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The importru1ce of studying conditions for localized solutions 
(solitons and instantons) to exist in non-one-dimensional Heisenberg 
models (three-component 6 -models) is determined by wide using of 
these models in the condensed matter physics (see, e.g. f1,2J) and 
contemporary field theory [3]. In papers C4,5] Heisenberg models and 
their localized solutions are considered in order to explore possible 
mechanizmo of high-temperature (HT) superconductivity. Note that due 
to the ru1isotropy and layer structure of the HT-superconductors (see, 
e.g. [6]) the investigations of two-dimensional (2D) anisotropic Hei­
senberg magnets seem to be of special interest. Unlike the case of 
2D isotropic model [7] in anisotropic 2D magnet with the Hamiltonian 
density 

;Jf = <X.2 ( cJ, ~a.)2- + 'Jl,2 {:J a) 
(1) 

l=t2 , a=t2.,3 , ~~o , ~=to , 
otationary two-dimensional solitons canno'i; exist. This can be shown 
by Derrick's scaling transformation method (8] (see below). For the 
stable stationary solitons to exist in 2D anisotropic and 3D isotro­
pic Heisenberg models they should be completed by stabilizing terms 
with higher degrees (a fourth ones, for example) of space derivatives 
in ti1e Hamiltonian density (see [9,10,11] and references cited there­
in). Such terms appear when the short-wave Pomeranchuk fluctuations 
are taken into account [4] or if one considers the lattice models 
with not only nearest but with next-to-nearest neighbours interactions 
too [9] • In this Letter we study stationary solitons in the 2D ani­
sotropic magnet with the simplest form of th~ fourth order term, 
'Jf:3= (2.(c,l1,o. ()i 1~~ and the".easy-axis" anisotropy (see [1]). 

In this case the Hamiltonian density has the form: 

:H.= 1{i +1{2. + 'Jl.3 = cl~(o,jal+ }.2wi20 +((q~a~, ja.)2 (2) 

here 0( , j3 , d are constants, 0 is an angle be::een t~ positive dir­
ection of the "easy" axis and.the unit vector :S(:lt), j=(~t :S~ j~ , 
':l O . - > - ...... "i =-ox;, L =1,2. The system (2) has ':!? vacuum states, -:S(~)=10=:te3 , 

with 1(,jO for them, K=1,2,3, here e3 is the unit "easy" axis vec­
tor. We call a soliton such a continuous localized excitation of the 
vacuum state (choose '::t= e,'; for definiteness sake) which is a solu-
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tion to equations of motion and has a finite energy 1-1= j:J( J2x . 
Stationary solitons satisfy the equation f~ =0. Stable solitons 
should correspond to functional JI minima. 

Continuous localized distributions 1a( X, ) , '!;a( oo )= j: , 
are divided into classes with different topological charge Q values, 

where Q is the degree. of m'lpping -!/( X, ) of R ~omp, compactified 
by the boundary condition ,t'(oo )= j: , to unit sphere 5 2[1, .3, 12], 

Q _ 1 Jc c aBc q -::i C -::i cd2 
- 81f c..lJ< c;;. ,j "i :S v I<' :S X 1 (.3) 

l, K =1,2, a,8,c ,=1,2,.3. 
For distributions :{'ex,) with I Ql~1 the following inequalities 

are valid: 

HK>o, K=1,2,.3 , HJ<= J ";lK d2x 
(4) 

H = H1+ H2 + H3 > o. a 
. Perform the scaling transformation '!,a ( Xi >-1 ( ). Xi ) . 

One can see that then H1 (1)- J./1 (1), H2 (1)_A_2 H2. (1), 

H3C1)-..A.2 H3(1), where HKC.A) = j-;Jll<[-1Q(AX, >Jd2x . 
It is necessary for stationary soliton existence that~ =0 at 

~ =1, as for I A -11 << 1 scaling transformation g:!.ve rise .to small 
variations of distributions j 0

( X,·). Hence we get for stationary 

solitons 

1-12 == 1-1$· (5) 

It follows from (5) that the 2D stationary topological solitons can­

not exist in : i) isotropic magnet ( 'Jf~= 0) with nonzero '1{3 te_rm 
( '}{ -¢. 0) and ii) anisotropic magnet with 1(2 ?:: 0 ( independently of 

3 ~ . 
anisotropic type) and d'lJ=O, i.e., without stabilizing terms. 

