

объединениы
 институт пдериых
 исследований
 дубиа

V.P.Gerdt. A.Yu.Zharkov*

COMPUTER CLASSIFICATION
OF INTEGRABLE COUPLED KdV - LIKE SYSTEMS

Submitted to "Journal of Symbolic Computations"
*Saratov State University, USSR

1. Introduction

At present intensive work on testing of integrability and classification of integrable nonlinear evolution systems

$$
\begin{gather*}
U_{t}=P\left(x, U, U_{1}, \ldots U_{N}\right), \quad U=U(x, t)=\left(U^{1}, \ldots U^{\mathbb{M}}\right) \tag{1}\\
F=\left(F^{1}, F^{2}, \ldots F^{M}\right), \quad U_{1}=D^{1}(U), D=d / d x
\end{gather*}
$$

is carried out. The integrability means that the system (1) can either be reduced to a linear one by differential substitutions $U \rightarrow P\left(V, \ldots \nabla_{k}\right)$ or can be integrated by inverse spectral transform. Prototype equations of these two groups are the Burgers and the Korteveg-de Vries (KdV) equations, respectively. In both cases the initial nonlinear problem reduces to a linear one that can be investigated and solved. Note that evolution systems of the second type are especially interesting in physics due to their multi-soliton solutions. In the present paper we use computer algebra to find all integrable coupled KdV - like evolution systems.

2.Symmetry approach

The classification problem consists in obtaining a complete list of Integrable systems (1) for some fixed N and to describe the most general transforms connecting these systems. It can be achieved effectively by using the symmetry approach (see reviews [1-3]). In the framework of the symmetry approach, the integrable criterium is based on the property of (1) to have an infinite algebra of higher-order symmetries, i.e. the evolution systems of the form

$$
\begin{equation*}
U_{t}=H\left(X, U, U_{1}, \ldots U_{n}\right), H=\left(H^{1} \ldots . H^{M}\right), \quad n>N, \tag{2}
\end{equation*}
$$

compatible with (1). The compatibility condition can be written as

$$
\frac{\mathrm{dH}}{\mathrm{dt}}=\mathrm{P}_{*}(\mathrm{H}),
$$

where F_{*} is the matrix differential operator

$$
F_{*}=\sum_{1=0}^{N} \mathbb{F}_{1} \mathbb{D}^{1},\left|\mathbb{F}_{1}\right|_{j k}=\frac{\partial F^{1}}{\partial U_{J}^{k}}
$$

It is shown in $[1,2]$ that in the case where the evolution system (1) has an infinite algebra of symmetries, it has an infinite number of local conservation laws

$$
\begin{equation*}
\frac{d R_{1 j}}{d t}=\frac{d Q_{1 J}}{d x}, \quad 1=1,2, \ldots, j=1, \ldots M \tag{3}
\end{equation*}
$$

where the densities $R_{1 j}$ can be expressed in terms of F and $Q_{1 k} \quad(k<j)$. The conditions (3) generate an overdetermined system of equations in F. By solving this system it is possible to find a list of concrete F's containing all the integrable cases (usually it is sufficient to use conditions (3) for $1<3$). This list is then checked for higher 1 against the condition (3) in order to remove non-integrable cases. The next step consists in linding higher-order symetries and a "Lax representation.

3. Role of Computer Algebra

The algorithms for the most tedious steps of classification, such as computing the denaities $R_{1 j}$, cheokine the conditions (3), derivation of the overdetermined systems in F and finding the symetries; have been suggested in $[4,5]$. They have been implemented using the computer algabra system FORMAC for scalar equations $(M=1 \cdot$ in (1)) [4] and for the following wide class of systems [5]

$$
\begin{align*}
& U_{t}=\Lambda U_{N}+I\left(x, U, U_{1}, \ldots U_{N-1}\right), I=\left(I^{1}, \ldots . I^{M}\right) \tag{4}\\
& \Lambda=\operatorname{diag}\left(\lambda_{1}, \cdots \lambda_{M}\right), \lambda_{1} \neq 0, \lambda_{1} \neq \lambda_{j}(1 \neq \mathrm{J}), \lambda_{1} \in \mathbb{C} .
\end{align*}
$$

The step in our algorithm which remains to be done by hand is to solve the overdetermined system of differential equations in P. However, in a special case (which is very important for applications), the $\mathrm{F}^{1} \ldots \ldots \mathrm{~F}^{\mathrm{M}}$ are polynomials in $U, U^{1}, \ldots U^{N}$ With certain homogeneity properties, and the overdetermined system in F reduces to an algebraic system for the coefficients of these polynomials. The general approach to solve such a system exactly is based on the well-known technique of Groebner basis construction [6] which is Implemented, for example, in the last version of the computer algebra system REDUCE [7]. An example of a Groebner basis computation for one of the classification problems [8] is given in [9]. Thus the classification of the integrable evolution systems (4) with homogeneously-polynomial right hand sides can be completely automated by means of computer algebra.

