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1 • INTRODUCTION 

This -paper is addressed to the initial condition in the s.ense of "Te­
ke.sald f'or both local and gldbel instanton bundles. Throughout the 
paper the gauge group is assumed t'o be U(rJ , r e 2 ; and it is well 
knoWn that it· can be always reduced to SU(.r) in the glo-bal ease. 
In wh-at follows r denotes the rank of' the holomorphic -or instenton 
bundle under considerati-on and c 2 = c denotes its top_ologi.c~ 
charge equal to the second Chern class. It appears to be convenient 
to treat the framed instanton bundles [1] • 

we shall prove that in the inverse scattering formalism we can 
distinguish. a special ''cerronicel" soLution in every gauge equi­

valence class, end particularly we can introduce the notion of the 
canonical initial condition. Since the initial value problem has the 
unique solution [2] we can eliminate gauge freedom in this w~. 
Moreover, the reality condition is retained in this treatment. Using 
twisters we shall also describe a ~eometric construction relating 
the canonical initial con-dition to a distinguished end again called 
canonical transition function. ~11 considerations associeted with 
the construction remain valid even in the more general case of framed 
holomorphic vector bundles over ~ , n ~ 2 , end the mentioned tran­
sition function appears to te a rational matrix function ~n ~ with 
some special properties. 

Using this construction we are able to obtain explicit expres­
sions for the canonical initial condition of the ADHM instantons and 
consequently to give the full transcription of the ADHM construction 
into the inverse scattering formalism. To the author~s knowledge, 
despite of the fact that the ADHM construct.ion 'became now classical 
such e trans~ription was nowhere derived end published until yet. 
Hopefully it will enable to check and further develop some previous 
concepts such as the Blcklund transformation (3,4]. 

In other words we have found the explicit form for the embedding 
of the freimed instanton moduli spaces M(r,c 2) into the space tf ot 
canonical initial conditions. We advance this approach and show that 
there eiists an injective holomorphic mapping of the moduli space 
into a finite-dimensional complex vector space with the image being 
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a (locally} analytic set. Following Crane [5], in Sec. 7 we shall con­

sider the loop group action on the instanton transition functions. 

Particularly we shall discuss the infinitesimal action on the 1-

instentons. 

Z. PRELIMINARIES 

We choose in rr:4 a basis (the standard one) i,e 1 , •.• ,e 4 J end hence 

the coordinates (z,., ••• ,z4 ) , end also the reel structure 't': 

(z 1 ,z2 ,z
3

,z
4
)--+ <.--z2 ,z 1 ,-z

4
,z

3
) • This reel structure is transferred 

to the projective space ~ = ~(~4 J as well as to the Grassmann 

manifold G
2 

= G2 c~4 ) consisting of lines in w3 , end also ~o the 

flag manifold IF1 , 2 = IF1 , 2 c~t 4 ) C w3x $ 2 • Every point in uJ lies 

on the unique reel line. The manifold of reel lines in ~ is the 

sphere s4 and the projection 'It: P' ___. s4 is the Penrose twist or 

transformation. We have the real analytic embeddings s'4 c._. a;
2 

end w3 ~ !P
1 2 

• Deno·te by p2 the 2-dimensional projective space 

embedded into G
2 

end consisting of those lines in ~ which con­

tain the point P = span e
4 

• Clearly, s 4 n tP
2 = tx 1 • The manifold 

-1 2 _, 0 2 _l 0 
pr2 ( !P ) C IF' x tp is the blow-up of ur at the point p and 

~l 0 
it will be denoted by flY • 

We distinguish the :following objects in iP3 : the points P 
0 

span e
4 

, P
00 

= span e
3 

, the real lines L
0 

= IP{(e
3

,e
4
)) = ~00 , 

L
00 

= IP((e
1 

,e
2

)) , the planes HllO = !P((e 1 ,e 2 ,e
3
)) , H0 = IP((e 1 ,e 3

,e
4
)). 

The reel lines L0 , Lro considered as points in s4 will be denoted 

by x
0

, IoO (or 0 , flO), respectively. 

The restriction 'lC! H110 '-L(l(l~ s 4 ,{xoa} induces a complex 

structure on s 4 , too! which we shall regard as the standard one. We 

choose complex coordinates y,z a-n s 4 ,{oo} ~ <e 2 vie the identifi­

cation spen(ye 1+ze
2

+e
3

) ~ (y,z) , end we introduce coordinates 

L = • 1/z 4 • 7 = z2/z4 • 1 = •/'•4 on uoJ 'H.,. Denoting by J. = 
z

3
/z

4 
the coordinate on L

0
' fP00 } we have the transformations y 

cst•'i)/(l+~I>. z = t~f-:[)IC1•1D. A.= t. and ~ = :ly-z. "l = AZ+y. 
So we have the possibility to express functions on ~3 in the coor­

dinates y,z,A or 5,1,~ . Provided the letter ones ere used the 

corresponding :function will be underlined. 

The fundamental theorem due to Atiyeh, Hitchin end Singer [6] 

relates to every (local) sel:f-duel gauge field a tlocel) instenton 

bundle F with cr: 't""'F-+ F being the holomorphic isomorphism in­

ducing a Hermitian structure. We shell restrict our considerations 

~o the framed instantcn bundles with a distinguished orthonormal 

frame over the line L0 • To any such a bundle there corres~onds 
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a gauge equivalence class of' germs of local transition functions. 

Every local transition function G is defined on an open set ttl x 'fc 

a:3 with -u and r being neighbourhood-s of' the origin in ¢'
2 end 

the unit circle _in ~ , respectively, and it has properties: ti) 

G(O,l)"' 1 , (ii) Qq,7.,t> is holomorphic, (iii> G(x,-1/I)+ = 
G(x, ~) • The space of germs of local transition functions fulfilling 

(i-iii) will be denoted by ~u • This corresponCence can be estab­

lished even if ell reality conditions ere omitted. The larger space 

of germs of local transition functions satisfying only the conditions 

( i), (ii) will be denoted by ~ • 

The objects we are dealing with are reel analytic in some neigh­

bourhood of the origin in ~2 and hence they can be locally extended 

from ¢2 to ~4 • In what follows the symbol x stands for four 

complex variables y,z,y,z in this order. Let 1 denote a subspace 

of gl(r,lt(CxJJ) ;< gl(r,~Ccx,A.J]) 'l( gl(r,<I:tCx, A- 1JJ) consisting of 

those matrices (J,W,W) of' formal power series which satisfy 

A 

W(:3:, 0) = W (x,oo) = 1 ( 2.1 ) 

