


1. INTRODUCTION

This peper is eddressed to the initiel condition in the sense of Te-
keseki for both lccel and glebal instenton bundles. Throughout the
paper the gsuge group is assumed to be U(r) , rz2 ; end it is well
known thet it can be slways reduced to SU(r) in the giobal caée.
In whet follows r denotes the renk of the holomorphic or instenton
bundle under consideration end cy =€ denotes its topological
charge equal to the second Chern class. It appears to be convenient
to treat the framed instenton bundles [1].

We shall prowve that in the inverse scattering formslism we can
distinguish a special “canonicel™ solution in every gauge equi-
welence class, and particulerly we cen introduce the notion of the
canonical initiel condition. Since the inttiel value problem has the
unique solution [2] we can eliminate gouge freedom in this way.
Moreover, the reality condition is retained in this treatment. Using
twistors we shall salsc describe a geometric construction relating
the canonical initisl condition to a distinguished and egein called
cenonical transition function. All considerations associeted with
the construction remain valid even in the more genersl case of framed
holomorphic vector bundles over F° , nz?2 , end the mentioned tran-
sition function appesrs to te s rationsl matrix function en ®° with
some $pecial properties,

Using thls construction we ere able to obtein explicit expres-
gions for the canonicsl initiel condition of the ADHM instentons and
conseguently to giwe the full trenscription of the ADHM construction
inte the inverse scettering formslism. To the author s knowledge,
despite of the fact that the ADHM construction becsme now classicsl
such a transceription was nowhere derived and published until yet.
Hopefully it will eneble to check snd further develop some previous
¢oncepta such as the Bicklund transformetion [3,4].

In other words we have found the explicit form for the embedding
of the fremed instenton moduli spaces M{r,cz} into the space ¥ of
cenonical initiel conditions, We advance this approach and show that
there exists en injective holomorphic mapping of the moduli spece
into & finite-dimensionel complex vector space with the imege being



a (locelly) snelytic set. Following Crene [5}, in Sec.7 we shall con-
sider the loop group sction on the instenton transition functions.

Particulerly we shall discuss the infinitesimel ecticn on the 1-
instantons.

2. PRELIMINARIES

We choose in €' & basis (the standerd one) {e],...,e4} end hence
the coordinsetes (zT,...,z4) , 8nd siso the reel structure 7:
(21259231 %,) = (422,21,-24,59 . This resl structure is transferred
to the projective space ES = P(C4) as well as to the QOrassmann
manifold €&, = G2(m4) consistlng of lines in ES , and aslso to the
flag manifold T ,2 = w z(c y < Eax G . Every point in 93 lies

an the unique real line. The menifold of reel lines in EB is the
sphere 84 and the prejection e Eﬁ — S4 is the Penrose twistor
transformation. We have the resl enslytic embeddings S4 ey G2

and E3 — WT,Q . Denote by iP? the ?=-dimensional projective space
embedded into GZ and consisting of those lines in ES which con-
tain the point P, = span e4 . Cleerly, s4r152 = ixO} . The menifold

(923 C Eg X P is the blow-up of et the point P, &nd
1t will be denoted by ES .

We distinguish the following cbjects in PB : the points Pc =
spen e, , P, = span ey the real lines L = P[(eB,e4)) = ﬁ;?m s
L = P{(ey185)) the plenes H, = F({e1,ez,e3)) i H, =.W((e1,e3,e3)_
The reel lines LQ, Lw considered as points in § will be denoted
by X X {or 0 ,w), respectlvely.

The restriction W Hyp Ny, — gt N{xw! induces = complex
structure on s ~ fe} which we shall regard as the stendard one. We
chogse complex coordinates y,z on s N fw} = 2 via the identifi-
cation spen(ye1+ze2+e Y = (y,z) , end we introduce cocordinates
E=2,/2, 0 77 22/24 sy b= 23/’24 on lI‘B\Hm . Denoting by 1 =
z./z, the coordinste on Lo\\{P”} we have the transformations y =
CGRE+ TV QO+ tE), z = (UE-EV/C+LE) , A =L , and E =2y-Z , 4 = 2z+F.
So we have the possibility to express functions on ¢ in the coor=
dinetes y,z,A or §,7,} . Frovided the letter ones ere used the
corresponding function wilil be underlined. )

The fundesmentel theorem due to Atiysh, Hitchin end Singer [6]
relates to every (locsl) self-duel geuge field e (locel) instanton
bundle F with @&:*"F —» F being the holomorphie isomorphism in-
ducing a Hermitian sfructure. We shall restrict our considerstions
to the fremed instanton bundles with e distinguished crthonormal

frame over the line L, . To any such & bundle there corresponds



"
a geuge equivelence cless of germs of locsl trensition functions,

Every local transition function G is Gefined on en open set UxVC
¢3 with % snd 7 being neighbourhoods of the origin in €  end
the unit cirele in ¢ , respectively, and it hes properties: iy
GO,A) = 1, U1) G(E,7,t) 1is holomorphie, (1ii) GCx,-1/13" =
G(x,1) . The space of germs of locel trensition functions fulfilling
(i=1ii} will be denoted by gu . This correspondence cean be estab-
lished even if all reality conditions esre omitted, The lasrger spece
of germs of locel transition functions setisfying only the conditicns
(1), (i1} will be denoted by § .

