{k}(T) \mapsto$ $(J, W, \hat{W})+\varepsilon \delta_{k}^{(0)}(T), \varepsilon-\operatorname{infinitesimal}$, takes the form $\Gamma_{c}(\xi, \eta, \xi)=$ $1+\varepsilon \sum_{j=0}^{k-1} a_{k-j}^{(0)}(\bar{\eta},-\bar{\xi} ; T)^{t}(-\xi)^{j}$ (mod $\left.\varepsilon^{2}\right)$. The 1 -instanton canonical initial conditions depend on four parameters $u, \forall, a, b \in \mathbb{C},(a, b) \neq$ $(0,0), W_{c}^{(0)}(y, z, \lambda)=1+\lambda\left(1+\phi_{0}\right)^{-1}(1-\lambda \phi)^{-1} x$, where $x=$ $\binom{a y-\bar{b} z}{b y+\bar{a} z}^{c}(b y+\bar{a} z,-a y+\bar{b} z), \phi=v y-u z, \phi_{\sigma}=\bar{u} y+\vec{v} z$. We obtain ($k \geq 1$)

$$
\begin{aligned}
d_{k}^{(0)}(T)= & \frac{\phi^{k-1}}{1+\phi_{\sigma}}\left[X, T 1-(k-1) \frac{\phi^{k-2}}{\left(1+\phi_{\sigma}\right)^{2}} \times T X, \quad\right. \text { and } \\
\delta_{k}^{(0)}(T)= & -\frac{\lambda \phi^{k-1}}{\left(1+\phi_{\sigma}\right)^{2}(1-\lambda \phi)}\left\{\phi\left(1+\phi_{\sigma}\right)[X, T]-k X X X\right\}+ \\
& +\frac{\lambda^{k+1} \phi_{\sigma}^{k-1}}{\left(1+\phi_{\sigma}\right)(1-\lambda \phi)^{2}}\left\{\phi_{\sigma}(1-\lambda \phi)\left[X, T^{+}\right]-\lambda k X I^{+} X\right\}
\end{aligned}
$$

Since $\delta_{k}^{(0)}(T) \in \operatorname{sl}\left(2,(y, z)^{k+2}\right)$, the infinite series $\sum_{k=1}^{\infty} \delta_{k}^{(0)}\left(T_{k}\right)=\delta^{(0)}(\mathcal{J})$ makes sense in the realn of formal power series. The 4 -dimensional tangent space at the point ${ }_{c}^{(0)} \in$ $M(2,1) \subset W$ can be obtained by variation of the parameters u, v, a, f. Comparing homogeneous terms of the formal power series, after rather straightforward considerations we arrive, at the following conclusion. Provided τ is nonzero the vector field $\delta^{(0)}(\mathcal{T})$ is tangent to the manifold $M(2,1)$ only in the points corresponding to the parameters $u=v=0, a, b-a r b i t r a r y$, and only in the case $T_{1}=0$. The vector fields $\delta_{k}^{(0)}(T) . k \geq 2$, vanish in these points and hence the vector fields $\widetilde{\delta}_{k}(T), k \geq 2$, are tangent to the fibres of the projection pr_{c}. The corresponding infinitesimal canonical transformation is $\underline{\Gamma}_{c}(\xi, \eta, \xi)=$

$$
1-\varepsilon\left\{\left[\mathbf{Y}, \mathbf{T}^{+}\right] \mathbf{L}+\mathbf{Y} \mathbf{T}^{+} \mathbf{Y}\right\}\left(-\frac{6}{}\right)^{\mathbf{k}-2} \quad\left(\bmod \varepsilon^{2}\right), \quad \mathbf{Y}=\left.\mathbf{X}\right|_{\mathbf{y}}=\xi, z=\eta
$$