J(O) W(O,~) = W(O,A) ( 2.2) 

end solve 

"•w - ). J <ly(J-1W) = ~YW + ). J ;)z(J-1W) 0 ( 2.3) 

A 
,_-1J-1ii(JW) "•VI • ~-1J-1 oy(JW) i!yW- = = 0 ( 2 ·4) z 

t0 'A .:)" ' 

W-e shall write 'N(x,A.) 1 +I:, W.(x)).J, WCx,..\) c 1 +I:: W.(:ll:) ;t-J 
1\ j=1 J "' j=t " 

where Wj(xl, Wj(x) G gl(r,trrxJJ) and Wj(O) = Wj(O) = 0 • An in-

volution denoted again by ~ acts on f . It interchanges J(x) 

with J(x lt end W(x,A) with ( W(x,-t/X )t)-t • The (7-invarient 

subspace consisting of {J,W,W) fUlfilling 

.rtx )+ = J<xl , ,. -1 + wcx,.t.) = wcx,-1 ;a) 

will be denoted by 1u • The gauge transformations 

. -1 r ~ -1 
J (X ) _..,. (X, 0) J( X} J1(x 7 0) 

1/'(:z.,.t)........,. rcx,O }-t Wlx,l) rex,~) 
( 2 .6) 

make sense on !/u provided r E gl(r,¢((x,lJ1) satisfies r{O,l} "' 1 

end 

( 2. 7) 

For G c ~ we choose the Birkhoff decomposition in the form 
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<2 .a> 

where W(x,..l.> and \.V{x,A) are holomorphic in l. on neighbourhoods 
o·f the discs \LU61} and tll- 1 \~1!, respectively, provided x 
is close enough to 0 , end they are normed by W(x,O) = W<x,oo) = 
It is well known [7 ,81 that in this way we get embeddings ~ c tj 
and ~u C <fu • 

3. THE CANONICAL INITIAL CONDITION 

-1 -1 We can exclude J from (2.3) : JOyJ = OZWl , J~ZJ = -byWl • Ta-
kasaki~s approach provides a method how to solve these equations in 
the realm of formal power series together with a given initial con-
dition 

W(y,z,O,O,l) <Ol W (y,z,;t) 

In accordance with (2.1) ,(2.2) the initial condition W(O) E 
gl(r,«:[ry,z,lJJ) is requirE>C to fulfil w<.O>(y,z,O) = wC 0 >co,O,.l)=1. 
The ini tiel value problem has the unique solution W(x, A) unambigu­
ously determined by the condition 

We shall complete this result .• 

Proposition 3.1. It holds 
<01 _,_ _,_ )-1 " wcx,A)W (y-J... z,z+.t y,l = J(x)W(:z,.t) 

(3 .2) 

A A A 
where W is normed by W(:z,to) = 1 and (J,w,w) solve (2.3),(2.4) 
and (2.2), i.e., (J,w,W) t: cJ • 
Proof'. In fact we shell orove also the Tekesaki 's result in an alter­
-- ( . <01( ,-L -1- ')-1 ( ( , -1 ) native way. Put H x,,t) = W y-A z,z+.t Yr"- E gl r,!t [:z,..,.,A. ]] • 
Then H(O,A) = 1 and the m-th homogeneous term ~ in the vari­
ables x does not contain powers of A lower than' A-m • Conse­
quently H(x,A) is well defined. It also follows that for any R E 

gl(r,~[[x.JJ) there exists the unique solution X G gl(r,U!((:z,.tJJ) 
to the following problem: X<x,l.)H(:z:,A) € gl(r,«:([:z,..t- 1]]) , X(O,A) 
R(O) and X(:z:,O) = R(x) • Really, write X in the form X(x,A) = 
R(.O) +I:;, Xk (X, A.) with the terms Xk being k-homogeneous in 

' ' ~ k the Variables X, to get the relations Xk + L-j:1 H· Xk · EO 
-1 ' J, -J, gl(r,C[[:z,.l. ]]) , k~ 1 , which enable to compute recursively and 

t·opther with the condit.ion XCx,O) = R<x) unambiguously all terms 
xk, • Hence the con9ition (3.2) together with W<O,A) = W(x,O) = 
has the unique solution w and 1~ can be easily seen that this w 
also fulfils the initial condition (3.1). Now decompose 



W(x,~H(x,A) = Jtx)W(x,A) with the given normalization. Clearly, 

(i!z- ~dylH = 0 and hence (~z-Ady)(J-\ xJW(x,J.)) H(x,l.) = 

(() -:td-,)Wcx,A) € gl(r,!£[fx,A-1JJ) At the same time it holds 
z y . 

(iJz- J. ;):y)(J-\ xlW<x,<J)x=O = liz(J-1( X)WCx,Ol)x=O = 0z.J1< 0) and 

(o.-!- il:;J(J-\ xJWcx,J.))J.=O = ;JzJ~\ x1. But (ilzJ-~ x>)Wcx,.l.) ful­

fils the same relations and so according to the above observation we 

have the equality o.-A<>:;)(J-1cxJW(x,>.)) = O.J-t x))Wcx,l.). Ana­

logously we get (;)y•.l.iz)(J-\ x)WO<,;tl) = (i!YJ-\ xJ)II'<x,A.), i.e., 

t·he equations (2.3) are satisfied. Further, (d.z-AiJy)WCx,.l.) = 

(CzJ-1< :x))W(x,.l)H{x,l.) = (dzJ-1( x)) J(x)W<x,A) , end analogously 

' A ( -1 ) A 
(Qy+ .:t e7z)WCx,A) = d J ( x) J(XlW(x,A) • Hence the equations (2.~4-) 

ere satisfied as well. The rest of the proof is evident. 

As a rule the gauge equivalence in the inverse scattering 

approach is usually quoted but not systematically developed. In the 

reminder of this section we shell try to show that such a more de­

tailed discussion leads to some rather useful consequences. The con­

dition (2.7) on T' means that rcx,A) = ro.y-Z,Az+y,;q , where 

T'C','2,'l E gl(r,~cn,(,'JJ) . Hence r'01cy,z,!.) := T<y,z,O,O,A! = 
-• • "ro1 · ro 
r:o.y,.tz,;l..) = r + Lj':'1 1j c y,z) A.J, where rj >c y,z) is a poly-

nomial with the zero ebsolut.e term end of degree at most equal to j. 