The objects we are desling with ere reasl enslytic in some neigh~
bourtiocd of the origin in c2 and hence they can be locslly extended
from @2 to m‘ . In wnat follows the symbol x stends for four
complex weariables y,z,¥,2 1in this erder. Let ¥ denote ® subspsce
of gl{r,Crrx]1) X gi{r,0LCx,A]]) x gl(r,E1Cx, A J]) consisting of
those matrices (J,W,ﬁ) of formal power series which satisfy

W(x,0) = Wix,o0) = 1 , (2.1}
JCO) = W(0,A) = W(C,A) =1 , . (2.2)
and solve
¥ - Ad a-(J“W) =¥+ x0mm =0, €2.3)
o « ATy = o+ TN a0 = 0 (2.4)
we shell write W(x,A) =1 + ): Wacx),‘{a Wex,a) =1+ )'ﬁ W (o3,
3=

where chxl wa(x) € gl(r, a:rrx:m and wjco) = W.(0)=0 . An in-
volution denoted agein by & sacts cn ¥ . It interchenges J(x}
with J¢x)t and %(x,1) with (W(x,~1/20)"" . The g-invariant
subspace consisting of (J,w,ﬁ) fulfilling

+

et = g0, Weay! o= wex, -1/ (2.5}

will be denoted by ?u . The gsuge trensformations

Jix i e Tix, 00t gyt Tex,00

Wz, L) — (2,07 Wix,4) F(x, 1) ¢2.6)
make sense on ¥, provided T €gl{r,Cllx,A1]) satisfies T'(0,1) =1
end

(Ad5 = 397 = QI3 + 2,07 = 0 . (2.7)

For G& g we choose the Birkhoff decomposition in the form



Glx, %) = (JexnFx,A) )'1?{(:,1) ' (2.8)

where W(x,1) and 'v?(x,x) ere holomorphie in 1 on neighbourhoods
of the discs {12141} end {Il"léﬂ , respectively, provided x
is close enough to 0 , end they sere normed by W(x,0) = '\ﬁ\'(x,w) =1 .
Tt is well known [7,87 that in this wey we get embeddings gc ¥

end ¢, C ¢,

3. THE CANONICAL INITTIAL CONDITION

We cen exclude J from (2.3) : Jaj, g = 3,¥, » J2; gV -2 wt . Ta-

kesaki’s approach provides a method how to solve these equations in
the realm of formel power series together with a given initisel con-
dition

W(3,2,0,0,0) = w'%y,2,2) . G.1)

In sccoréance with (2.1},(2.2) the initisl condition w'0) &
gl(r,Crry,2,211) is require¢ to fulftl w(y,z,0) = w¢92(0,0,2)=1.
The initisl velue preblem has the unique solution W(x, A1) unembigu-
ously determined by the condition

(0)

v, 00 V- T2,z U527 € ailr,erix, 7M7) (3.2)

We shall complete this result,
Proposition 3.1. Tt holds

wex, )W Vy- T ,ze T3 A = soF@,L)

where W is normed by ?ﬂx,m) =1 =and (J,w,'i') solve (2.3),(2.4)
end (2.2}, i.e., (J,W,WYE?P . '
Proof, In fact we shall prove also the ’I‘akasaki s result in an alter-
netive way. Put H(x,2) = ¥ P(y- 13,2+ £15,07 " € gilr,clrx,2, T '19).
Then H{0,A) = end the m~th homogeneous term Hm, in the vari-
ebles x does not contein powers of A lower then AP . Conse-
gquently H(x,2) is well defined. It elso follows that for any R €
gi{r,CirxJ1} there exists the unique solution X & gl(r erfx,171)
to the following problem: X{(x,A)H(x,1) &€ gl{r,0lrx, J]) » X(0,2) =
R{¢) and X(x,0) = R(x} , Reeally, write X 4n the form X{(x,2) =
R(OY + Z;‘_’__l X (X,1) with the terms X, being k-homogeneous in
the waerisblea x , to get the relations ’xk Z;j=1 Hy xk-;] =3
gllr,clix, X 1]]) s X221 , which enable to compute recursively and
together with the condition X(x,0) = R(x) unambiguously =all terms
xk . Bence the condition (3.2) tegether with W(0,3) = W(x,0) =

has the unique sclutien W and it can be easily seen that this W
also fulfils the initiel condition (3.1}, Now decompose
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Wex, DHE(x,A) = Joof(x,A) with the given normelizetion. Clesrly,
(3,-L9j)H = 0 end hence (az-zay)(J"t XWCx,AY) HiX,A) =
{32-13?)?«:,1)6 gl(r,crrx,A"'7]) . At the seme time it holds

-1 - _ —¥
(azﬂay)(J CIWOR, A Yy = 3,007 ¢ XWX, 0) gmg = 2,9 "_c 0) end
(2,-2 ag,)(J“c 0 W) 400 = 3,97 xy . But (5,97 o) wex,2)  ful-
f£ils the seme relaticns and s¢ sccording to the above observation we .
have the equality (9Z~13§)(J-1( VWX, ) = (azJ-I< x}) Wix,i) » Ana-

logously we get (r)'y*-l()i)(J-I( WX, 1) = (ByJ't( ) Wx,1) 4 i.e.,
the equations (2.3) are satisfied. Further, (az-).ay)ﬁf(x,l) =
(;)ZJ-1( ) Wk, A) B{x,1) = (azJ-1( x) J(xyWex,A) , end snelogously

(2 +lai)ﬁf(x,i) = (3 07 2 Jx¥(x,A) . Hence the equations (2i4)
are satisfied as weli. The rest of the proof is evident,

hs & rule the geuge equivalence in the inverse scattering
approach is ususally quoted but not systemstically developed. In the
reminder of this section we shell try to show thet such a more de-~
tailed discussion leads te some rather useful consequences. The con-
dition (2.7) on T meens thet T(x,d) = Ttay-%,12+§,1) , where
rees1,L) € g1(r,eer8,7,613) . Hence Oy 2,2) 1= Ty,z,0,0,3) =
TUAYAZ,A) = T + 2—_:}’:1' T'.m)( Y427 a9 , where T‘.w)( y,z) 1is a poly-~
nomial wi%h the zero ebsolute term end of degree at most equel to Je
Clearly, knowing T"(o_) we dre able to reconsiruct T: and hence T
ags well. The gsuge transformation of the initial condition takes the

form W'D —> w14 roliows that for each CI,W, %) € L

there exists the unique gauge trensformation T; such that W( ”
+
heving been transformed satisfies w@())( ¥,2) € gl(r,(y,z)J 1) , where
: +
ngtﬁhz) 1= Wi(¥02,0,0) and 7,23 1s the (1+j)=th power of

the 1desl <(y,z)C Cily,zl1] generéted by ¥.2 . This condition ell-
minates gsuge freedom. The unique gsuge trensformation T‘c will be
called cenonical end we shall derive &n explicit formule for it.
Letma 3.2, Assume thet (J,%,%2€ ¥ end

