


1. INTROCUCTION

Undoubtedly the Aheronov-Bohm (AB) effect [1] helped to understend
more deeply the geometric nature of gauge fields. Going in this way
Wu and Yang [2] generalized the problem to non-Abelian gauge groups.
The AB effect with the SU(2) gauge group on the punctured plane wes
elaborated by Horvethy [3]. But the calculations become much more
complicated for more than one sources of the gauge field (solencids)
A general scheme to attack this problem was proposed by Sundrum and
Tassie (4] and by Oh, Soo and Lail [5]. The main trick is tc use the
universal covering spece technique originally developed by Schulman
{6] in connection with the Feynmen path integral on multiply connec~
ted spaces,

In this paper we consider e non-relativistic quantum particle
moving in an external gauge field with the flux concentreted in two
infinitelly thin parallel solenoids. In the idealized setup the con-
figuration space is the double punctured plane M= 82‘\{e,b} and
the geuge field strength Eay = 3’. kK, - 9,, A‘, + [ANAV] vanishes on
M. The gauge group is allowed to be non-Abelian snd without leck of
generality we can regerd it to be U(N) , N =1 ., The basic tool
having been applied is again the universel covering space technique
though the Feynman integral is not considered at all. This approach
enables us to express both the Green’s function and the propagator in
the form of infinite series the convergence of which is much mare
easy to prove in the former case, But the both objects are closely
related by the Laplace transformation
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2., QUANTUM MECHANICS ON MULTIPLY CCNNECTED SPACES

with very general assumptions it cen be shown [7] thet, up to equi-
valence, all gauge fields Ay with the vanishing field strength
Fav = 0 on some configuration space M are in one-to-one corres=-
pondence with unitary representations U of the fundamental group
T = A (Myxpep) : for each homotopic class [p1€T 1t holds

verpar! = p exp(-fr A, ax’)

where the fixed reference point Xpor is the starting and the ter-
minating point of the closed curve f . The group multiplication in
T 1is defined as follows: 161 = [3‘1*?'2] , Wwhere 7).
means that the curve 1‘2 follows the curve 7‘1 B

The quantum mechanicael description can be done in at least three
equivalent ways., The most usual one is to choose the Hamiltonian
equal to -(1‘)2/2,44) (o + A) end acting in the Hilbert space of ¢M-
valued wave functions on M , The second possibility is to use the
universal covering space W . The discrete group T acts on M
from the left and the quotient T\M coincides with the original
space M , The Hemiltonien #. = (& /261\)ALB is defined in the
Hilbert space KU consisting of CN-valued wave functions on M
which are required to be U-equivariant, i. €., HY(8.x) = U(g)fy(x) R
€T . The Hermitian product in :f is defined

At = [ peot e even

Here ALB designates the Laplace:Beltrami operator, dV(x) desig =~
nates the Riemenn measure on M and D is an arbitrery funde-
menatel domein, i.e., such an open connected domein in M for
which the sets g.D, g€T , ao not 1ntersect each other and their
union covers W up to a zero measure set. We note that the Riemann
metric is naturally trensferred from M to M end the left
ection of T on M preserves this metric and hence the measure
dV  as well. The third possibility is to fix a simply connected fun-
demental domein DcC M « Then D is projected one~to-one onto
an open simply connected set MXNL, with L being a cut
in M, dimL = dim M - 1 . Now the Hemiltonien is R = =(h°/2pM)A
acting in ¥ =, (M eV »dV) , but its definition entails also the
boundary conditions on L . Cleerly, the trenscription from the
second description to the third one is rather straightforward. The
presented results will be given in the third formulation. .
Suppose we know the propegator ﬁ(t) for the free particle

on M¥ . Tt is worth to emphasize that in this cese wawe functiens
and the propagator are scalar and the integration in the Hermitian
product is over the whole spsce ¥ . The Schulmen’s Ansatz (genera-
lized to non-Abelian gauge groups) enables us to compute the prope-
gator KU(t) in the second formulation (x, X, ei:

Kpexyxg) = 2 U ) Ry(gx,x) . (2)
germ

Manipulating formelly the infinite series KU(t) is easily checked
to fulfil all the basic properties. The propagator K(t) in the
third formulation is obtained as a restriction to the fixed funde-
mental domein, Kt(x,xo) = Kg(x.xo)l DxD .