Clearly, knowing p(O) we a·re able to reconstruct I: and hence T' 

as well. The gauge transformation of the ini tiel condition takes the 

form w(OJ ~ WCOJrc.O) • It follows that for each (J,W,W) E fu 

there exists the unique gauge transformation ~ such that W( O) 

(0) ( j+1) 
having been transformed satisfies Wj c y_, z) E: gl r, cy, z ) , where 

w~ 0 'cy,z) := Wj(y,z,O,O) and (y,z)j+l is the (1+j)-th power of 

t'he ideal (y,z) C. lt[Cy,zJJ generated by y,z • This condition eli­

minates gauge freedom. The unique gauge transformation rc will be 

celled canonical and we shall derive an explicit formula for it. 

Lemma 3.2. Assume that (J,'N,W)€ :f end 

J<y,z,O,O) = Wcy,z,O,O,;t.) ~ 1 • Then 

C.i) Wk(x) G gl(r,<Y,Z)k+l) , k21 , where c.Y 1Z) is now en ideal 

in «! rrxJ] , and 

Cii) W(x,.t)WCO)(y-.t- 1Z,z+..l-ly,A)-l J<x)\V(x,.l.) • (3o3) 

i 'I j ,... 
~· (i) We have to show that dy QZ Wk(y,z,O,O) 0 for 0 6 

i+j~k • According to the assumption the assertion is valid !or 

i=j=O • The equations (2.4) are equivalent to 
' A ( -1 )A A A ( ~1 > )A ~ 

<iyWk = (IZWk-1 + J i)zJ Wk-1 ' ;)zWk • -i?YII'k-1 - " 0 yJ ll'k-1 ' k<O 1 • 
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Put Y=Z=O in these. relations to verify the assertion for k = 1 • 

Further we proceed by. induction in k • It suf~ices to di~rerentiate 
these equations by dy1- 1 ~Zj or by Oy1dzj-1 ,respectively. 
(ii) According to Proposition 3.1 the le~t-hand side in r3.3) equals 
to J'<x)W'<x,A) with (J',w,W">e':f. It.is suf'f'icient to show that 
the initial condition on J,W determines them unambiguously. But 
this is en immediate consequence of the following two easily verifi­
able assertions: Let (J,W) and (J",W) solve (2.3) and satisfy the 
corresponding boundary conditions in <2.1) 1 (2.2). Then J' = JX with 
X e: gl(r,«::fry,z]J) , X(O) = 1 • Let (J,W), (J,W'> solve <2.4) and 
satisfy the corresponding boundary conditions in (2.1) ,(2.2). Then 
A; -1- -1- A _, 
W cx,l.) = Y(y-l. z,z•l. y,l.)W(X,,() with Yc~•1•P € gl(r,trq,1,~]]) 
and YCO,O,t) = 1 

Theorem 3.3. Let (J,'.~,W) E r.fu and J,W fulfil 

' J(y,z,O,O) = W(y,z,0,0 1 1) = 1 ( 3 • 4) 

Then W(O) satisfies 

(01 ( j+1) wj { y,z) E. gl r,(y,z) , j ~ 1 , 

and 

w' 0 lcA:z,-ly,-1/IJ• = w' 0 'cy,z,;() (].6) 

On the contrary let w<O> satisfy (3.5),(3.6). Then there exists 
the unique solution (J ,w,W )C ':/u with w<O> being the initial 
condition for W and, moreover, this solution fulfils (3.4). 

tOl -- -- )• ~· W (A.z,-).y,-1/l makes sense owing to (3.5). (3.6) is the 
anounced reality condition. 

E:!:22!• ( >) Validity of (].5) follows from Lemma ].2 ad(i), end 
tO> -1 1\ -- -)• from the equality W ( y,z,A) = W(O,O,y,z,-1/A • By the essump-

tion the equality (].3) holds. Set y=z=O in it and make use of ro'c _, __ ,_ _, 'c -- l (3.4),(2.5) to get W -A z,A. y,A.) • W O,O,y,z,A. • Now it is 
sufficient to replace ~ by -1/i and to per~orm Hermitian conju­
gation and inversion of both sides in the last equality. ( <=) We 
relate to W(Q) a solution (J,w,i') E '/ according to Proposition 
3.1. From (].6) it ~ollows w<O>< y+lZ,z-lY,-1/..l )-t = 
W.CO>(y-...t.-1Z,z+A.- 1:Y,A). The k-th homogeneous term of 
w< 0 >(y-..t- 1 Z,z+~1 y,.<.) in the variables x contains powers o~ l 
no~ lower then C-k+l) and not greater than (k-1). Consequently we are 
allowed to multiply the equation (3.2) from the right by this expres­
sion. So we have Jtx)-1wcx,..t) = Wcx,..t)w<O>(y-A- 1i,z+.:fry,;.). Re­
place A by -1/f and conjugate and invert both sides o~ this 
equality to f'ind that tWcx,-1/J..)-tfl is again a solution with the 

same initial condition w<o> • By uniqueness we have 
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(~x,-1/).)1")- 1 = Wtx,A) end J(X)+(w.cx,--1/i>+)-l = JCx>Wc.x,.l.). 

Hence (J,W,W)G /u. VE\lidity of (3.4.) follows immediately from 

(3.2) and uniqueness is guaranteed by Lemme 3.2 adCii). 

Definition 3.4. A solution (J,W,W) G ':fu will be called canonical 

provided it fulfils CJ.4). The subspace of eenonicel solutions will 

be denoted by ~c • An initial condition w<O) will be called 

canonical provided it fulfils (J.5"),(J.6). The space of canonical 

ini tiel condi t.ions will be denoted by V • 

Hence W( O) E 1( iff 1 t holds 

w" 0 >cy,z,~) = 1 + 'f: i!::_ i!::: w~~> yjzn-jAk 
k=1 n=k+l J=O Jk 

h (01 1( •) cO>_ ( 1 )n+j+k c.O> t 
were Wnjk € g r,:! ' Wnjk- - wn,n-j,n-k 

Suppose (J,W,W) E '/fl. • 1He introduce a gauge transformation 

~ex, A) = 'Cc<.l.y-Z,A:z+y,A) , where 

(). 7) 

Having performed this gauge transformation we get another solution 

A '' 
A 

(Jc,wc,W~) E 'u. From (2.6) it follpws that Jc,wc satisfy <3-4) 

and according to Theorem J.J the initial condition W~O> fulfils 

(J.?L Hence the relation (3.7) yields the announced explicit form of 

the canonical gauge transformation. 

we he~ just constructed a projection 

pre: 1u ___.. fc : <J,w,\f) ~ CJc,wc,Wc) 

which, moreover induces a one-to-one mapping of the quotient 

f. /gauge transformations onto </. , • J(ccording to Theorem 3.3 the 
u .... c (0) 

mapping '1
0 

--+ 'V: {J, W, Vf) ........... W is one-to-one and so we have 

!fn/gauge trensf'ormations-;; !!e ;; 'I". (3.8) 