. ..... ~ 

__,_ Intro~uce dimensionless variables 't =( X4 , 'jd )= ci.-J.} R 
R =( X, 'J-), then Eq. (2) takes the form : 

'J( = ,2, [ (ol~a/+~20 + p{o,j"- O, ~12.)'2], . (6) 

~ o ~ o R2 2 '-'t 
where "'J. = 'i>Xd ' "a = o~ ' p = .r ( 0( 

In the model (6) the existence of nontopological ( Q =0) stat-

ionary solitons 
~, = -$,in 0 , 

of the form 
2. s e -;S=O, d= (,Q.! 

,-2_ 2 .i 
·c= Xd+ 'Jd, 

0=9 ('t), 
(7) 

is not excluded a priori. For distributions (7) 

2 

Jl(xd., tµ)= J/('l)=p2[ (r!J:)2+1,iJt20+p (#I:)'']· (8) 

Varying (6) o.nd settill[; aH =0, we get the equation for aoli­

ton function e6 ( 'Z ) 

f:Jfi+6p(J~)2}+{1~[1+2p(-/J/j-Me c.,J 0=o c9> 

vrhich beine completed by boundary conditions ~f (0)=0, /J (oo)=q, 
determines the boundary problem. Using the expansion of {)j ( 'l ) for 

small 'r, 

6)$ (t) = Ca -I- Ci, t2-+ O('l:l) ( 10) 

we get from Eq.(11) 

C2 = { 1,i;t Co· c.c-J Co · ( 11 ) 

The search for solitons was accomplished by "shooting" method, 

usine . ( 1 C) and ( 11 ) • The value of the parameter p was varied at the 

whole interval (0, 'Jr), but curves e ( 'l) which have been obtained 

by numerical solving of Eq.(9) do not satisfy the condition 0 (00)=0, 

if O < C'0 <1( . Thus, in the model (6) as well as in the previously 

considered [11] model with 'Jf'2 = .f,2~tt?·0, }{3 =tZ[(q_~ctOlj0.)2:_ 
- (oc ~R- oj ~ ll-).2] , non-topological solitona do not 

exist. 

In order to obtain topological ( I Q I ~ 1) localized solutions 

:!/\Xi) we use the well-known ansat:,; [1, 12] 

1.i= ~'1. 0 COlf 1.Z.=c- wi.{)-Wt.X -;S3::: C01 0 
.I /- I I 

J = m If, c12) 

0-=0('i), 0(0) =Jr, 0(00)=0, 

where :Xd = 'l COj 'f , fl d = 'l,. Wt. 'f . 
Topological charge of distributions (12) is expressed by the 

formula [1] : 

Q = '; [C&l 0{oo) - CoJ 0(0)} = m. (1.3) 

The ansatz (12) with m =1 makes it possible to find out the 

functional J-/ minimum in the class of localized distributions 1«(X.) 
with Q =1. Note that the Hamiltonian H of the model (6) is invart­

ant with respect to the group G = S0(2)s®S O (2T (indices S 
and J meo.n the apace ( Xt ) and isotopic ( 1") variables). now we 

can separate the subgroup G1 C G , G1 =di<l.JJ[ S0(2)s®S0(2)z}, 
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with the coinciding transformation parameters of SO (2~ and 

SO (2)i groups. In other words, G
1 

may be defined as a group of 
transformations [12] 

!"(x) - R.3 (o<) 3" f f 1(cx)xJ, ( 14) 

- - o3 where X =( Xd, ';fa)=( 'l , 'f ) , 9 ( (){ )X. =( 'Z. , 'f + ex ) , and ,..._ ( C( ) 

is an operator of rotating through the angle 0( about the third iso­

topic axis. The fields ja.(Xi) of the form (12) with m =1 form a 

set M1 of the fields invariant under th~ subgroup G1 , the topolo­

gical charge Q of these fields is equal to m =1. According to Col­

eman-Palaia theorem [12-14] the extremum of the functional H over 

the set M1 of the invariant fields with Q =1 is the extremum over 

the whole set of the fields ~ Q ( ::Ci) with Q =1. Thus, the use of 

the ansatz (12) v1ith m =1 permits one to find solitons with Q =1 

in the model (6). Unfortunately, nowadays there is no effective well­

grounded ansatz for solitons with IQI > 1. But note that the ansatz 

(12) for all m = Q describes distributions of the energy density 

1{ ( X,) which- are independent of _the angle 'f : 
'11 2J1de)2 llt . VI . 2. .rrde)z m2- . z , -,z l odz)=j Ilcfz + z-t ~-c::,+iin. 8+PL\7fi +¥1,-Ut 0J J <15) 

