


The importance of studying conditions for locelized solutions
(solitons end instantons) to exist in non-one-dimensional Heisenberg
models (three-component Cf -models) is determined by wide using of
these models in the condensed matter physics (see, e.g. [1,2]) and
contemporary field theory [3]. In papers [4,5] Heisenberg models and
their locelized solutions are considered in order fto explore possible
mechanizmg of high-temperature (HT) superconductivity. Note that due
to the enigotropy and leyer structure of the HT-guperconductors (see,
.5 [6]) the investigations of two-dimensional (2D) anisotropic Hei-
senberg magnets seem to be of special interest. Unlike the case of
2D isotropic model [7] in anisotropic 2D magnet with the Hamiltonien

density 2 a2 a
H=a2(0,8%"+ K,(s%
$%4%=1 , (=12 ,a=123 ,d>0 . XF0 ,

stationary two~dimensiomal solitons canno? exist. This can be shown

by Derrick's scaling transformation method [87] (see below). For the -
stable stationary solitons to exist in 2D enisotropic and 3D isotro-

1)

pic Heisenberg models they should be completed by stabilizing terms
with higher degrees (a fourth ones, for example) of space derivatives
in the Hemiltonien derisity (see [9,10,11] and references cited there-~
in). Such terms appear when the short-wave Pomeranchuk fluctuations
are taken into account [4] or if one considers the lattice models
with not only nearest but with next-to-nearest neighbours interactions
too [9] . In this Letter we study stationary solitons in the 2D ani-
sotropic magnet with the simplest form of the fourth order term,
?(3=3"2(a£¢°b‘. 6‘1)2,' and the"easy-axis" anisotropy (see [1]).

In this case the Hamiltonian density has the form :

g(:][ﬁ](z +g[3=uz(a£5°)2+ﬁ‘m26?+ﬁ(a,.s“bt 60')2 " (2)

here O , ’ are constants, 9 is an angle between the positive dir-
—d -
ection of the "easy" axis end the unit wvector 5(.‘12.),, 5:(51) 52' 33) ,

a‘-= ?1' , [:1,2. The system (2) has two vacuum states,?(x»:?—:té;,

with 7‘{"50 for them, K=1,2,3, here E;is the unit "easy" axis vec-
tor. We call a soliton such & continuous localized excitation of the
vacuum state (choose 3;: e.i for definiteness sake) which is a solu-
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tion to equations of motion and has a finite energy /‘/=f]fc{21.' .
Stationa.ry‘solitons satisfy the equa.tionw =0. Stable golitons
should correspond to functional minima.

Continuous localized distributions éa( ii ), :Sa(oo )= d: ,
are divided into classes with dlfferent topological charge Q values,
where Q is the degree. of ma.pp:u.ng 5 (2 ) of chomp’ compactified
by the boundary condition 4%(oo )= :jo , to unit sphere 32[1 3,12],

- aéc 2
Q‘é}fetks 3% 2‘.5 akscd;t, (3)

i,k =12 a,6.,c,1,2,3.
For distributions ;sa(x ) with |Q[>1 the following inequalities
are valid

HK>O’ K=1,2,3 , Flkz ka C{zx ‘ 4)
H - H Hz H3>°'

Perform the scaling transformation :} (X; )-—>$ (A X; ).
One can see .that then H (1)—> H (1), H (1)—'A Hz_ 1),
H, (1) — A2 Hy (1), stere HK()\ y= ?f,([éa(/\sr Jd2x -
It is necesgary for stationary soliton existence that d;!(v/\) =0 at
j\ =1, as for ‘j\ -1l<< 1 scaling trensformation give rise .to small
variations of distributions $a( x‘-). Hence we get for atationary
golitons :

H‘:H. ; (5)

It follows from (5) that the 2D stationary topological solitons can-
not exist in : i) isotropic magnet ( 7{2— 0) with nonzero 7{ term
(7{3¢ 0) and ii) anisotropic magnet with 7(2, 0 ( independently of
anisotropic type) and ;{3—0, i.e., without gtabilizing terms.