In other words, gauge equivalence classes of local self-dual eolu• 

tions are parametrized by the points from the space 1f • 
Denotte by ~c C qu the subspace of germs of those transition 

functions G such that Gfy,z,o,O,A)E t" B;y restriction we obtain 

the projection 

pr0 : gu--+ gc : G = (Ji')-
1W ....,_., G0 • where 

lie<~ •1, 0 = w' 0 1( !It, 1 It.~)( JC'f ,-I, o, Ol W('f ,-I, o, o,-1/t) )+ 

Again this projection induces a one-to-one mapping 

gu/gauge transformations ~ ~c 

•e have a simple relation between the canonical transition 
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:function and the canonical initial condition 

!lccs•7•P = w~ 01CV~.M.O , Le., 
, 1 wCO>c ,-1- •• -1- , 1 Gc(X,A :: c y-,..,. z,z ..,_ y,A 

and vice versa 

<0) l) ' ' W0 (y,z, :: 2c(J..y,AZ 1A..):: Gc(y,z,O,O,A.) 

"( 0 ) 
c 

(3.10) 

Pronosition 3.5. The isomorphism class o:f a global ~ramed instanton 
bundle F over ~ is unambiguously determined by its local res­
triction to <Jr.- 1(il..) with fl. being any neighbourhood o:f x

0 
~· Gram matrix of the Hermitian :form expressed in a holomorphic 
frame is reel analytic. Owing to this fact the distinguished ortho­
normal frame over L0 can be extended as en orthonormal real ana­
lytic trivialization {t1, ••• ,tr} o-f F over uJ,Loo in the 
following way. The sections i.j are defined on Hj)Q'L00 ~ a; 2 as ho­
rizontal lifts over the segments P~Q , and then they ere extended es 
global holomorphic sections over each reel line. UsiDg this trivi­
alization we get a connection A on t 2 ~ ~4 with the self-dual 
curvature and with the finite topological charge equal to c 2( F ) • At 
the same time A de'pends only on the isomorphism class of F and is 
real analytic and hence it is unambiguously determined by its germ at 
the origin. Using now Uhlenbeck Theorem [9] to remove the singularity 
at oo end applying the Penrose transformation we conclude that A 
determines F uniquely up to isomorphism. 

It follows that having in mind (3.8),(3.9) we can relate to 
every isomorphism class the unique point from the space i"' • In this 
way we get an embedding of the framed instanton moduli spaces M(r,c2) 
into \"". Explicit expressions will be given in Sec.5 • 

4. THE GEOMETRIC INTERPRETATION 

Despite of the local way of its definition the canonical initial con­
dition will be shown to have a clear geometric interpretation in the 
twister framework. The global embedding of s 4 into &2 and the 
pull-beck of the instantori bundle pr; F o~ w

1 
, 2 corresponds to 

the local analytic extension from ~2 to C • The initial condition, 
i.e., the local restriction to the 2-dimensionel subspace y = Z = 0, 
bas a counterpart on the global level in the restrictions from $ 2 to p2 and from JF1 , 2 to i>J • Really, in the local coordinates 
y,z,y,z on ; 2 at the point x0 introduced vie the mapping 
c,-,z,j,i) ...,._.. IP{Cye 1+zei,..e

3
;-Ze 1+ye2+e4)) , it holds s 4 is locally 

deterained by the equations Y :=. c.e. y , Z = c.c. z , end ~ is 
lmcall7 determined by the equations 7 :: Z = o • 
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The following construction end its consequences ere formulated 

in a more general setting for the n-dtmertsional projective spaces 

F , n"2:.2 , with a fixed line L end for the framed holomorphic 

F 0 -", rank-r vector bundles over It' r~ 2 , with a distinguished ho-

lomorphic trivialization on L
0 

• For· such vector bundles the first 

Chern class c,-(F) vanishes end according to Grothendieck Theorem 

the vector bundle F decomposes over every line L es F[L = 
bcil) 1$ ... ffil6(ir) , 1 1 ~ ••• 2::ir, 1

1 
+ ••• + ir = o. Hence 1 1 ~ 0 

and 11 
= 0 iff F is holomorphically trivial on L • The set SF 

of jumping lines, i.e., consisting of lines over which F is not ho­
lomorphically trivial, is a proper closed analytic se\ in G

2 
(cf~ 

[10J,Chp.I). Fix two different points P0 ,P~ ~ 1
0 

end denote by S
0

, 

S~ the sets of jumping lines passing through P
0 

and P~ , respec­

tively. Let Sing(P0 ) C ~ be the union of all lines belonging to 

S
0 

, analogously define Sing(p00 ) • Again the sets s
0

,S
00 

ere proper 

closed analytic sets in the (n-1)-dimensional projective spaces con­

sisting of lines in ~ containing P0 
or P~ , respectively. Con­

sequently Sing(p ) end Sing(P00 ) ere proper closed analytic sub-
,.,n• 0 sets in It' 

More information provides the following theorem due to Berth 

generalized to higher orders. Denote by T the locally free renk-r 

sheaf of germs of holomorphic sections in F • We redenote the pro­

jections p = pr1 : JF1 2 ~ [!P end q = pr
2

: IF1 2 
--+ G;

2 
• 

Theorem 4.1. The set 'sF of jumping lines ' is en analytic sub-

set in the Grassmann manifold ~2 of codimension 1 everywhere. 

The sheaf e = R 1 q~p~(~(-1)) determines in m
2 

a divisor DF of 

degree c 2( F) end such that SF = supp 8 = supp DF • 

1!£2f• Tn [10J,Chp.II there is given a proof for the case r = 
rank F = 2 • The main pert of the proof may be reproduced almost ver­

batim also in the general case. We shell not do this end notice only 

the last pert in which the degree of the divisor is computed. It is 

sufficient to verify the equality deg DF = c
2
(F) only f~r the di­

mension n = 2 and that will be assumed up to the end of the proof. 

In this case there exists a resolution 
s t 

0---+ ® 8(ki) --+ 6> 6(m.) _,. T(-1) ___,. 0 , with ki'm.;_<" 0. 
1=1 j=l J .... 

