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The importru1ce of studying conditions for localized solutions 
(solitons and instantons) to exist in non-one-dimensional Heisenberg 
models (three-component 6 -models) is determined by wide using of 
these models in the condensed matter physics (see, e.g. f1,2J) and 
contemporary field theory [3]. In papers C4,5] Heisenberg models and 
their localized solutions are considered in order to explore possible 
mechanizmo of high-temperature (HT) superconductivity. Note that due 
to the ru1isotropy and layer structure of the HT-superconductors (see, 
e.g. [6]) the investigations of two-dimensional (2D) anisotropic Hei
senberg magnets seem to be of special interest. Unlike the case of 
2D isotropic model [7] in anisotropic 2D magnet with the Hamiltonian 
density 

;Jf = <X.2 ( cJ, ~a.)2- + 'Jl,2 {:J a) 
(1) 

l=t2 , a=t2.,3 , ~~o , ~=to , 
otationary two-dimensional solitons canno'i; exist. This can be shown 
by Derrick's scaling transformation method (8] (see below). For the 
stable stationary solitons to exist in 2D anisotropic and 3D isotro
pic Heisenberg models they should be completed by stabilizing terms 
with higher degrees (a fourth ones, for example) of space derivatives 
in ti1e Hamiltonian density (see [9,10,11] and references cited there
in). Such terms appear when the short-wave Pomeranchuk fluctuations 
are taken into account [4] or if one considers the lattice models 
with not only nearest but with next-to-nearest neighbours interactions 
too [9] • In this Letter we study stationary solitons in the 2D ani
sotropic magnet with the simplest form of th~ fourth order term, 
'Jf:3= (2.(c,l1,o. ()i 1~~ and the".easy-axis" anisotropy (see [1]). 

In this case the Hamiltonian density has the form: 

:H.= 1{i +1{2. + 'Jl.3 = cl~(o,jal+ }.2wi20 +((q~a~, ja.)2 (2) 

here 0( , j3 , d are constants, 0 is an angle be::een t~ positive dir
ection of the "easy" axis and.the unit vector :S(:lt), j=(~t :S~ j~ , 
':l O . - > - ...... "i =-ox;, L =1,2. The system (2) has ':!? vacuum states, -:S(~)=10=:te3 , 

with 1(,jO for them, K=1,2,3, here e3 is the unit "easy" axis vec
tor. We call a soliton such a continuous localized excitation of the 
vacuum state (choose '::t= e,'; for definiteness sake) which is a solu-
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tion to equations of motion and has a finite energy 1-1= j:J( J2x . 
Stationary solitons satisfy the equation f~ =0. Stable solitons 
should correspond to functional JI minima. 

Continuous localized distributions 1a( X, ) , '!;a( oo )= j: , 
are divided into classes with different topological charge Q values, 

where Q is the degree. of m'lpping -!/( X, ) of R ~omp, compactified 
by the boundary condition ,t'(oo )= j: , to unit sphere 5 2[1, .3, 12], 

Q _ 1 Jc c aBc q -::i C -::i cd2 
- 81f c..lJ< c;;. ,j "i :S v I<' :S X 1 (.3) 

l, K =1,2, a,8,c ,=1,2,.3. 
For distributions :{'ex,) with I Ql~1 the following inequalities 

are valid: 

HK>o, K=1,2,.3 , HJ<= J ";lK d2x 
(4) 

H = H1+ H2 + H3 > o. a 
. Perform the scaling transformation '!,a ( Xi >-1 ( ). Xi ) . 

One can see that then H1 (1)- J./1 (1), H2 (1)_A_2 H2. (1), 

H3C1)-..A.2 H3(1), where HKC.A) = j-;Jll<[-1Q(AX, >Jd2x . 
It is necessary for stationary soliton existence that~ =0 at 

~ =1, as for I A -11 << 1 scaling transformation g:!.ve rise .to small 
variations of distributions j 0

( X,·). Hence we get for stationary 

solitons 

1-12 == 1-1$· (5) 

It follows from (5) that the 2D stationary topological solitons can

not exist in : i) isotropic magnet ( 'Jf~= 0) with nonzero '1{3 te_rm 
( '}{ -¢. 0) and ii) anisotropic magnet with 1(2 ?:: 0 ( independently of 

3 ~ . 
anisotropic type) and d'lJ=O, i.e., without stabilizing terms. 