JCY,7,0,0) = W(y,2,0,0,8) =1 , Then

(1) Bo(x) € gllr,(7,2y""), k21 , where (¥,Z) 1is now en idesel

k
in ¢€r{x1] , end
city W) WOy 17,24 015,20 = Joolg) . (3.3)

iv3o
proof. (i) We have to show that 35 ‘)E wk(y,z,o,m =0 for Q£
i+j<k , According to the assumption the essertion is valid for
i=3=0 . The equations (2.4) ere equivalent to

a0 A -1 A A _ A _ -1 ~
D% = ¥y * CAFIO T SR AR CarIe LSRR A



Put ¥=Z=0 in these. relations to verify the sssertion for k = 1 ,
Further we proceed by induction in k ., It suffices to differentiate
these equetions by 251'1923 or by a,iaEJ'T srespectively.

{11y According to Proposition 3.1 the left-hand side in 13.3) equels
to JYxWix,A) with (J°,w,#° )€ ¥ . It is sufficient to show that
the initiel condition on J,ﬁ determines them unemblguously. But
this 18 en immediste consequence of the following two easily verifi-
able essertions: Let (J,¥) =and (J',ﬁ) solve (2.3) and seatisfy the
corresponding boundery conditions in (2.1) ,(2.2). Then J° = JX with
X € gl(r,CIry,2z11) , X(0} =% . Let (J,W), (J,%°) solve (2,4) emnd
satisfy the corresponding boundsry conditions in (2.17,(2.2). Then
Vox, ) = 15,2+ 05,0 fex, 20 with YE7L,E) € M, T, T, E
end Y{0,0,f) =1 .

Theorem 3.3. let (J,W,%) & 9; and J,% Tulfil

J(¥,2,0,0) = Wy,z,0,0,1) = 1 . (3.4)
Then W(O) satisfies
W vz € glle, 2, g2, (3.5)
and
w NIz, A5, -1/ = w' %% y,2,2y . (3.6)
«

On the contrary let W satisfy (3.5),(3.6). Then there exists
the unique solution (J,w;ﬁ’)é gu with w<® being the initial
econdition for W and, moreover, this solution fulfils (3.4).
Remerk. wLG)(IE,-Ei,-1/I)* mekes sense owing to (3.5). (3.6) is the
anounced reality condition.

Procf. {(=>) Validity of (3.5) follows from Lemms 3.2 ad(i), and
from the equelity Ww'°Xy,z,2 vl = %(o,o,i,i,»1/1)* . By the assump-
tion the equelity (3.3) holds. Set y=z=0 4in it and make use of
(3.47,¢2.5) o get W iz, 75,007 = #00,0,7,5,4) . Now 1t is
sufficient to replace A by =1/1 sand to perform Hermitian conju~
gation and inversion of both sides in the last equelity, {<{==) We
relate to w(O) a8 solution (J,w,ﬁ)e ¥ according to Proposition
3.1, From (3.6) it foilows w'%X y+3z,2-17,-1/3)" =
W£°)(y-xf1i,z+i'1§,l) « The k-th homogeneous term of

W(G)(y-lf]i,z+ I'$,2) in the veriables x contains powers of A
not lower than (~k+i#) and not greater than (k-1). Consequently we are
allowed to multiply the equation (3.2) from the right by this expres-
sion. So we have J(x )"W(x,;) = ﬁ'(x,l)w(o’(y-f?i,u fTSr,J.) « Re~
place 2 by -1/ and conjugate and invert both aides of this
equality to find that (W(x,-1/2)' 7' 1s egain e solution with the
seme initiel condition W0 , By uniqueness we have



(Fx,-1/% )")'1 = Wex,A) end J(x Ywex,-1/1 ! = soofex, )
Hence (J,W,¥)€ LA validity of (3.4) follows immedistely from
(3.2) end nniqueness is guarenteed by Lemma 3.2 ad(ii).

Definition 3.4. & solutiom (J,W, W) e ef’u will be called cenonical
provided it fulfils {3.4). The subspace of eanonical solutions will
be denoted by 5” . An initiel condition w9 will be called
canonical provided 1t fulfils ¢3.5),(3.6). The space of canonical
initilsl conditions will be denoted by v .

tence w0 e ¥ iff it holds

w0 » X 2 R ik
(¥12,A) = 1 + 3 2 I_W yizo YA
. ” W A 550 “3:
o (0 n+Jj+ (07 t
where W, nik € eur, G) ' Wn;l = (=1) Wy Ja=j ,n-k
Suppose (J,W, W) & 4’ . We introduce a gauge transformation
Rex,A) = T (Ay-%, lz+y,1) s where

L€ = Wco,o,-z,Jg,g )"Jco,-o.'z,—g) . 3.1

Having performed this gsuge trensformetion we get ancther solution
(J, wc,w Y€ f, . From (2.6) it follpws thet J, ,w sagi)sfy (3.4)
and according to Theorem 3.3 the initlal condition wc fulfils
¢3.5)}. Hence the relation (3.7) yields the announced a:r.plicit form of
the canonical geuge trensformation.

We have just constructed a projection
pr.: & — F 1 (30,0 — I, W,,F )
e’ Tu - o e?e?e '

which, moreover induces a one-to-one mapping of the gquotient
:?/gauge transformations onto 9’ . Akccording to Theorem 3.3 the
mapping f — W (T, W, W) — W(O) is one-to-one and a0 we have

§ /geuge trensformations £ Sfc =Y. (3.8)

In other words, geuge equivelence classes of local self-dual solu=
tions are peremetrized by the points from the spsce v

Denote by QQCQ the subspace of germs of those transition
functions G such thet Gly,z,0,0, A)eW . By restriction we obtain
the projection

gu-—b g, 1 6= (Y — 3, o+ where
_ccg,z,;) = “”(g/g,*z/g (3T ,=E, 0y 0 W(q,-E,0, 0,t/D))" .