The line bundle corresponding tc the divisor DF is [DF] ~ 

det E2®det Et l where E1 = ~ R1q*pw:6Cki) , E2 = EtJ R1q.,p•6(mj) 

Finally, cl(R q.._p4 ~(k)) = -k(k+l)/2. Now we can compute deg DF 

~sin& the Whitney rormula ror this resolution: 
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-r = c 1(FC-1)) = L :nj - L ki 

cz'FC-1)) = ~r(r-1) + c 2CFJ = L:i<j m1mj- L:i<j kikj + r L k 1 

deg 7 = c 1([DF)) = c 1cE2 J- c 1(E1 ) = ~ L(k/+k1)- t L (m/•mj) 

= c 2(FC-1J) - ~r(r-1) = c 2{F) 

Corollary 4,2, Let IF" C F>< rrl'-1 be the blow-up of rrl' at the 

point Pa ·-~- 1 is considered as a subman~fold in $ 2 • Then 

s 0 = SFf't~ is an analytic subset in ~ _ of codimension 

everywhere and the sheaf' eo = :R 1 pr2*prt(~(-1)) determines in J!ll-1 

a divisor D
0 

of degree c 2 CF) and such that S
0 

= supp E
0 

~ 
supp D0 

• 

Proof. The proof follows from the standard application of the base­

-change theorem (cf. [11], §9). 

OWing to the distinguished frame on L0 we have a fixed basis 

in the fiber over P~ • Extend this basis as e holomorphic triviali­

zetion over each line containing P~ end not belonging to S~ • We 

get a holomorphic frame ts1 , ••• ,s } over the open set « = 
n r o 

tp \, Sing( P ~) 3 P 
0 

• Construct analogously the holomorphic frame 

iSr•····~l over \o== ~'Sing(P0 ) 3 P"". The corresponding tren­

sit·ion function defined on '«.
0

n1f. 00 = JFIL'-(Sing(P
0

)U Sing(P110 )) will 

be denoted by GF = ( G~k) , Jk = L: ~j G~k • 
Owing to Chow Theorem all the sets S

0
, s., Sing(P0) , Sing(P~) 

are projective varieties in the corresponding projective spaces, and 

owing to a generalization of the seme theorem, F ts an algebraic 
vector bundle on F (cf.[12],§1.]). According to the same princi­

ples, GF is a matrix of rational functions on ~ • Corollary 4.2 

suggests that in the homogeneous coordinates GF has the form 

GF(z) = 1 + S(zl/(ft0<.Zl1".Jz>) , where S(z) is a ma~riz of homo­

geneous polynomials with degrees equal to 2c {c = c 2(F)) and such 

that S(z) = 0 on the line L
0 

, ~0 , ~~~~~ are homogeneous polyno­

mials with degrees equal to c and such that the projective set 

f 0Cal = 0 (resp. f'-IJQ<zl = 0) coinc~des with Sing(P0 ) (resp. 

Sing( P1111 ) ) • By the construction G depem!ls only on the isomor-
phism class of the framed vector bundle F • 

Theorem 4.3. Thenisomorphism class of a framed holomorphic vector 
bundle F on ~ is unambiguously determined by the matrix function 
GF • 

Proof. GF considered as transition function determines the framed 

vector bundle F over the open set .fi
0

u1l.., = 

J¥1' (Sing(P
0
)n Sing(PCIO)) , up to isomorphism. The analytic sets 

Sing(P
0

) 1 Sing(P~) have dimensions equal at most to (n-1) and 
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their intersection has dimension equal at most to (n-2) • ReallyJ 

provided dimension of the intersection equals to Cn-1) , the analy-. 

tic sets Sing(P
0
), Sing(Pil(l), Sing(P

0
)0 Sing(P.,o) are of the same di­

mension and have at least one common irreducible component T again 

of dimension (n-1) (cf.I13],§1 .3). The irreducible components of the 

analytic set Sing(P
0

) ere in one-to-one correspondence with the ir­

reducible components of the analytic set S
0 

end each of them con­

tain~ the point P
0 

• Consequently P0 ~ TC Sing(Poc) and we get 

a c..;~ltrediction. Let L: 4/.l 0 v~100 ~ ~ be the embedding. Owing to 

a consequence of Hartogs Theorem which guarantees removability of 

singularities of a complex analytic function provided the singular 

points are contained in an analytic set of codimension at least 2 

we have a natural isomorphism t.. 11t.•T ~ 'J' • Hence F is de.termined by 

its restriction Fl(~0 u'U. 00) in the unique way. 

Proposition 4.4. d.et OF= 1 

l!£2!• The line bundle det F on ~ is holomorphically trivial. 

The choice of a frame of F over Lo induces a holomorphic frame of 

det F o~er L
0 

which extends to a holomorphic trivielization over 

~ in the unique way. From the construction of OF as a transition 

function it follows immediately that det oF is a transition fune­
tion of det F identically equal to 1 on «c,ntzi.#CI and hence every­

where on ~ • 

Let us now specify the construction for the framed instanton 

bundles on o:J • In this ease L
0 

is a real line, '"r(P
0

) ,. P,., end 

the distinguished frame is orthonormal. Moreover, 't'(Sing(Po>) = 
Sing(P 00 ) and the frame i.Sp •.• ,?r1 is related to the duel of the 

frame is1 ,. •• ,.sr} by the isomorphism 0". It holds 

GF('rCQJ) = OF(Q)+ on 'l/.
0

n'U..P", C4.1) 

and hence the germ of oF belongs to n • - ... 
Denote by P0 = (P0 ,L0) the poin~ from the exceptional divisor 

in the "blow-up jp3 • The pull-beck of the matrix function prt"GF 

is holomorphic at the point P0 • Identi!~ ~ with the plane H~C 
p3 and introduce local coordinates on iP:' vie the mapping 

(y,z,.t) ~ spen().ye 1+.1.ze2+l.e
3

+e 4
) , span(ye 1+ze 2+e

3
) 1 the values in 

P are y = z =A = 0 • Denote pr,* OF expressed in these local c.o­

o~dinates. by W~O)(y,z,A). Clearly, w~ 0 \y,z,O) = W'~O)COtO,A) = 1 • 

From (4.1) it follows that equation · w~ 0 \Iz,-IY,-1/X)t = 

'N;o)(y,z,).) holds on an open seJ. ~)( r t where «. and r ere 

neighbourhoods of the origin in ~2 end of the unit circle in ~ , 

respectively. Looking at the Lorain A. -expansion in this equality we 

ll 



find the condition (3.5) to be valid as well as the reality condition 
(3.6). Hence wCO) is indeed the canonical initial condition cor­
responding to t~e framed instanton bundle F • GF expressed in the 
local real analytic coordinates cx,A) = (y,z,y,Z,A) satisfies 
GF(x,l) = wt 0Zy-,t- 1 Z,z+A- 1y,A). Comparing this identity with (3.10) 
we concludecthat GF coincides with the canonical transition func­

tion Gc • 
Note that the same construction of the canonical initial 

condition is applicable also to the local case. 