. Introduce dimensionless variables T = ( Xy yd)' [0 4 iﬁ R ’
R =(x, y), then Eq.(2) takes the form :

H=p*[ (3 %)%+ 3in20 + p(9:8%0; s%)* ], - (6)

0 2,24
mere O« Der s Dp-ggms P frpret
In the model (6) the existence of nontopological (Q-—O) stat-
jonary solitons of the form 3
8'=sinP , Lo, Lcxb , 6=-0 (7)),

o Ayt

is not excluded a priori. For distributions. (7)

(7)

. ][(:rd yd)=,7(’(Z)=p2[(d’9)2+m29+p dg)q]‘ (8)

Varying (6) and setting 5’-{ =0, we E,et the equation for soli-
ton function 65 (t)

L0l 1464 |+ 121+ 2p(4E) |- sn0 w560 )

which being completed by boundary conditions gg (0)=0, 9 (e2)=0,
determines the boundary problem. Using the expansion of 93(’2) for
snall T

2
6,y =C,+C, & +0(t) (10)
we get from Eq.(11) )
Cz:Z,I'”""‘ C, cos Co : (11)
The search for solitons was accomplished by "shooting" method,
using (10) and (11). The value of the parameter was varied at the
whole interxrval (0, JC), but curves (2 ) which have been obtained

- by numerical solving of Eq.(9) do not satisfy the condition 9 (o0 )=0,

if 0<C<JT . Thus, in the model (6) ag well as in the previously

congidered [11] model with 7{’ ﬁ 4n%0 , 7[3 X‘Z[(a 4‘12 ja)z
- (b e D /.Sa')z ] , non-topological solitons do not
exist.

In order to obtain topological ( I Q | = 1) localized solutions
da( 1".) we use the well-known ansatsz [1,12]
st=sin@ e k| &= sinpsinx, 3’=co1 6

x=me, )
€=60(r), 060 =x, 6O(=)=0,
where xd:'z wjl)p R yd=’7,m(70 .
Topological charge of distributions (12) is expressed by the
formula [1] :

Q = 72"—1[‘631 Q(oo)-—Coj 9(0)]::”1 . (13

The ensatz (12) with 2 =1 makes it possible to find out the
functional minimum in the class of localized distributions 5“(:):‘: )
with Q =1. Note that the Ha.m:.ltonlanH of the model (6) is invari-’
ant with respect to the group G ,SO(Z)S@)SO (2)I (indices S
and I mean the sgpace (1‘1 ) and isotopic (5 ) variables). Now we

can separate the subgroup G C G G dLQ}[SO(z)S@SO(z)I]




with the coinciding transformation parameters of SO (2), and
50(2)1‘. groups. In other words, G; may be defined as a group of
transformations [12]

TxYy — R3(x) 3 [g"‘(oc):'i:’] . (14)

where X =( Xy Yg)=(T, ), P (0 )E =(T,tp +0 ), and R ()
is an operator of rotating through the angle o about the third iso-
"topic axis. The fields Ga(xi) of the form (12) with M =1 form a
set Mi of the fields invariant under the subgroup G‘_{ » the topolo-
gical charge Q of these fields is equal to M =1. According to Col-
eman-Palais theorem [12-14] the extremum of the functional over

the set M{ of the invariant fields with =1 is the extremum over
the whole set of the fields 5“ (1L) with Q =1, Thus, the use of
the ansatz (12) with M =1 permits one to find solitons with Q =1
in the model (6)., Unfortunately, nowadays there is no effective well-
grounded ansatz for solitons with IQI > 1. But note that the ansatz
(12) for all m = describes distributions of the energy density
7[( 1‘,:) which are independent of the angle :

AR e e R

Varying (15) end setting JHf =0 , we get that in the case |Q|>0
the functions 9 (7 ) is a solution to the boundary value problem

(R =m)

PR i e L e

(16)

. 9 R _/_71‘9' _ i3
4.2/;"12_41{‘,_{2%.@ _‘914_29_ _wlec‘esé(zl +i) Z/)mzé.‘"_z_%_@_e_zq
9ﬂ0=f, B(=)=0. a7

For small ¢ the solutions Qm( ¢ ) to the Eq.(18) at a given ‘1t are
described by the expansion ’

On ()= 10 - C,,x™+0 (™) (18)
whicih was used for a numerical study of the problem (16),(17) solu-
tions by the shooting method. Functions 6, ('¢’) of solitons with

=1 ( M =1) and functions €(T) ot localized distributions with
=2 (.M =2) have been found by computer for various P values
(see Table). ’

T able

p G h, C, h,

1076 62.64 25.27 3570 50.38
10~° . 32.56 25.54 110.3 50,61
1074 16.53 26.25 34.23 51.35
1073 8.116 28.12 10.52 53.61
1072 3.879 ©32.93 3.225 60.37
107" 1.853 45.69 1.0145 80.35
1 0.9205 82.21 0.3459 140.8
20 0.4026 - 261.2 0.1034 T 443.2
500 0.1758 1178 - 0.03466 1998

The table contains values Cm( ), M =1,2 which characterize
the solutions to the problem (16),(17), and dimensionless energy
/lm =0(—2/—/£9,,, (’Z_)] values of corresponding localized distributions
5“(1‘:).