Varying (15) and setting JH =0, we g~t that ii:{ the case IQl>O 
the functions (} ( 'l ) is a solution to the boundary value problem 

< Q =m) 

1:~Ji + Gf{1£-/+2fm2~;eJ+ 1~ [!,_ +'f-{;:/-2pmz~/e + 
t (16) 

2 2..wi.0CC10 deJ . e 1"11111'2.. .1\ 2 .t.-,1w30 "' + pm -- rf.i ___ a~ - Wt_ £.9j 17 ( fi" -,. L)- pm _,.,.,_,f 'i-~ == 0., 

0(o)=tr, 0(00)=0. en) 
For small 'l the solutions 61'"( t) to the Eq. ( 18) at a given fl1. are 

described by the expansion 

0m('l) == 'J[- cm tm+o(z'") ( 18) 

which was used for a numerical study of the problem (16),(17) solu­

tions by the shooting method, Functions 0, ('Z) of solitons with 

0=1 ( /11=1) and functions q('l) of localized distributions with 

Q =2 ( m =2) have been found by c?mputer for various p values 
(see Table). 
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T ab 1 e 

p_ ~ lz1 C2. A2-
10-6 62.64 25,27 3570 50.J8 

10-5 32.56 25.54 110.J 50.61 

10-4 16,53 26.25 34.23 51.35 

10-J B.116 28.12 10.52 53.61 

10-~ J.879 32.93 J,225 60,37 

10- 1.853 45,69 1.0145 BO.JS 

0,9205 82.21 0,3459 140,8 

20 0,4026 261.2 0.1034 443.2 

500 0, 1758 1178 0,03466 1998 

The table contains values Cm Cp ) , m =1, 2 which characterize 

the solutions to the problem (16),(17), and dimensionless energy 

hm =<:1..-J /-I [ 0,,. (7.)] values of corresponding localized distributions 

~<l(Xl). 

~l ~ 
7( 'Jt 

i t 
0 IO 20 50 30 

Figure 1a Figure 1b 

Functions 01 ( t ) and 02 ( t ) are presented in Figure 1a and 

Figure 1b; the characteristic radius of these solutlons increases 

_monotonously with the growth of p , O<p< oci • The investigation of 

numerical results !or small p shows that the half-width Rm of these 

solutions defined by equality 0m ( Rm>=[ is proportional to p0
1tt, 

Of:::::: 0.27 cR.,~ J.B • 10-2 for p =10-6 , R2~0.46 for p =10-2 ), 

[ 2 ~ 0.25. The dependence h,<p) for solitons with Q =1 is pre-

\s 
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sented in Figure 2. For mnall p 
it may be described by the form-
ula 

h.JJpJ~ 8n:+ Bp-a: :e~o.12.., 

B= eon.a. ( 19) 

Using (19J and the relation­
ship R,,J. OC p 1 , we get for sol­
i tons of small radius R1 <<i , 8 ., 

li1.. ~ 81['+ tJR, ., 
o' ~,d. 5., fJ = eond. 

(20) 

. Note that for all p values (see the Table) the inequality 
h

2 
< 2 Ji, is valid, that is for all e, considered the existence of lo­

calized distributions ~ 0
( Xi) with t:2=2, possessing energy less than 

the double energy of solitons with Q =1, is sho\m, Hence, the forma­
tion of the bound state of two solitons \vith Q =1 is energetically 
favourable, We hope that the solitons with minimum energy in the Q =2 
sector will be obtained in the course of further investigations. 

In conclusion we would like to discuss the· relation of the solu­
tions obtained-for the anisotropic magnet with Belavin-Polyakov soli­
tons in the isotropic magne~ [7]. Note that for solitons of small ra­
dii, RSol << 1, that is for P.._<< 1 the terms ~ and~ are small 
as compared with ~ [1, 10, 11 J (in fact ~~p-2.r,.. , Jl2, ~p 0 

, 

'J{
3
~fi-Ltrm~p0

), so aspiration to develop for the model (6) the 
perturbation theory in small p with Belavin-Polyakov soli ton_s being 
the solutions of the zeroth approximation is quite natural [10,11]. 
But this program meets essential difficulties related to the diver­
gence of the "easy-axis" anisotropy energy integral on Belavin-Polya­
kov solitons with Q =1 [15] ! 

The authors are grateful to B,A,Ivanov, B,G,Konopelchenko, 
V,E,Korepin, A,M,Kosevich, V,G,Makhankov, A,S,Schwartz, V,E,Zakharov, 
E,P,Zhidkov for useful discussions. 
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