5. EXPLICIT EXPRESSIONS 

For a quadruple 
4 

(Zj)til: set 
a= 

The moduli space M(r,c
2

) of framed instanton bundles on tp3 is the 
quotient of the set of matrices c~, '~2,a,b) satisfying 
<i) R<a) is of rank c = c 2 for ell ~ i 0, 

( ii) R(T ~ tR(~) = 0 for all a , or equivalently, 

6('<'~) = lll~l for ell 2 , 
-\ dieg(g,g, 1) R(~) g 

( 5. 1 ) 

g E. U(c) by the action of U<c) 
(cf.[1]). Let ZE,pl be a point with homogeneous coordinates b 
<z

1 
, ••• ,z

4
) • Then the fibre F2 of the instanton bundle in the ADHM 

construction is given by (cf". f14, 15J) Fz = ker R('t'8 )-t lim Rc;p • The 
Hermitian product in F2 is given by ((.SJ,(iJ) = 
s•(\ - RC~) M~)-\R(J /)t 
Lemme 5.1. Let L be a line in wJ and Y

0
,Z

0 
E L be two different 

points with homogeneous coordinates ~0 , ~ 0 , respectively. Then 
FIL is holomorphicelly triTiel if and only if the matrix 
R('t'~a )+RC!0 ) is invertible. 
~· (==;}) Fix a basis in the fibre over z via 

• 0 a (2c+r)x r matrix N satisfying: RC-r~ 0 ) N = 0 , 
r+c • Then the matrix function S!Y) = 

the choice of 
renk(N,R<~0)) 

[1- RC~0)(R('t"Ji-0 l•Rc~0 ))- 1 Rt'<'~0 hN modulo im Rl~), Y =span~ E L, 
is in fact a holomorphic trivielizetion of F over L • 
( (-...) SUppose R('Ly0 )+RCJ 0 ) is singular. We shall show that F/L 

has e nontrivial section with at least one zero. Denote K = 
ker RC't""~0 )+R(~0) C «!c • Let A be a projector onto RC1JJ K c a: 2c+r 
according to any direct summand. Since the restriction 
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R(·1. ) : K ~ R(l.! )K is an isomorphism we can define A = 
00 -l dO 

R(;l
0

) ol\._o R(\t
0

) : K ___,.. K • Choose an eigenvalue -se. of the endo-

morphism A end a vector f E K'im(A+ ~1) • Renee R(~0)f F 
(B(~0) +a<B(~0))g for ell g E K. The section s(Y) = B(~)f 

modulo im RC I!) , r = span 'a E. L , is holomorphic and s(Z0 ) = 0 • 

Now it suffices to verify that J(Y) F 0 , where Y E L is the point 

with homogeneous coordinates ~ = ~0 + M}0 • Really, provided 

B(~0Jf = B(~)g = (R(~0) +l<R(ocJ)g we have 0 = R('<J 0 ltR(~ 0)f = 
RC't'Jo )tR(~0)g = -R('r~0 )1"R(~ 0)g , hence g G K and we get a contra­

diction. 

Set 
R0 = ( ~ ) • Roo = ( ~) • No = 0 ) where the dimen-

sions of the matrices are (2c+r)xc , (2c+r)xc. and (2c+r) ><r, 
respectively. The columns of N0 determine the distinguished frame 
aver L • Fo·llow now the construction of Sec.4. The frames 

0 A " {s
1 

, ••. ,.srJ and {sl, ... ,srl are determined by the matrix functions 

SCZ), S<Z) modulo im R(~) , respec_tively, where (Z =span:,), S(Z)= 

[1- R~(R('<JlR.,)- 1 R('t"~/]N0 , §(z) * [J- R0 (R('1:"~l+R0 f 1 R<-r~lt]N0 
At the same time, as it should be, §('t'Z)+S(Z) = 1 • The canonical 

transition function is given by Gc(Z) = SCttZ)tS(Z), G(zr1 = 
ik~ z )+s( z) • Hence c Gc< z ) 
l- N0+R(~J(Blq\tR0 )- 1 (R0+R(~Jt 1 B('<b)tN0 • Taking (3.10) into 

account we get the canonical initial condition 

<01 We (y,z,A) = 1 + Hey-b + z) (1- o
1 
y- •:/ z )- 1 (1 + ).(1)(

2
y-o

1 
t z J T 1 (by+ a+ z) , 

Lemme 5.2. Let F be a local instanton bundle end let 

be • holomorphic frame in e neighbourhood of the point 

Then the Gram matrix h ~ ( (f.j, tk)) has a form 

h(x,:t,I) = W(x,;t)'tJ(X)-lW(x,.t) 

(5.2) 
{ll '• .• ,lr} 
P 

0 
(y=z=a•O). 

where J(x) =JOe)+, W(x,O) = 1 and J,W solve (2.3). 

Proof. The assertion follows immediately from the form of the Birk­

hoff decomposition of the transition function (2.8). 

Now we apply this lemma. In coordinates (x,.t) we have 'a z 

(.l.y-1 ,l z+Y ,A., 1) , and so 

J(X )-TW(x,).) = $(~1+(1 - R(~) 6($)-)Rq J'}s(~)~ ~=O 

J(xl = s<"blt(J- R("~l"'C~l- 1 R<"~ l+)~c .. ~>ll=~=o 
To get the explicit formulas we set 
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\f=ey-b+z, 

.J = <1-
2
y- c<

1
tz 

end hereinafter 

'f'
0

= by+ atz 

'~cr =ollY •tJ..2tz (; ,) ) 

"= (1-~0·)(1-~")t it!t + •l'l'= (1-T,l(1-~ .. ·) +'!'q+ t '!'.,-'£; 
(5.4) 

In this notation (5.1) is equivalent to 'f'ulfl = (f,!Pcr] and (5.2) may 

be rewritten 
(0) -1 -1 

W0 (y,z,;l.) = 1 • ~'1'(1-~0 ) (1•H) 't'.,- , 

Theorem 5.3. The following formulas together with (5.3) ,(5.4) provide 
the full transcription of the ADHM construction into the J ,W-forma--: 

lism of the inverse scattering ep?roach. 
t t -1 -1 ( t -1 -1 

\V(x,.t) = 1 + ).('/'+ '1'0 (1-~.,-) f)A 1 • l.f(1-f0 ) ) X 

x('f.,. -4<1-fi,•J-1'1'+) , 

J(X) = 1 + '1',! (1-~/ )- 1 (1-fo-f' 'fcr -
- ('l' • 'f,/<1-'1'.-tf1if)Lr1 ('!'+ • io+C1-f0 l-1'i'.-) 

If we put Wcx,ll) = (WCx,-1/}.)t)-1 , then (J,w,W) E. ~c is the dis­

tinguished canonical solution defined in Sec.3. 