4. Coupled KdV - Like Sybteng

In this paper we apply the above technique to the classification of the following systems from class (4) (coupled Kav-like systems)

$$
\begin{align*}
& u_{t}=a_{0} u_{3}+a_{1} u u_{1}+a_{2} \nabla v_{1}+a_{3} u v_{1}+a_{4} v u_{1}, \quad a_{0} \neq b_{0}, a_{0} \neq 0, b_{0} \neq 0, \\
& v_{t}=b_{0} v_{3}+b_{1} \nabla v_{1}+b_{2} u u_{1}+b_{3} v u_{1}+b_{4} u v_{1}, \quad a_{1}, b_{1} \in \mathbb{C}(1=0+5) \tag{5}
\end{align*}
$$

which have an infinite algebra of symmetries. Using the FORMAC program described in [5] we obtain a system of equations for the parameters a_{1}, b_{j} consisting of twelve equations of sixth degree in ten unkowns obtained from (3) for $1=1+4$ and in part for $1=5$

$$
\begin{equation*}
e_{k}=\hat{e}_{\mathbf{k}}=0, \quad(k=1+6) \tag{6}
\end{equation*}
$$

where $\hat{e}_{k}=e_{k} \mid a_{1} \leftrightarrow b_{1}$ and
$e_{1}=a_{1}\left(a_{3}-a_{4}\right)-a_{4}\left(b_{3}-b_{4}\right)$,
$e_{2}=\left(2 a_{3}-a_{4}\right) y_{1}-b_{2} y_{2}, \quad y_{1}=6 a_{0} a_{3} b_{2}+\left(a_{0}-b_{0}\right)\left(a_{1}^{2}+a_{4} b_{2}\right)$,

$$
\begin{aligned}
& e_{3}=a_{2} y_{1}-\left(2 b_{3}-b_{4}\right) y_{2}, \quad y_{2}=6 a_{0} a_{2} b_{3}+\left(a_{0}-b_{0}\right)\left(a_{1} a_{2}+a_{4} b_{1}\right), \\
& e_{4}=3 a_{0}\left(a_{2} b_{2}+a_{3} b_{3}\right)+\left(a_{0}-b_{0}\right)\left(a_{1}+b_{3}\right) a_{4}, \\
& e_{5}=2\left(2 a_{0}^{2}+8 a_{0} b_{0}-b_{0}^{2}\right) a_{3} b_{3}+2\left(a_{0}-b_{0}\right)\left(4 a_{0}-b_{0}\right) a_{3} b_{4}-6 a_{0}\left(a_{0}+2 b_{0}\right) a_{2} b_{2} \\
& \\
& +\left(a_{0}-b_{0}\right)^{2}\left(5 a_{1} a_{3}-5 a_{1} a_{4}+a_{4} b_{4}\right)-\left(a_{0}-b_{0}\right)\left(7 a_{0}-b_{0}\right) a_{4} b_{3}, \\
& e_{6}=3 a_{0}\left[\left(a_{0}-b_{0}\right)^{3}-3 a_{0}\left(a_{0}+2 b_{0}\right)^{2}\right]\left(a_{2} b_{2}+a_{3} b_{3}\right)+\left(a_{0}-b_{0}\right)^{3}\left[3 a_{0} a_{1} a_{3}-2\left(2 a_{0}+b_{0}\right) a_{1} a_{4}\right] \\
& \\
& \quad+9 a_{0}^{2}\left(a_{0}-b_{0}\right) l\left(a_{0}-b_{0}\right) a_{4}-\left(a_{0}+2 b_{0}\right) a_{3} 3 b_{4}-\left(a_{0}-b_{0}\right)\left(2 a_{0}^{3}-30 a_{0}^{2} b_{0}+b_{0}^{3}\right) a_{4} b_{3} .
\end{aligned}
$$

5.Solving the System (6)