8. CONCLUSION

Further investigation of the restricted canonical initial condition may render a new description of the moduli spaces $\mathcal{O M}\left(r_{, ~}, c_{2}\right) \cong M\left(x, c_{2}\right)$. We choose the homogeneous coordinetes $\left(z_{1}, z_{3}, z_{4}\right)$ on $H_{0} \cong \mathbb{P}^{2}$. The restricted canonical transition function Gres $=$

$$
\begin{aligned}
& 1+\left(z_{3}^{c}+\sum_{j=1}^{c} s_{j} z_{1}^{j} z_{3}^{c-j}\right)^{-1}\left(z_{4}^{c}+\sum_{j=1}^{c} t_{j} z_{1}{ }_{z_{4}}{ }^{c-j}\right)^{-1} \times \\
& \times \sum_{j, k=1}^{c} S_{j k} z_{1}{ }^{j+k} z_{3}^{c-j} z_{4}^{c-k}
\end{aligned}
$$

defines a holomorphic vector bundle F over $\mathbb{P}^{2} \backslash \mu$, with M being the discrete set

$$
z_{3}^{c}+\sum s_{j} z_{1}^{j} z_{3}^{c-j}=z_{4}^{c}+\sum t_{j} z_{1}^{j} z_{4}^{c-j}=0
$$

The first question naturally arising is: For which values of the parameters ($s_{j}, t_{j}, S_{j k}$) are the singular points removable in the sense that $l_{*} \mathcal{F}$ is a locally free rank-r sheaf on \mathbb{P}^{2} with
$L: \mathbb{P}^{2} \backslash \mu \longrightarrow \mathbb{P}^{2}$ being the embedding and. F being the sheaf of germs of holomorphic sections in F ? For such values it is further necessary to compute the second Chern class $c_{2}(F)$. Let $\tilde{\mathbb{P}}^{2} \subset \mathbb{P}^{2} \times \mathbb{P}^{1}$ be the blow-up of \mathbb{P}^{2} at the point $z_{1}=z_{3}=0$. Then $R^{1} \mathrm{pr}_{2 *} \mathrm{pr}_{1}^{*} \mathfrak{F}(-1)$ is a sheaf on $\mathbb{P}^{1}=\mathbb{P}\left(\left(e_{1}, e_{3}\right)\right)$ with the support contained in the discrete set $\quad z_{3}{ }^{c}+\sum s_{j} z_{t}{ }^{j} z_{3}{ }^{c-j}=0$ and the sum of dimensions of the stalks over these points equals to $c_{2}(F)$ (cf. [10], Chp.II). We ask for which values of $\left(s_{j}, t_{j}, s_{j k}\right)$ the inequality $c_{2}(F) \leqslant c$ holds. Having performed this program we hopefully obtain a description of the union $U_{k \leqslant c} G M(r, k)$ as a stratified algebraic set.

REFERENCES

1. Donaldson S.K., Comm.Math. Phys., 1984, v.93, pp.453-460
2. Takasaki K., Comm.Math. Phys., 1984, v.94, pp.35-59
3. Corrigan E.F., Fairlie D.B., Yates R.G., Godaard P., Comm.Math. Phys., 1978, V.58, pp.223-240
4. Pohlmeyer K., Comm.Math. Phys., 1980, v.72, pp.35-47
5. Crane L., Comm.Math. Phys., 1987, v.110, pp.391-414
6. Atiyah M.F., Hitchin N.J., Singer I., Proc.R.Soc.Lond. A, 1978, v.362, pp.420-461
7. Chau L.L., Presad M.K., Sinha A., Phys.Rev. D, 1981, v.24, p. 1574
8. Ward R.S., Comm.Math.Phys., 1981, v. 80, pp.563-574
9. Uhienbeck K., Bull. Am.Math.Soc., 1979, v.1, pp.579-581
10. Okonek C., Schneider M., Spindler H., Vector bundies on complex projective spaces, Birkhauser, Boston 1980
11. Hertshorne R., Algebraic geometry, Springer-Verlag, New-York 1977
12. Griffiths P., Harris J., principles of algebraic geometry, John WileydSons, New-York 1978
13. Hervé M., Several complex varíables, Oxford University press, Bombay 1963
14. Atiygh M.F., Drinfeld V.G., Hitchin N.J., Manin Yu.I., Phys.Lett. A, 1978, v.65, p. 185
15. Christ N.H, We pp. 2013-20.25
16. Dolan L., Phys.Iett. B, 1982, v.113, pp.387-390
17. Chau L.L., Ge M.L., Sinhe A., Wu Y.S., Phys.Lett. B, 1983, v.121, p. 391