3. THE 1-SOLENOID CASE

The t-solenoid example provides us with en inspiration epening the
way to the more complicated 2-solenoid cese. We shall discuas it
shortly from this point of view. So M = [Rz {o} , the fundemental
group T' ¥ 2  hes one generator 8o which 1is chosen to be the
homotopic cless of a simple positively oriented (counterclockwise)
curve containing the origin in its inner, Then U(go) a exp(2ario) ,
where ‘ o 1is 8 NxN Hermitien matrix unembiguously specified by
the condition 0<o<1 (i.e., all eigen-values of o~ obey these
inequalities)., The cut is chosen to be the positive x~halfaxis,
L={¢x,00; x>0}. The Hamiltonian is defined /= -(‘52/2411)13.

on [R°\L together with the boundary conditions on L written
in the polar coordinates (r > 0 , ¢ € %,T) ) e

ez«id-

(x50 = Y0, 3 pr a0 = Y e 0

The universal covering space ¥ is R, XR , i.e., the engle
¢ is allowed to take any real velue. We cen complete ¥  with one
videal® point A for which r =0 (¢ is not specified). This
point cen be achieved from each point of ¥ by a free classical
perticle in a finite time, i.e,, it cen be connected with eech point
from M by a geodesic curve of finite length, There is enother
peculiar property of M. Two points X, X, € ¥ cen be connected
by a finite geodesic curve only if |¢ - ol <% . Put Xix,x) =1
(resp. 0) provided the points x, x can (resp. cannot) be

, (3
connected by a finite geodesic, Then by definition % (A,x) =1 for

all x é"\l‘ .



Put

Z,(x,x.) = ML) Xz, x.) —S exp[ 1 a1st?
v 70T omifit ol 2Kt ©xe) ] 3

where (@] is the Heaviside step function. Since we know a com-
plete set of normelized generalized eigen-functions for a free
particle on M , {(mﬂ)’1 iy {Pr/A) e“’";-vem, P>0 } , we cen
compute for t>0
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x eu\\RQ( 8)/2ht , (1)

= 2 »
where §=¢- ‘Pu’ R(s)=r2+r°2+2rr°ch(a) .

.

For three points x1,xz,x3 € MU{A} such that X,(x“xz) =

X(x2,23) = 1 and for two positive times t1, t2 we put
) -8 ()
taty A \fxeiu  B+¥+iu J (5)

where @ = 4’_1:1x2x3 (the angle is oriented, i.e,, 0 1is defined
including the sign), u = 1n(t2r1/t1r2) and ro= dist(x,,xz) ,
Ty =‘dist(12,x3) . Using the substitution

s = In(tr /tor) , ds =t 5t vt -t) Fap Fey (2 ey at at,,

we can rewrite

a4 X,A,x
KX = Zy(x,xo) + ] atyaty Gty +tet) ¥( ;1:t:>

X z,_1( x,4) Z‘o( Ax) . (6)

The Schulman’s Ansatz leads to the correct result in the third for-
mulation
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Ky (X,x) = { expt2uia) A -
° o ifit
exp(=2%ict)
o0
_ 8in aa Ids & eic""z‘ oy /oy e-O(8=1d) -
Ty 2wifit R

where the value in the composite brackets depends on whether

§=¢ - ¢, belongs to the intervel (~) or (¥,2%) or
(=2%,=9t) . Having performed the Laplace trensformatton (1) we get
the Green’s function (z ¢ R, , K,(X) 1is the Macdonald function)

1

Gz(x,xo) = 4 exp(awiot) Kotwlx-xol) -
exp(-2wig)) T
oo
~ol(s=1§)
- E%E I ds—‘u—E Kolw R(s)] — . (8)
- XA 1+ e-8*id

w=\/-2rz/‘n , Rew >0 . (9)
4. THE 2-SOLENOID CASE

Let us now turn to the 2-solenoid case, Spo M= IR2 \{a,b} .
We choose the coordinate axes such that a = (0,0), b=(p0),
p= le=b} >0 , and the cut to be & union L= LaU Lb of two half-
lines lying on the x-exis: L, = {(x,0) ; x&0},
Ly, = {(x,0) ; x>9} . We shell need two polar coordinate systems
with respect to the centres a and b . The engles are again
counterclockwise oriented and ‘Pa’ tpb € («%, ). The velues