Agein this projection induces a one-to-one mapping

g, - (3.9)

We heve a simple relstion between the cenonieal transition

ne

g“/gauge trensformations



function Gb and the canonicel initisl condition wéO) H

G810y = Wi O 18 ,8) |, taen,

8%, 1) = WP y- 12,20 1y, 00 C(3.10)
and vice verssa
WéO)(.Y,Z,l) = gc(ly,lznl) = GC(Y)Z:O:O’J') .

Proposition 3.%. The isomorphism class of = global fremed instanton
bundle F over P3 is unambiguously determined by its local res-
triction to ') with % being sny neighbourhood of x .

Proof., Grem metrix of the Hermitien form expressed in e holemorphic
frame iy reel anaelytic. Owing to this fact the distinguished ortho-
normal freame over L, ©8n be extended as sn orthonormal real sne-
lytic triviselizetion {£1,...,fr} of F over EQ‘\I,w in the
following wey., The secticns ij aii-defined on He\Ly,% €° as ho-
rizontel 1lifts over the segments FoQ , Bnd then they are extended es
&globel holomorphic sections over esech real line. Using this trivi-
alization we get a connection 4 on CE & m4 with the self-dusl
curvature and with the finite topologicel charge equsl to cch . At
the ssme time A depends only con the isomorphism c¢laess of F and is
real snelytic and hence it is unambiguously determined by its germ at
the origin. Using now Uhlenbeck Theorem [9] to remove the singularity
et 90 end applying the Penrose transformation we conclude that A
determines F uniquely up to isomorphism,

It follows thet having in mind (3.8),(3.9) we cen relate to
every iscomorphism cless the unique point from the space ¥ . In this
wey we get an embedding of the fremed instanton moduli spaces M(r,cE)
inte ¥ . Explicit expressions will be given in Seec.5 .

4. THE GEOMETRIC INTERPRETATION

Despite of the local way of its definition the canonical initiel con-
dition will be shown tec heve a clear geometric interpretation in the
twistor fremework, The global embedéing of S* into €, eand the
pull-beck of the instanton bundle prr F on T1 > corresponds to
the local snalytic extension from c2 to 04 . The initiel condition,
i.e., the locsl restriction to the 2-dimensional subspace ¥ = Z = 0,
hes @ counterpart on the global level in the restrictions from ¢
to P° and from F1’2 to 3 » Really, in the loecsal coordinates
"¥1Z,¥,Z on €, ot the point x, 1introduced vis the mapping
(Fs2,5,2) b= P((ye1+ze2+e3;-ie1+§e2+e4)) , it holds : 5% 1s loeslly
determined by the equetions F = c.c, y y 2 =¢c.c, 2, and ° is
locelly determined by the equetions §F = 7 = 0
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The fellowing construction and its consequences are formulated
in & more general setting for the n-dimensicnal projective spaces
= , 122 , with a fixed line L, end for the fremed helowmorphie
rank-r vector btundles F over Ep, r22 , with s distinguished ho=
lomorphie trivialization on Lc . For such vector bundles the first
Chern class cT(F) veanishes end aeccording to Crothendieck Theorem
the vector bundle F decomposes over every line T es FIL =
@(11) @ ... @@(ir‘; , 112 ...Zir ' it Yaaut ir = 0 . Hence 112 0
and 11 = 0 iff F 4is holomerphicelly triviel on 1 . The set SF
of jumping lines, il.e., consisting of lines over which F 1is not ho-
lomerphically triviel, is = proper closed anslytic sel in 62 (ef.
£101,Chp.I), Fix two different points PyiBe € Ly and denote by S,
S, the sets of jumping lines passing through P and F, , respec-
tively., Let Sing(Py) C P! be the union of =ll llnes belonging to
Sg enalogously define Sing(P,) . Agein the sets So S, @&re proper
closed enslytic sets in the (n-1) -dimensionel projective spaces con-
sisting of lines in P containing Po or R” , respectively. Con-
sequently Sing(Poj end Sing(P,,) ere proper closed analytic sub-
sets in F° .

More information provides the following theorem due to Barth
generslized to higher orders. Denote by F the leccally free rank-r
shesf of germs of holomorphic sections in F . We redencte the pro-
jections p = pr%. 1,2 —s ! and q = pry: F1,2 — G2 .

Theorem 4.1. The set s? of jumping lines is an analytic sub-
set in the Grassmann menifold &, of codimension 1 everywhere.

The sheef £ = R‘q*p*{31-1)) determines in G, @ divisor DF of
degree c,tF) and such that S; = supp £ = supp Dp »

Proof, In £101,Chp.IT there is given a prcof for the cese r =

renk F = 2 , The main pert of the proof mey be reprcduced almost ver-
batim elso in the genersl case, We shall not do this and notice only
the last pert in which the degree of the divisor is computed. It is
sufficient to verify the equelity deg DF = cz(F) only for the di-
mension n = 2 =and that will be mssumed up to the end of the proof.
In this case there exists & resolution

0——-1»@@(}:) —_— @@(m)—-r'}'(-i)-—r 0, with k,,m.<0 .
i=1 j=t by

The line bundle corresponding to the divisor DF 15 fp ] =
det E,®det E1 : where E, = =®R' Qup*0ky) =® R q,p“@(ma) .
Finally, c}(H q, P*0(k)) = ~k(k+1)/2 . Now we can compute deg Dy
using the Whitney formula for this resclution:



-r = ¢, (F(-1)) = Emj -k
ey(F(-1)) = -12-r(r-1) + e (F) = )

deg DF

Ly Zi<a kik.+rz:ki

- = 1_ -,-— 2 =
¢ {[Dg) = e (B, - e)(E) = 5 T (K +ki) 5 = (m"+my)
ep(F(~1)) = dr(r-1) = c(F) .