. ..... ~ 

__,_ Intro~uce dimensionless variables 't =( X4 , 'jd )= ci.-J.} R 
R =( X, 'J-), then Eq. (2) takes the form : 

'J( = ,2, [ (ol~a/+~20 + p{o,j"- O, ~12.)'2], . (6) 

~ o ~ o R2 2 '-'t 
where "'J. = 'i>Xd ' "a = o~ ' p = .r ( 0( 

In the model (6) the existence of nontopological ( Q =0) stat-

ionary solitons 
~, = -$,in 0 , 

of the form 
2. s e -;S=O, d= (,Q.! 

,-2_ 2 .i 
·c= Xd+ 'Jd, 

0=9 ('t), 
(7) 

is not excluded a priori. For distributions (7) 

2 

Jl(xd., tµ)= J/('l)=p2[ (r!J:)2+1,iJt20+p (#I:)'']· (8) 

Varying (6) o.nd settill[; aH =0, we get the equation for aoli

ton function e6 ( 'Z ) 

f:Jfi+6p(J~)2}+{1~[1+2p(-/J/j-Me c.,J 0=o c9> 

vrhich beine completed by boundary conditions ~f (0)=0, /J (oo)=q, 
determines the boundary problem. Using the expansion of {)j ( 'l ) for 

small 'r, 

6)$ (t) = Ca -I- Ci, t2-+ O('l:l) ( 10) 

we get from Eq.(11) 

C2 = { 1,i;t Co· c.c-J Co · ( 11 ) 

The search for solitons was accomplished by "shooting" method, 

usine . ( 1 C) and ( 11 ) • The value of the parameter p was varied at the 

whole interval (0, 'Jr), but curves e ( 'l) which have been obtained 

by numerical solving of Eq.(9) do not satisfy the condition 0 (00)=0, 

if O < C'0 <1( . Thus, in the model (6) as well as in the previously 

considered [11] model with 'Jf'2 = .f,2~tt?·0, }{3 =tZ[(q_~ctOlj0.)2:_ 
- (oc ~R- oj ~ ll-).2] , non-topological solitona do not 

exist. 

In order to obtain topological ( I Q I ~ 1) localized solutions 

:!/\Xi) we use the well-known ansat:,; [1, 12] 

1.i= ~'1. 0 COlf 1.Z.=c- wi.{)-Wt.X -;S3::: C01 0 
.I /- I I 

J = m If, c12) 

0-=0('i), 0(0) =Jr, 0(00)=0, 

where :Xd = 'l COj 'f , fl d = 'l,. Wt. 'f . 
Topological charge of distributions (12) is expressed by the 

formula [1] : 

Q = '; [C&l 0{oo) - CoJ 0(0)} = m. (1.3) 

The ansatz (12) with m =1 makes it possible to find out the 

functional J-/ minimum in the class of localized distributions 1«(X.) 
with Q =1. Note that the Hamiltonian H of the model (6) is invart

ant with respect to the group G = S0(2)s®S O (2T (indices S 
and J meo.n the apace ( Xt ) and isotopic ( 1") variables). now we 

can separate the subgroup G1 C G , G1 =di<l.JJ[ S0(2)s®S0(2)z}, 
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with the coinciding transformation parameters of SO (2~ and 

SO (2)i groups. In other words, G
1 

may be defined as a group of 
transformations [12] 

!"(x) - R.3 (o<) 3" f f 1(cx)xJ, ( 14) 

- - o3 where X =( Xd, ';fa)=( 'l , 'f ) , 9 ( (){ )X. =( 'Z. , 'f + ex ) , and ,..._ ( C( ) 

is an operator of rotating through the angle 0( about the third iso

topic axis. The fields ja.(Xi) of the form (12) with m =1 form a 

set M1 of the fields invariant under th~ subgroup G1 , the topolo

gical charge Q of these fields is equal to m =1. According to Col

eman-Palaia theorem [12-14] the extremum of the functional H over 

the set M1 of the invariant fields with Q =1 is the extremum over 

the whole set of the fields ~ Q ( ::Ci) with Q =1. Thus, the use of 

the ansatz (12) v1ith m =1 permits one to find solitons with Q =1 

in the model (6). Unfortunately, nowadays there is no effective well

grounded ansatz for solitons with IQI > 1. But note that the ansatz 

(12) for all m = Q describes distributions of the energy density 

1{ ( X,) which- are independent of _the angle 'f : 
'11 2J1de)2 llt . VI . 2. .rrde)z m2- . z , -,z l odz)=j Ilcfz + z-t ~-c::,+iin. 8+PL\7fi +¥1,-Ut 0J J <15) 