P =t9 (resp. (’b =19 ) correspond to two sides of the cut L,

(resp. Lb)' T is the free group with two generators ga, gb
corresponding to two simple positively oriented curves winding round
the point & (resp. b} end with the point b (resp. a)
lying in the outside., The universal covering space i results
from the infinite process of patching together countably meny copies
of the typical sheet (fundamentsl domein) D =lR2\ I, . The boundary
oD consists of four halflines (two sides of Lg and two sides
of Lb) end of four points: a, b and two times o (reached
from the upper and from the lower halfplane). This fact will be
emphasized in the notation: D = D(e,®,b,w) . Each sheet is patched
together along four halflines with four other sheets. " is again



completed with "ideal” points which now constitute a union Au B .
The countable set W (resp. B) is projected in the point =@
(resp. b).

The function X%X(.,.) retains its meaning. But it holds never
more that X(C,x) =1 for sll xe& M provided celduB ,
For example, let A€ R . Then the set of points which can be
connected with A by a finite geodesic is a union LJDj , Di =

D(A,oo,Bj,oo) s 3= ceay=1,0,1,2,... , eand 83-65?; ’ dist(A,Bj) =p .

The domains Dj are erranged in "spiral stairs”™ centred at the
point R, DJ is patched together with D'j-T and Dj+1 .
Put  U(gy) = exp(2«xia) , U(g,) = exp(2wig) , 0<£d,p< 1 .
The Hermitien matrices &, 4 eare not constrained with any other
condition. The Hemiltonian is defined H = -(ﬁz/zﬁa)z; on IRZ\L

together with the boundary conditions on the halflines La » Ly @

e29!1d-
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¥lg Ngyeose + 90 Y lgon = ™ % ¥y on - (10

Now we cen guess the form of K(t) . The symbols Z{t) , V(..)
defined in (3), (5) retain their meaning. For t>0

'}:('t(x‘,xo) = r,nzzo Wa(1iX,X,) )
wp(tix,x,) = mJnﬂ dt ...ty 8t s...vt -t) v(t 'T""o) X
x 2, (%,C) 2, ¢ CpsCpoy) ve Zy{ Opi%g) 5 1)
W) = v(ontem) (oo
n 0 n' ~1'"n2
v(c2'c"x ) , (12)

ity

V=1 for n=20 and the sum is over all piecewise geodesic

curves f: X = Cp &= ... —C, & x y With the inner vertices

(]
c;€AUB , 1< 5 <n, such that a1st(Cy4,C4sy) = P, 1€ § S n-t,

To simplify notation we put where necessery Co T Xy cn+1 =X,
Treating formelly the infinite (countable) sum we can verify
the equality (x - fixed)

2
(11 Sa: + :—‘M 8 5) A Ryx,x ) = 11 8(1) Sx,x) (13)

where the Dirac-type generalized function Sﬂ is defined by the
relation S'M’ Sﬁ(x,g) @P(E) AV(g) = ((x) . Indeed, the equality (13)
results from the fallowing relations:

1im Z,(X,x ) = de(x,x ) lim w_(t;x,x ) = 0 for n>1t
to v ool T OHTRET el Tt %o (14)

end for ¢t >0, x, = fixed ,

, .2
(1_2;2 & A L) W (tix,x,) = -;)-_-ﬁ[wr(‘) S3p¢c )] -

2
- [—ﬁ; "T‘”] é-alaccn) * Sﬁ[ Ty (V) gbn‘cn-r‘cn)] '

2
t[&=w,()]| & . : (15)
[33 T ] 2D(C,_; ) :
where g’ X «=Cp_, € ... «C, & x, , D)) = -