The most familiar self-duel solutions are the 't Hoeft's instan­
tons with the gauge group SU(2) • In this case 

• = (~) , b = <o,-pt >, p = cp1 ····•Pc> , -«1 = d1ag(u 1 , ... ,u0 l , 

-d.
2 

= diag(v
1 

, ••• ,vc) ,
2

where the constants pj are positive and 
the points (u j' v j} E It , 1 f. j ~ c , are mutually -different. The ca­
nonical initial condition takes the form 

( 0) W
0 

(y,z,A) = 1 + 

6, CONSEQUENCES 

c 
~z= 

j=1 

OWing to the Donaldson's result we can consider the moduli space 
o•<r,c2) of framed holomorphic vector bundles on ~ instead of 
M(r,c

2
) • The description of @M(r,c

2
) is similar to that of M(r-,c) 

(cf. [1)). 'rheorem 4.3 asserts that the points of ()M(r,c) are in 
one-to-one correspondence with the restricted canonical initial con-

di~ions w;~~ = w~0> lz=O • We introduce a new coordinate w = Ay and 

define W~~~(y,w) -= W~O)(y,O,w/y) • From (5.2) it follows 

w:g~(y,w) = 1 + yw a(1-d.1y )-1 (1+«2w)-1b 
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The Taylor expansion at the origin shows that a point ~rom GM(r,c) 

corresponding to the equivalence class reo., ,ct.2,a, b)] is unambigu­

ously determined by the infinite double indexed sequence of matrices 

B~j~kb, j,k = 0 1 1 1 ••• •. 

Lemma 6.1. Let f(t)E f?O,f be a rational function in one variable 

over any field f of characteristic zero end assume f 1to be re­

gular at the origin. If f can be expressed as a quotient f = p/q 

with p,q being polynomials of degrees less or equal to n then f 
L dj 

is unambiguously determined by 2n numbers . ___..J, f( 0), 0 ~ j !f. 2n-1 • 
J! dt 

~· The proof is simple end fully algebraic. We omit it. 

4c 2r 2 
Proposition 6,2. The h?lomorphic mapping GM<r,c) ~ a:: 

((d1 ,o.2 ,a,b)] -Jo (ad1Jt~..2kb; O:::'j,k~2c-1) is injective. 

Proof. Use the Cramer rule _and apply twice Lemma 6.1. First putting 

f =It we reconstruct a(1-d1 yr1 d.~b, 0!'fk:::2c-1. Then putting 

f = ~(y) - the field of complex rational functions in the variable 

y -we reconstruct e(l-o:1yr1(1+tJ.2wf1b. 

Let us now consider another holomorphic injective end maybe more 

fruitful mapping. The Cremer rule implies 

0} c 
w( (Y w) = 1 + ( 1 + L: 
res ' j=l 

where sj, tj ~ r • sjk € gl<r,~) • The mapping 

2c+r2c 2 
l3MCr;c)--+ ~ : [(d1 ,o.2 ,a,b1] ..-,. (s.,t.,S.k; 1~j,k!::c) 

J J J 

is indeed holomorphic and injective. Moreover, the interpretation of 

w;~~ as a transition function shows that this mapping is a homeomor­

phism onto its image. By Remmert Theorem (cf.[131,§IV.7) the image or 

6Mtr,c) is a (locally) analytic set , irreducible and or dimension 

equal to dim~8M(r,c) everywhere. Remind that the moduli spaces are 

known to be connected (cf.(lO].Chp.II). 

The 1-instantons provide the most simple example. The moduli 

space GV:(2, 1) is biholomorphtcally equivalent to .c; 1) , the alge_­

braic set ~Cl) C ~6 is determined by the equations: i~ s 11 = 
( (}) 

det s 11 = 0 .Asing consists of points for which s11 = 0) • 

Proposition 4.4 characterizes partially the image in the general 

case. Substitute (6.1) into det w;~~ = 1 to get 

tr s, 1 : tr s,j = tr S. 
J,1 

0 • 25j!fc ( 6 .2a) 
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( 1 • 

c 
+ det( L 

j,k=l 

c 
•2: 

j=1 

j-1 k-1 
sjk y w 

i:: 
j, k=2 

) = 0 • 
Note that ~or renk-2 vector bundles (6.2a,b) represent 

• 

( 6. 2b) 

2c(2c-1) 
equations and if we subtract this number from the number of indepen­
dent variables we obtain exactly 4c = dim~6M(2,c) • On the other 

A~CJ 2c(2c+1) hand, the algebraic set oAI c a: determined by the equa-
tions (6.2) contains the cc+l )2 - dimensional algebraic subset: 
tr S·k = tr(S.k S.•k•) = 0 for all j,k,j',k J J J 

7. ON THE LOOP GROUP ACTION 

The embedding of the space 1 into the vector space gl{r,lr[Cx]J) X 
gl(r,«:rrx,AJJ) x gl(r,a: crx, A- 1JJ) enables us to treat formally the 
Lie algebra X(l:/) of vector fields on cj. Denote by gl(r,~U.,~- 1 ]) 
the Lie algebra of Lorain polynomials in A with coefficients from 
the Lie algebra gl(r,«:) • Dolan [16) end Chau, Ge, Sinha and Wu [17] 
discovered an infinitesimal action, i.e., a Lie algebra homomor-

-1 ~(·' -k phism 0: gl(r,Q:[~,A ]) --+ ~ :~): TA 1--':1- tfk(T), where kE: z, 
T € gltr,~) • The components of Ok(T) can be expressed with the 
help of gl(r,~[fxJ])- valued functions dk(T) , dk(T) , k € IN

0
, 

defined on ~ and linearly depending on T , introduced by the re-

lations 

It was also recognized by Chau et al. that to get a well defined 
action o-n the subspace ':/u c!/ we must restrict gl(r,~[~, it-1 ]) to 
the subelgebre consisting of those elements L:. Tk A-k which satisfy 
T = (-1 }k+l T + 
-k k 

Let .!L be the loop group of holomorphic mappings from if to 
GL(r,~) defined on a neighbourhood of the unit circle. Crane dis­
covered [5] that one is able to exponentiate the infinitesimal 
action if we replace 1 by its subspace of convergent power series 
~.Let G= (JWl- 1 W£~, 'J• L:TkfkEgl(r,~[>,<.- 1]), 
(J' ,w' ,\f .. ) "" (J,W,W) + £ cfCJ"}, £.- infinitesimal. Then we get after 
some algebra a' := (J'W't

1w' = (1+c.'J)G(1-£.T) (mod l). Hence 
the global action of ll. on g should be defined as: 

(g•G)(x,.t) = g(~)G(:x:,A>g0 .. ,-1 

where g E: Jl, G e ~ • This definition is easily seen to be correct. 