Varying (15) and setting JH =0, we g~t that ii:{ the case IQl>O 
the functions (} ( 'l ) is a solution to the boundary value problem 

< Q =m) 

1:~Ji + Gf{1£-/+2fm2~;eJ+ 1~ [!,_ +'f-{;:/-2pmz~/e + 
t (16) 

2 2..wi.0CC10 deJ . e 1"11111'2.. .1\ 2 .t.-,1w30 "' + pm -- rf.i ___ a~ - Wt_ £.9j 17 ( fi" -,. L)- pm _,.,.,_,f 'i-~ == 0., 

0(o)=tr, 0(00)=0. en) 
For small 'l the solutions 61'"( t) to the Eq. ( 18) at a given fl1. are 

described by the expansion 

0m('l) == 'J[- cm tm+o(z'") ( 18) 

which was used for a numerical study of the problem (16),(17) solu

tions by the shooting method, Functions 0, ('Z) of solitons with 

0=1 ( /11=1) and functions q('l) of localized distributions with 

Q =2 ( m =2) have been found by c?mputer for various p values 
(see Table). 
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T ab 1 e 

p_ ~ lz1 C2. A2-
10-6 62.64 25,27 3570 50.J8 

10-5 32.56 25.54 110.J 50.61 

10-4 16,53 26.25 34.23 51.35 

10-J B.116 28.12 10.52 53.61 

10-~ J.879 32.93 J,225 60,37 

10- 1.853 45,69 1.0145 BO.JS 

0,9205 82.21 0,3459 140,8 

20 0,4026 261.2 0.1034 443.2 

500 0, 1758 1178 0,03466 1998 

The table contains values Cm Cp ) , m =1, 2 which characterize 

the solutions to the problem (16),(17), and dimensionless energy 

hm =<:1..-J /-I [ 0,,. (7.)] values of corresponding localized distributions 

~<l(Xl). 

~l ~ 
7( 'Jt 

i t 
0 IO 20 50 30 

Figure 1a Figure 1b 

Functions 01 ( t ) and 02 ( t ) are presented in Figure 1a and 

Figure 1b; the characteristic radius of these solutlons increases 

_monotonously with the growth of p , O<p< oci • The investigation of 

numerical results !or small p shows that the half-width Rm of these 

solutions defined by equality 0m ( Rm>=[ is proportional to p0
1tt, 

Of:::::: 0.27 cR.,~ J.B • 10-2 for p =10-6 , R2~0.46 for p =10-2 ), 

[ 2 ~ 0.25. The dependence h,<p) for solitons with Q =1 is pre-

\s 
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sented in Figure 2. For mnall p 
it may be described by the form-
ula 

h.JJpJ~ 8n:+ Bp-a: :e~o.12.., 

B= eon.a. ( 19) 

Using (19J and the relation
ship R,,J. OC p 1 , we get for sol
i tons of small radius R1 <<i , 8 ., 

li1.. ~ 81['+ tJR, ., 
o' ~,d. 5., fJ = eond. 

(20) 

. Note that for all p values (see the Table) the inequality 
h

2 
< 2 Ji, is valid, that is for all e, considered the existence of lo

calized distributions ~ 0
( Xi) with t:2=2, possessing energy less than 

the double energy of solitons with Q =1, is sho\m, Hence, the forma
tion of the bound state of two solitons \vith Q =1 is energetically 
favourable, We hope that the solitons with minimum energy in the Q =2 
sector will be obtained in the course of further investigations. 

In conclusion we would like to discuss the· relation of the solu
tions obtained-for the anisotropic magnet with Belavin-Polyakov soli
tons in the isotropic magne~ [7]. Note that for solitons of small ra
dii, RSol << 1, that is for P.._<< 1 the terms ~ and~ are small 
as compared with ~ [1, 10, 11 J (in fact ~~p-2.r,.. , Jl2, ~p 0 

, 

'J{
3
~fi-Ltrm~p0

), so aspiration to develop for the model (6) the 
perturbation theory in small p with Belavin-Polyakov soli ton_s being 
the solutions of the zeroth approximation is quite natural [10,11]. 
But this program meets essential difficulties related to the diver
gence of the "easy-axis" anisotropy energy integral on Belavin-Polya
kov solitons with Q =1 [15] ! 

The authors are grateful to B,A,Ivanov, B,G,Konopelchenko, 
V,E,Korepin, A,M,Kosevich, V,G,Makhankov, A,S,Schwartz, V,E,Zakharov, 
E,P,Zhidkov for useful discussions. 
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