3 ®

Corgllary 4.2. Let ¥ C PP be the blow-up of P" &t the
point P ., P 1is considered as a submanifold in &, . Then

Se = Sp rwmn =1 4s an enslytic subset in P! of codimension 1
everywhere end the sheaf 8 R1pr2*pr1*(?1p1)) determines in M7
a divisor D, of degree ¢ (F) and such that S = supp 80 =

supp D0 . :

Proof., The proof follows from the stendard applicetion of the bese-
-chenge theorem (ef,[11],§9).

Owing to the distinguished frame on LD we have a fixed besis
in the fiber over D, . Extend this basis ss 8 holomorphic triviaeli-
zation over emch line conteining P, =&nd not belonging to S, . We
get @ holomorphic frame {s,,...,5,} over the open set ﬂo =
wn\.sins(Pﬂ) 2 P, . Construct analogously the holomorphic frame
i? ,...."sr} over { = an\sing(P )y ® P, . The corresponding tran-
sition function defined on 4, nﬁm iP“\(smg(P YU SIng(Py)) will
be denoted by G (ij) ' S T S 2 ot K ¢

Owing to Chow Theorem sll the sets Sot Ser sing(P,) , Sing(FP,)
are projective varieties in the corresponding projective sphces, and

o

owing to a generalizstion of the seme thecrem, F 13 an elgebrsaic
vector bundle on P° (cf. [12],%1.3). According to the ssme prineci-
ples, GF 13 @ metrix of rstionsel functions on P ., Corollary 4.2
suggests that in the homogeneous cocordinates GF hes the form
G{(zY=1 + S(z)/(po(z)fmcz)) , where S(z) is & mairix of homo-
geneous pelynomisls with degrees equal to 2¢ {c = c2(F)) and such
that S{(z) = 0 on the line L, , p,, e &are homogeneous polyno-
mials with degrees equal to ¢ end such that the projective set

P (3 = 0 (resp.dpm§z) = 0) coincides with Sing(Po) (resp.
Sing(P,) ) . By the construction GF depends only on the isomor-
phism cless of the framed vector bundle F .

Theorem 4.3, The isomorphism ¢lass of a framed holomorphic vector
bundle F on ®° 1s unambiguously determined by the matrix function
o . :

Procf. GF considered as transition function determines the fremed
veetor bundle F over the open set ﬂ vl =

F* \ (8ing(P oY Sing(Pg)) , up to iscmorphism. The anslytic sets
Sing(E,), Sing(P‘) have dimensions equal at most to (n=1} and
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their intersection has dimension equal st most to (n-2) . Reelly,
provided dimension of the intersection equals to (n~1) , the analy-.
tic sets Sing(Po), Sing(Pg), Sing(Po)f\Sing(Rw] are of the seme di-
mension end have at least one common irreducible component T egain
of dimension (n-1) (cf.[13],§1.3). The irreducible components of the
enalytic set Sing(P,) ere in one-to-one correspondence with the ir-
reducible components of the enalytic set So end esch of them con-
tains the point P, . Consequently P, &€ TC Sing(P, )} eand we get

a coutrediction., Let (i@l uT, & ® be the embedding, Owing to
a consequence of Hertogs Theorem which guarsantees removability of
singulerities of = complex snelytie function provided the singular
points are contained in an enslytic set of codimension at lemat 2 ,
we have a naturel isomorphism (,*%F = F . Hence F 1is determined by
its restriction Fi(ﬂouﬁ,,) in the unique way.

Proposition 4.4. det ¢¥ =1 .

Proof. The line bundle det F on @ 4is holomorphically trivial.
The cholce of & frame of F over L, induces a holcmorphic freme of
det F owver L, which extends to e holomorphic trivielizatlon over
©  in the unique wey., From the conatruction of GF es a trensition

fanction it follows immediately that det oF is a trensition fune~
tion of det F identicselly equal to ! on ﬂbr)ﬂao and hence every-

where on PO ,

Let us now specify the construction for the framed instsnton

bundles on 53 . In this case L, 1s 8 real line, TP * F, and

the distinguished freme is orthonormel. Moreover, v(Sing(Po)) =
Sing(P,) end the freme {%,...,3,1 is related to the dual of the

frame 251...., r} by the isomorphism o . It holds

oFlxcq) = 6figy  om U, Upo » (4.1)
and hence the germ of GF belongs to Qu .

Denote by ?; = L ) the point from the exceptlional divisor
in the blow=-up P, The pull-beck of the metrix function pr, *oF

is holcomorphic at the point ?; . Identi£ Pz with the plane H c
and introduce local coordinetes on - vie the mepping

(¥ 1544) —> span(Aye +ize +233+e M , apan(ye +zez+e 3 § the values in

ﬁ? are y =z =34 = 0 , Denole Pr, G expreased in these local co~

ordinates by N(O}(y,z,A) . Clearly, (y,z 0) = w‘ )(0 0,A) = .

From (4.1) it follows that equstion ( )(Iz,-xy,-1/1\

wco (¥,z,A) holds on sn open set #x 7V , where # end T are

nelilghbourhcods of the origin in Cz and of the unit cirele in ¢ ,

respectively. Looking at the Lorsin A -expansion in this equality we

11



find the condition (3.5) to be valid ass well as the reality condition
(3.6). Hence wéO) is indeed the cancnical init%el condition cor-
responding to the frasmed instenton bundle F . G expressed in the
local reel anslytic coordinates (x,A) = (y,2,¥,%,A) satiasfies
Fex, 20 = wéu’(y-a“12,z+ £'$,4) . compering this identity with ¢1.10)
we conclude that G coincides with the cencnicel transition func-
tion G, -

Note that the seme construction of the canoniecsl initisl
condition is epplicable alsoc to the locel csse,

5. EXPLICIT EXPRESSIONS

For s quedruple (4, ¢2,a,b) € % %% %% €T and 3=
4 +
(zj)ea: set dyz,+d, Z,=24
= oq T = +
R(g) = 82 -dy Tz bz, , A(s} R(g)R('a') .

+
az1-b Z, .