{xe¥l ; ACc ,x) =1} , 2D(C _,;C ) 1is thet part of the boundery

aD(C _.) which consists of two halflines with the common vertex

C, end 2/0% 1is the normal out'.er derivation. ) 5
Let us now apply the Schulmen s Ansatz. Let D=R°\NLCM

be the fixed domain, X5 X €D ., We have to sum the contributions of

all piecewise geodesics g.X € Cn — .. €& C1 —x, ,8E€ r,

with the weight UCg™') . The possible values of the angles gj
at the inner vertices C, sare 08 = - ¢ + 2xk , 0, = 2vk, ,...
cey By = 2%y, B, =@ mk , Ky €Z , and

k k
g=g' ...g, "
where g; = g, (resp. g ) provided Cjéoa (resp. B) . Let
Ka(t) designete the i1-salenaid propagator (7) centred at the point
a with the cut L, » U(ga) = exp(2«ia) . Kb(t) is defined si-

milerly, Ko(t) is the free propagator on the plane., Then for £>0



b 0
Kt(x,xo) = K:(x,xo) + Kt(x,xo) - Kt(x,xo) +

00 )
dt dt
NIV S SR i U eI TSR R
2eih  Yynz2 0 tn 0 t,
r 2 r 2
x exp{m(—n-"' ves * —"-—)} Sp(sipe) (16)
2n\ ¢ ty /.
n
SRCH AN sinwg "7l sinwg " One o
8i¢ = =51 o el
T ° * } +e 0 4 { + e on-1
sin G, 9-0'252 sin X0, e'G—t(sT"i%)
oo —— s =Ty an
1 +e 2 1 +e
. <3< - (18)
sj = 1n(tjrj_1/tj_1ra) s, 1£jJ&<n

where T4 = ,°j+1 - el 0<£3j<n, end (rn,l/) (resp.
(r(!’%) ) oere the poler coordinetes of x (resp xo) . with rese
pect to the center Cn (resp. c,) ; the sum is over all finite
sequences T = (e ,...5¢)) , Cj€ fe,b}, e A iy ar:d 65 = d
(resp. A) provided c; = & (resp. b) . Ageln ¢, = X, ,

Cppg =X ¢ The substitution (18) together with the relation

-1
als = t 8 r...rtpmt) fE)) .. ey (enety) at,.-.at
enables us to rewrite

: 0
Ky (xyx ) = K:(x,xo) + K:(x,xo) - Kt(x,xo) +

st S r | eiﬂ%wvm S.(8ihfy) » (19)
2wifit f,n22 st r
where
R?\(s) = (v + r1es‘ + ...+ IR D
X(r, * z‘1e-s1 P rne-s‘-“'-s") . €20)

The Laplace transformation epplied to (19) gives the Green’s
function

a
Gz(x,xo) = Gz(x,xo) + Gg(x,xo) - Gg(x,xd) +

+ L

- n n . :
R fame (=1) mfn a’s Ko(w Rr(s)) sr<s,</,¢°) . 2n

Starting from (16) we get enother form

= nB b
Gz(x,xo) = Gz(x,xo) + Gz(x,xo) - Gg(x,xo) +

.

T =" | a™ k,_(wr) X
akl Fnze Efn 1t ™ n

e WO) ceee
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Kic'c1-'r2)(w§°) K_i,t1(wro) TT(TW'%) y (22)

where
T
sin(we) e¢ n sin¥c _,
T T oo =
sin ?t(cnc'i‘l;‘)] sin[‘!(G’n_l-"i'L;lq)]
sin¥ G, sin(%g,) e- °'L—'
2 1 . (@23

x sin[?!(czﬂ'l‘z)] € sin[‘Tt(c'1 +1‘t‘1)]
5. CONCLUDING REMARK
One cen verify directly the besic properties of the Green’s
function (x, € RENL fixed) :
(1) ( (ﬁz/Z,fl)A + z) Gl XX ) = = Six - x,) on [RZ\L

1) wyx) = GzLx,xo) satisfies the boundary condition (10) on L ’
*
11D Gz(x,xo) = Gitxo,x) .

This can be done owing to the asymptotics
K,(2z) = Va/2z e [1 + O(z-1)] for 2z —»o00,
lerg 2| < 3W/2 . In the Abelian case one cen use the expression (21),

the identity
%0

j o (1 + e %) g5 = x/ginxe

-00 ’
and the estimate

0<6 <t ,

cha) 2 To+ Ty * eeo * T Tr, e+ (n=1¢



In the non-Abelian case one can use the expression (22) and the
estimate :

flsin %0 / sinfw@+am)Il o W < 1/ehaT
c H

But now the properties (i = iii) are proved only for |zI large enough
In this case the order of multipliers in (17), (23) is essential.
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