0 0 0 30
Figure 1a Figure 1b
Functions 9, (%Z) end 92 (Z) are presented in Figure la and

Figure 1b; the characteristic radius of thege solutions increases
monotonously with the growth of , OJ<p<oo . The investigation of

‘numer:j.c_a.l ’res'ults for small shows that the halffwidth Rm of thege -*

_so'luti'ons defined by equality Qm( Rm )___?2_'!' is proportional toP ~,
Yim 021 (R~ 3.8:1072 gor p 2106, Rym0.46 tor p =102),
J‘zz :0.25. The -dependence '/ '(/D) for solitons with Q =1 is pre-
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. sented in Pigure 2. For small
I'AL it may be described by the form-
ula

ILI(P)% 8+ BpT
B = const.

Using (19
ship R O(:/D 1
P itons of small radius,

h, =~ 8r+$RE
=15, z>==Con4t .

. Note that for all values (see the Table) the inequality
A <2A is valid, that is for all congidered the existence of lo-
callzed dlstrlbutlons 3¢ (x;) with 62 2, possessing energy less than
the double energy of solitons with 62 =1, is shown. Hence, the forma-
tion of the bound state of two solitons with =1 is energetically
favourable. We hope that the solitons with minimum energy in the‘Cz =2
sector will be obtained in the course of further investigations.

In conclusion we would like to discuss the relation of the solu-
tions obtained for the anisotropic magnet with Belavin-Polyekov soli-
tons in the isotropic magne* [7] . Note that for solitons of small ra-
dii, Rw{ << 1, that is for << 1 the terms Jf, end Z} e.re small
as conpared w:.th 7{ [1 10,117 (in fact 9’(~ LY y{ ~ ,
7f~lD AYom 2 "'ID ), so aspiration to develop for the model (6) the
perturbation theory in small,) with Belavin-Polyekov solitons being
the solutions of the zeroth approximation is quite natural L1O 1] .

But this program meets essential difficulties related to the diver-

#0192,
(19)

871' e o o o e s ey i e and the relation~

, we get for sol-

R.l <<.1 ’

Figure 2 (20)

gence of the "easy-axis" anisotropy energy integral on Belavin-Polya-~
kov solitons with Q=1 [s1 .

The authors are grateful to B.A.Ivanov, B.G.Konopelchenko,
V.E.Korepin, A.ld.Kosevich, V.G.Makhenkov, A.S.Schwartz, V.E.Zekharov,
E.P.Zhidkov for useful discussions.
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Boromw6ckaa A.A., Boromo6eckuit HU.JI. E5-89-258
O cTanHoHapHHIX TOMOJIOCHYECKHX COJIMTOHAaX

B OBYMEepHOM aHH30TPONHOM MarHerTuke [efizeHGepra

H3yuawTcsa crTallMoHapHble OBYMepHble COJIMTOHbI B JIEIKOOCHOM
MarHeruke ['efiseH6Gepra C IJIOTHOCTbl I'aMWIBbTOHHAaHA

H= (3;52)2 + sin®0 + p(3;523;53)?,

roe i = 1,2, a 1,2,3, 0(xi) ~yrom Mexay eOMHHUHbBIM BEKTO-—
poM §(xi) u''nerkoit" oceiw, 0 < p < ., HailgeHs yCToOHUHBbIE
COJIMTOHbl C ToMOJOTHMYECKHUM 3apafoM Q = 1 U JokaflM30BaHHbE
pacnpejiefleHus sa(xi) c 3apsapoM Q = 2. C moMoubio KOMIbHTEpa
NMOKa3aHo CymecTBOBAaHMe CBA3aHHBIX COCTOSIHHI OBYX COJIMTOHOB

c zapsmaMu Q = | mpu 0 < p < =,

Pa6ora BbimosiHeHa B JlaGopaTopuu BBUHCAMUTEIBHOH TEeXHHKH
M aBToMaTuszauuu OHAH.

[Tpenpunt O6BeAMHEHHOr0 HHCTHTYTa AAEPHEIX HeanenoBaHui. Jlyoua 1989

Bogolubskaya A.A., Bogolubsky I.L.
On Stationary Topological Solitons

in Two~Dimensional Anisotropic Heisenberg
Model

E5-89-258

We study stationary two-dimensional solitons in easy-
axis Heisenberg magnet with the Hamiltonian density

= (’c)isa)2 + sin%0 + p(aisaaisa)z,

where i=1,2,a=1,2,3,0(x;) is the angle between unit vector
$(x;) and "easy" axis, 0 < p < =. Stable solutions with

a topological charge Q = 1 and localized distributions
s3(xi) with Q = 2 are found. The existence of the bound

states of two solitons with Q = 1 is shown numerically
for 0 < p < =,

The investigation has been performed at the Laboratory
of Computing Techniques and Automation, JINR.
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