The modull space M(r,cz) of fremed instsnton bundles on [P° 4is the

quotient of the set of matrices (d1,d2,a,b) satisfying

(i} R(s) is of rank ¢ = €5 for ell 3#0,

(ii) R(Té)+R(§) = § for sll 3 » Or equivalently,
AT3) = (%) for ell 3 (5.1

by the action of Uce) : K(3) ~> diesg(e,&,NRAIE ' , g € UC)
(ef.011). Let ZEE be e point with homogeneous coordinates 4 =
(z],...,z4) . Then the fibre F, of the instanton bundle in the ADHM
construction is given bty (ef.T14,151) F, = ker R(r3 Y /in R(3) . The
Hirmitian producf in F, 1is given by ([$1,[{]) =

S0 - ry acm Rzt

lemme 5.1. let L be a line in ®° and Y ,Z, € L be two ¢ifferent
points with homogenecus caordinstes Yo 50 y respectively. Then

FIL is holomocrphicelly triviesl if and only if the matrix

R(TY, WR(3,) 1is invertible,

Proof, (=) Fix @ basis in the fibre over Z, vie the choice of

a (2e+ryxr metrix N satisfying: Rfrg°)+N =0, renk(N,R(go)) =
r+c ., Then the matrix function S(Y) =

rn - B(go)(R(Tg,o)+R(30))-1Rt’rgo YIN modulo im R(y) , ¥ = spany € L,
is in fact e holomorphic trivislizetion of F owver L .

¢ ¢=) Suppose Rcrgov*ncgo) 1s singulasr. We shall show that FlL
has & nontrivial section with at least one zero, Denote K =

ker R(ty Y'R(3) € € . Let A be a projector onto R(3 K € €277
sccording to sny direct summsnd. Since the restriction
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R‘} ) K o R{go}K is en isomorphism we can define A =
R(3q) cA} Rl o) ¢ K ~—* K . Choose an eigenvalue -g of the endo~
morphism A& &nd a vector £ & XNim(A+21) . Hence R(%O)f #
(B[%o) +-¥R(%0})8 for e}l g & K . The section 3(¥) = cho)f
modulo im R(y) , ¥ = spany & L , is holomorphic and sz = 0.
Now it suffices to verify that 4(Y) # 0 , where Y & L 1is the point
with homogenmeous coordinates 4= 4, +3€§- . Really, provided
R(%)f Riyrg = (R{g b +aeR(3 y}& we have = R(T3, )?Rféo)f
R(r3,) 3(59)8 = —R(rgo) R(zo)g , hence g & K and we get 2 contra-
diction.

Set g = (?) , R = (é) , N = (8) , where the dimen=

o 0 o s 0 h

sions of the matrices sre (2c+r)ixec , (2etr)xc and (2e+r)Xr ,
respectively. The columns of N, determine the distinguished freme
over L_ . Follow now the constructicn of Sec.4., The frames
{871000y5, ) ond {?T,...,f;} are determined by the matrix functioms

8¢2), 8(7) modulo im R(3) , respectively , where (Z = span3), 5(z)=
no- RW(m'rgﬁRw)"R(ré)*]No y 8(z) = 11 - R, (R(ry TR, Y RCTOTIN, .

4t the seme time, as it should be, §(rz)+5(2) = 1 . The canonical
transitxon function is given by G, (Z) = SCTZ)*S(Z) N GG(Z Y‘ =
mfzﬁﬂZ).Imme : GefZ) =

1 -8R (Reeg YR, V(R TR3) T ReTy P, o Teking (3.10) into
account we get the canonical initial condition
””(y,z )= 1+ z(ay-b“z)u-a’y-cx;z )'1(1+1(ot2y-o(1+z))'r (by+etz) ,
(5.2)
lemme 5.2, Iet F be & locel instenton bundle snd let {t1,....fr}
be a holomeorphic freme in e neighbourhocod of the point PG (y=z=220).
Then the Grem matrix h = (ctj,tk)) has a form

hex,d,1) = wix, A Vacx 7 wix,2)

where J(x)} = J(xY , W(x,0) =1 end J,§ solve (2.3) .
Procf, The assertiocn fellows immediately from the form of the Birk-
hoff decomposition of the transition function (2.8).

Now we apply this lemme. In coordinates (x,1) we have 4=
(ly-ﬁ 1z+¥,1,1) , and so

Jex 7 w(x,A) = stV (i - R(g)a(g) "Reg Y )53} 320
Hx) = §(t5) (1 - R(T3) AC4Y Rbré) )gcrﬁ)ll=1=0 s
To get the explicit formulas we set ’
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‘f=a\','-b*z, ‘i/c,:by*a'fz '

L S dyy = d1+z s By TRyt 62+z ) (5.3
end hereinefter
= G- -8 )+ 878+ ¥y (1-§ﬂ)(1-§;) N7 LS A A
: (5.4)
In this notation (5.1) is equivelent to Y ¥ = [E,@EJ and {5.2) may
be rewritten
(0) =1 -1
(¥:2,3) = 1 +2¥0=-38) (1+2%) ¥, -
Theorem 5,.,3. The following formulss together with (5.3) (5.4) provide
the full trenscription of the ADEM construction into the J,W-forme-
lism of the inverse scattering spproach.

+-1 1,1

W,y = 1« AlWe BTa-3TH ST «ag0-3T 5y x
x (¥, ~$~35 )" 94 ),

Jexy =1+ ¥ -t )‘1(1-66)"!{, -
NICEIE AN RSl VN (LN LI Sl ) I
’ A = ot =1 A
If we put Wex,A) = (W(x,-1/27)7 , then (J,W,¥)€ f, 1is the dis-
tinguished canonicel solution defined in Sec.3.