Crane defined the action of Jl. on qu as follows 
cs•a)(x, l. l • glll acx,>l gc-1/.tl+ 
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Clearly, this result requires an additional specification. The global 

action will be correctly defined on the subspace ~u C ~ provided we 

restrict the group .fl. to its subgroup .U.u consisting of those ele­

ments g<Al which satisfy gt-1/f)+ = gC A f 1 

The loop group action is gauge dependant and the moduli spaces 
M<r,c) embedded into fc ere not invariant with respect to this 
action. Let us notice more closely the infinitesimal action on the 

1-instanton moduli space M(2,1) • The action of .!lu includes as 

a special case the ad(U(2)) -transformations corresponding to the 

eho1ee of the distinguished frame enG there is no necessity to persue 

them further. Because dk(l) = dk(1) = 0 for k>O , it is enough 

to consider only the vector fields $(~) , where ~ = 
""" ( -k k+1 + k) "-k;, 1 TkA + C-1 l 1'k .X , Tk E: sl(2,~) • Denote (\k(T) = 

fk(T;t-k + (-1 )k+1T+Ak), and d~0\T) = prc*cJk(Tl , k2:1 • Since 

1c "= "W' we can regard the vector field d~0 >(T) as being defined on 

l(. we shell try to answer the following question: Which vector 
fields 5C'n = ~k~f ~k(Tk) having been restricted to M(2,1) 

are tangent to pre- -1(M(2,l))c<fu, i.e., which vector fields 
d(O)('J) ere tangent to M(2,1)c.1(? Roughly speaking, we ask when 

the loop group action· preserves infinitesimally the topological charge 

finite end equal to 1 • 
To this end we derive some necessary formulas. Let (J,w,l{) C:: !f0 

·and w~ 0 )E ~ be the corresponding canonical initial condition. Then 

it holds: <ikCx; T-t) = dk(x; T)+ end dk(y,z,O,Ot T) = 0 for k~l. 
Use these relatione to get 

~cole l ~ <Ol • 1 j col ') o. T - .I!- dk+..;(y,z,T A W (y,z,A • 
k j=1 v 

- w<Ol(y,z,J.) t_ d~~l(.:tz:,-~y;T)t (-A.)j 
J=1 . J 

where by definition d~O)(y,z;TJ= dk(y,z,O,O;T) • The infinitesimal 

canonical gauge transformation (J~W,W) + l. cfk(T) ~ 
(J,W,W) +E. d~0 >( T), £-infinitesimal, takes the form !:c(~ 11,S) = 

~1 . . 
1 +E ~ d~~?cf,-f;T)t C-t)J (modi). The 1-instanton canonical 

J=O J 

initial conditions depend on four parameters u,v~4,t E ¢ , <~,t) ; 
(0,0), w~ 0 l(y,z,l) = 1 • ,t(l+;,l-1 (1-'-tf1 X, where X= 

( ~~ : !: ) (.l-y + ~ z ,-11.y + l z ) , ~ = vy - uz , ~a- = Uy + Vz • We 

obtain (k ~1) 
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and 

j~(1+~<1)[X,T) - k XTX} + 

Since S~O)( T) € sl(2,(y,z )k+
2 ), the inf'inite series 

L;1 d~0 ){ Tk) = s< 0 >c:n makes sense in the realm of formal power 
series. The 4 - dimensional tangent space at the point W~O) E 
M(2, 1) c 'it can be obtained by variation of the parameters u, v ,a.., lr 
Comparing homogeneous terms of the formal power series, after rather 
straightforward considerations we arrive, at the following conclusion. 
Provided T is nonzero the vector field o< 0 >cr) is tangent to the 
manifold M(2,1) only in the points corresponding to the parameters 
u = v = 0 , o.., .fr - erbi trery, end only in the c sse T 

1 
= 0 • The 

vector fields d~0 > ( T) • k ~ 2 , vanish in these points and hence the 
'ftctor fields J'k(T), k.?:2 , are tangent to the fibres of the pro­
jection pr

0 
• The corresponding infinitesimal canonical transfor­

mation is I:c'! ,1 ,t) = 

1 - <[lY,Tt)t • YT+Y} (-tlk-2 (mod £2) y = Xl:r=s,z=7 

8. CONCLUSION 
', 

Further investigation of the restricted canonical initial condition 
may render a new description of the moduli spaces 6M{r,c 2) 1: M(r,c2). 
we ~hoose the homogeneous coordinates (z1 ,z3

,z
4

) on H0 = ~ • 
The restricted canonical transition function Gres = 

xi: 
j,k=l 

c 
•L 

j=l 
t z j c-j)-1 

j 1 z4 X 

det"ines a holomorphic vector bundle F over £P2 '\..,U., with ...U. being 
the discrete set 

c "\:""'" j c-j c "C"""" z j c-j z3 + L sj z1 z3 = z4 + L- t:i 1 z4 = 0 • 

The first question naturally eristng is: For which values ot" the pa­
rameters (sJ.,t.,S.k) ere the singular points removable in the sense J J 2 that t"'T is a locally free renk-r sheet" on tP with 
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l : p2 '~ -~ ,p2 being the embedding end . 7" being the sl::leef of 

germs of holomorphic sections in F ? For such values it is further 

necessary to compute the second Chern class c2(F). Let JP2c ~XIP1 

be the blow-up of ~ a-t the point z1 = z
3 

= 0 • Then 

R 1 pr2~pr,*'J'(-1) is a sheaf on !P1 = tp((e 1,e
3
)) _with ~he support 

contained in the discrete set z
3
c + Lsj z 1J z.)c-J = 0 and the 

sum of dimensions of the stalks over these points equals to c2(F) 

(cf. [1 O],Chp.II). We ask for which values of (sj,tj,Sjk) the in­

equality c 2 (F)~c holds. Having performed this program we hopefully 

obtain a description of the union uk~c €;M(r.k) as a stratified 

algebraic set. 
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