The most femilier self-dusl solutions ere the 't Hooft’s insten-
tons with the gasuge group SU(2) . In this cese
= t " 5 T
a= (g} , b= (0,-P Y, Pz (PrrecesPed s =8 = diag(u1,...,uc) y
-dz = diag(v1,...,vc) , where the constaents . are positive and
the points (uj,v.) € Ez » 1£j4e , are mutua%ly different. The ce-~
nonicel initial condition takes the form

2 2
¢ P4 yz -y

WéO)(yszll) =1 + 3 t iy .y d_ 2 )
3= (1+ujy+vjz)(1~1(vjy-ujz)) z° ~yz

6. CONSEQUENCES

Owing to the Donaeldson’s result we can consaider the moduli spece
Gl(r,cz) of framed holomorphic vector bundles on @2 instead of
¥(r,e,) » The description of @M(r,cz} 1s similar to thet of M(r,e)
(c£.I11). Theorem 4.3 asserts that the points of {M{r,e} are in
one-to-one correspondence with the restricted cenonicsl initial con-

ditions Wégg = wCO) z=0 * We introduce a new coordinate w =1y and
define Wégg(y,w) = W°0)(y,0 w/y) . From (5.2} it follows
1(-23(3"“') + yw a(l= d‘y) (1*0‘2“)— .
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The Taylor expsnsion at the origin shows thst a point from EMiz,c)
" corresponding to the equivalence cless E(oL 19508y ,b1] 1is unambigu-
ously determmed by the infinite double mdexed sequence of matrices -

-
adjolab, ek = 0,1,0.. &
lemma 6.1. Let f(B) & @ be @ rational function in one variable

over eny field { of cheracteristic zero end asgume f to be re-
gular st the origin, If f cen be expressed as a quotient £ = p/g
with p,q being polynomials of degrees less or equal t¢c n then £

1

b
is unembiguously determined by 2n numbers ) d——j r(g), 0£j<£2n-t.

Tat
Proof. The proof is simple end fully slgebreic. We omit it.
2.2
Proposition 6,2. The hclomorphic mapping GM(r,c) — q:‘ T,
{(d;13,,8,0)] — (edadz b 0<£3,k<2c-1) 1is injective.

Proof. Use the Cremer rule and apply twice Lemma 6.!', First pulting
f = € we reconstruct a(l-d, AN d.é‘b , 0€k<£2¢-1 . Then putting
§ = C(y) - the field of complex rationsl functions in the veriable
y =~ we reconstruct a(1-a1y)"1(1+aaw 7y

Let us now consider another holomorphic injective and meybe more
frujitful mapping. The Cramer rule implies

0 _ ¢ il ¢
ST ESRNUNS AP U D e
J=1 =1 Jek=1
(6.1)
where 34 tj ECT .2Sjk & gl(r,t) . The mapping
2e+r .
GM(X".C) —_ T ¢ : [(CH |d213:b)] b (Sjitjlsjk; 153,}‘50)
i3 indeed holomorphie and injective. Moreover, the interpretation of
Wx(.g; as & transition function shows that this mapping is @ homecmor~

phism onto its imege. By Remmert Theorem (cf.[13],8IV.7) the image of
§Mir,e) 1is a (locally) enalytic set , irreducible and of dimension
equal to dimQ:GM(r,c) everywhere, Remind thet the moduli speces sre
known to be connected {(cf.[10].Chp.IIV. )
The 1-instantons provide the most simple example. The moduli
space GM(2, 1} is biholomorphicelly equivalent o -‘f,é; y the slge-
braic set UQ U:s is determined by the equations;: tr s,, =
det S, = 0 (“él,ng consists of points for which Sy, = 0).
Proposition 4.4 characterizes partially the image in the general

" case. Substitute (6.1} into det Wr(:e?: =1 to get

= = = <5<
tr s, tr S1j tr Sj,T 0, 2%£jZec, (&.2a)
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c . c . .
0+ 32 s. ¥ + 5 ¢ wd) i: tr S. ya-gwk'z +
3:1 d j:1 J j,k=2 d

c .
+ det( ?___":1 Sk y9NWET Yo L e (6.2b)
ds &=

Note that for rank-2 vector bundles (6.2a,b)} represent 2e(2c~1)
equations and if we subtrasct this number from the number of indepen-
dent veriables we obiain exactliy 4c¢ = dimGGM(E‘,c) . Cn the other
hand, the algebraic set A‘c) (o4 0:2“2”” determined by the equa-
tions (6.2} conteins the (¢+1i )2 = dimensicnsl algebreic subset:

tr Sy = AN(Sy, Siep0) = 0 for all Gk, 3T,k .

7. ON THE LOOP GROUP ACTION

The embedding of the space ¥ into the vector spsee glir,Clrx3l)x
gl{r,gICx,A13) %X gl{r,C Et'x,,‘t']]J} ensbles us to treat formally the
Lie slgebra X(¥) of vector fields on ¥ . Denote by gl(r,mtl,l"]])
the Iie slgebra of Lorain polynomiels in A with cocefficients from
the Lie elgebra gl(r,f) . Dolen [16] end Cheu, Ge, Sinhe and Wu [17]
discovered en infinitesimal ection, i.,e., & Lie algebra homomor-
phism §: gl(r,®c], /1-1]) — X{L) . Tg-k p—> d'k('l‘) , where ke Z ,
T € gitr,C) . The components of d'k(T) can be expiessed with the
help of gl{r,C[{x3]} - velued funetions dktT) R dk(T) s k € iNo R
defined on ¥ and linearly depending on T , introduced by the re-

-1 kad k2 P X a2 -k
letions WGOITW AT =% 4,(T) 35, WOTWAY =3 4. (M=17",
t=p ¥ o X

It was elso recognized by Cheu et s8l1. that to get a well defined
ection on the subspace EFuCEF we must restrict gl(r,ﬂ![l,&'TJ) to
the subelgebre consisting of those elements ¥_ Tk A‘k which satisfy
T= 1t

Let f{l be the loop group of holemorphic mappings from € to
GL(r,C) defined on & neighbourhcod of the unit circle, Crane dis-
covered [5] thst one is msble tc exponentiate the infinitesimal
sction if we replesce ¥ by its subspace of convergent power series
§.let G=wiY'weg , = & 1, ¥ €gi(r,enr, I7')
(0%, %) = (J,W,¥) +&e(T), &£ - infiriitesimsl, Then we get after
some algebra §° := (5% W = (14eT)GU=cT) (mod £ ) . Hence
the global ection of ( orn § should be defined as:

(8°C) (X,1) = g(A)GLx,A) gCA

?
where ge (1, Ge& % . This definition ia essily seen to be correct,

Crane defined the action of Q on Qu as follows
(8+G) (x, 1) = gl Gex,A) gt 2T,
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Clearly, this result requires an additional specification. The global
action will be correctly defined on the subspace QuC Q provided we
restrict the group & to its subgroup Sl consisting of those ele-
ments g(A) which satisfy gi-1/2V = g(af‘

The loop group action is gsuge dependant and the modull spaces
M{r,c) embedded into 59c ere not inverient with respect to this
sction. lLet us notice more closely the infinitesimel s¢tion on the
1-instenton moduli space M(2,1) . The setion of {l ~ includes eas
a gpeciel cegse the =8d(U(2)) - trensformations corresponding to the
cholece of the distinguished freme and there is no necessity to persue
them further, Because 4y (1) = é\k(?} = ¢ for k>0 , it is enough
to consider conly the vector flelds 8(Y) , where T =
Typmy (1 7+ ) 2 Y)Y, 1€ s12,0) L Denote S (7) =
ST + (-1 *) , ena 5(0)(@ = pre«Ox(T) , k21 . Since
¥, T we can regerd the vector field J(o)(T) as being defined on
W. We shall try to enswer the following questicn: Which vector
fields &(T)= Zywy S’k(Tk) having been restricted to M(2,1)
ere tengent to pr, =W M(2, 1))C‘fu , 1.e., which vector fields
g© )(‘3") are tengent to M(2,1)c 'y 7 Roughly spesking, we ask when
the loop group action preserves infinitesimally the topological charge
finite end equel to 1t .

To this end we derive some necessary formulsas, Let (J,W, e Ef
‘and W(O’e W be the corresponding canonicsel initial condition. Then
1t helds k(x. ) = a k(X3 Ty ana dk(y,z,o 0; T) = 0 for k>1.

Use these relations to get

]
&0y = - b a0 yzmy 22w y,2,0) -

po .
- w(07(y,z,1{) Z_ﬂ dfts:)'(&z -}(y;T) (',1)3

where by definition d(o)(y, z;T)= k(y,z 0,03;T) . The infinitesimal -
canonical gauge transformation (T.W,0) + ¢ 6‘1{(‘1') r—
(J,W, W) +£8%0 1), ¢ - infinitesimal, tekes the form I TeCesTat) =

1 +g : dco)('z,-z Tyt (-t) (mod £ ) . The t-instenton canonicsl

initial conditions depend on four peremeters w,vea,l € ¢ , (@, 8) #

(0,0, Wc Nyez2) = 1 + Af1+¢g)'1(1-1¢)] , where X =
y ~-¥fz
(:¥+Iz)(4—y*ﬁz-ay+tz),¢- ~uz , fo =Ty ¢ Vz . We

obtain (k1)
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k-1 L k-2
¢

(0
4, (1) = IX,T1 - (k=1) XTX and
k 1+¢U’ - {1+¢q )2 b
age
é‘ém(r) = - e S (149} [X,T] - k XTX3 +

144622 (1= 2 9)
A et
e e (-2 9X.TYT - 2k xTVRD
(+45) (1~ 2672 4o ¢
Since SéO)(T) € sl(2,(y,z ¥°2) , the infinite seriea

E:;:1 éiO)(Tk) = 692(7) nekes sense in the realm of formal power
geries. The 4 - dimenslonel tangent space st the point wéo’ &
M2,1Y C % cen be obtained by veriaticn of the parameters u,v,a,é .
Camparing homogeneous terms of the formal power series, after rather '
straightforward considerations we arrive at the following conclusion.
Provided 4" is nonzeroc the vector field SCO’CTj is tsngent to the
manifold M({2,1) only in the points corresponding to the persmeters
uv=v=90,40,f§& - erbitrery, and only in the cese T, = 0. The
vector fields 5§0)(T) . k22 , venish in these points end hence the
vector fields Ek(T) s k22 , sre tangent to the fibres of the pro-
jection P, The corresponding infinitesimal cenonicel trensfore
mation is T.(§,7.k) =

1= e{LY,TIL+ ¥r'y} («pF?  (moa ), ¥ = X|yag,z=7 *
8. CONCLUSION

Further idvestigation of the restricted canonicel initiml eondition
nay render a new description of the modulil speces @M(r,cz) E M(r,cEL

We ©hoose the homogeneous coordinetes €21,23,24) on H0 = "
The restricted csanonicel trensition function Gres =
-] e 3 c=Fy~1 c g 3 c=3F =1
1+f23+;{?sjz1 gy ) (z4 +§;-‘1tjza z, V) x
[ g . .
J*k _ c-j cwk
% j,F_;';‘ Six % Z, z,

defines & holomorphic vector bundle F over Eg‘\JA, with M being
the discrete set
¢ j,e=3_, ¢ i, e=3
z3+zsjz1 Z, “24+thzf z, =0,
The first question neturally erising is: For which velues of the pae~
rameters (sj,tj,sjk) ere the singuler points removeble in the senass

that tx¥F is s locelly free rank-r sheef on P° with
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Lo EQ‘\JL S P2 being the embedding end . T being the sheaf of
germs of holomorphic sections in F 7 For such velues it ts further
necessery to compute the second Chern class ¢,(F) . Let E’zc [sz [P1
be the blow-up of Ez st the point z, =z, = 0 ., Then
ﬁ1pr2*pr1*'?T-1) is & sheaf on P1 = P((ei'e3)) with the support
contained in the discrete set z.% + E:Sﬁ zt‘-J z:sc-:| 2 0 and the
sum of dimensions of the stalks over these points equels to c2(F)
(c¢f. [103,Chp.II). We ask for which velues of (sj,tj,sjk) the in-
equality c2(F)£c holds. Having performed this progrem we hopefully
obtain & descriptiom of the union UkéCGM(r.k) as & stratified

algebreic set,
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