In order to solve system (6) one may use the technique of Groebner basis. However, we have used instead a much more effective algorithm [10] which exploits the special structure of the system (6). Its main idea is to consider several altemative cases:

$$
\text { 1) } a_{1} \neq 0, a_{4} \neq 0 \quad \text { 2) } a_{1} \neq 0, a_{4}=0 \quad \text { 3) } a_{1}=0, a_{4} \neq 0 \quad \text { 4) } a_{1}=a_{4}=0
$$

and two subcases inside each case:

$$
\text { a) } y_{1} \neq 0 \text { or } y_{2} \neq 0 \quad \text { b) } y_{1}=y_{2}=0
$$

One can find simple relations connecting a_{1}, b_{1} for each subcase and thus the system (6) can be considerably simplified. For example, in the case 1), the equations

$$
e_{1}=\hat{e}_{1}=0
$$

lead to two possibilities:

$$
\text { 1) } a_{3}=a_{4}, b_{3}=b_{4} \quad \text { 11) } a_{3} \neq a_{4} \text { or } b_{3} \neq b_{4}, a_{1} b_{1}=a_{4} b_{4}
$$

In the case 11) we can set $a_{1}=a_{4}$ and $b_{1}=b_{4}$ by taking into account

The step in our algorithm which remains to be done by hand is to solve the overdetermined system of differential equations in F. However, in a special case (which is very important for applications), the $\mathrm{F}^{1}, \ldots \mathrm{~F}^{\mathbf{M}}$ are polynomials in $U, U^{1}, \ldots U^{\mathrm{N}}$ with certain homogeneity properties, and the overdetermined system in F reduces to an algebraic system for the coefficients of these polynomials. The general approach to solve such a system exactly is based on the well-known technique of Groebner basis construction [6] which is 1mplemented, for example, in the last version of the computer algebra system REDUCE [7]. An example of a Groebner basis computation for one of the classification problems [8] is given in [9]. Thus the classification of the integrable evolution systems (4) with homogeneously-polynomial right hand sides can be completely automated by means of computer algebra.

4.Coupled KdV - Like Systems

In this paper we apply the above technique to the classification of the following systems from class (4) (coupled KdV-like systems)

$$
\begin{align*}
& u_{t}=a_{0} u_{3}+a_{1} u u_{1}+a_{2} \nabla v_{1}+a_{3} u v_{1}+a_{4} \nabla u_{1}, \quad a_{0} \neq b_{0}, a_{0} \neq 0, b_{0} \neq 0 \\
& v_{t}=b_{0} \nabla_{3}+b_{1} \nabla v_{1}+b_{2} u u_{1}+b_{3} \nabla u_{1}+b_{4} u v_{1}, \quad a_{1}, b_{1} \in \mathbb{C}(1=0 \div 5) \tag{5}
\end{align*}
$$

which have an infinite algebra of symmetries. Using the FORMAC program described in [5] we obtain a system of equations for the parameters a_{1}, b, consisting of twelve equations of sixth degree in ten unkowns obtained from (3) for $1=1+4$ and in part for $1=5$

$$
\begin{equation*}
e_{k}=\hat{e}_{k}=0, \quad(k=1 \div 6) \tag{6}
\end{equation*}
$$

where $\hat{e}_{k}=e_{k} \mid a_{1} \odot b_{i}$ and
$e_{1}=a_{1}\left(a_{3}-a_{4}\right)-a_{4}\left(b_{3}-b_{4}\right)$.
$e_{2}=\left(2 a_{3}-a_{4}\right) y_{1}-b_{2} y_{2}, \quad y_{1}=6 a_{0} a_{3} b_{2}+\left(a_{0}-b_{0}\right)\left(a_{1}^{2}+a_{4} b_{2}\right)$,

$$
\begin{aligned}
& e_{3}=a_{2} y_{1}-\left(2 b_{3}-b_{4}\right) y_{2}, \quad y_{2}=6 a_{0} a_{2} b_{3}+\left(a_{0}-b_{0}\right)\left(a_{1} a_{2}+a_{4} b_{1}\right), \\
& e_{4}=3 a_{0}\left(a_{2} b_{2}+a_{3} b_{3}\right)+\left(a_{0}-b_{0}\right)\left(a_{1}+b_{3}\right) a_{4}, \\
& e_{5}= 2\left(2 a_{0}^{2}+8 a_{0} b_{0}-b_{0}^{2}\right) a_{3} b_{3}+2\left(a_{0}-b_{0}\right)\left(4 a_{0}-b_{0}\right) a_{3} b_{4}-6 a_{0}\left(a_{0}+2 b_{0}\right) a_{2} b_{2} \\
&+\left(a_{0}-b_{0}\right)^{2}\left(5 a_{1} a_{3}-5 a_{1} a_{4}+a_{4} b_{4}\right)-\left(a_{0}-b_{0}\right)\left(7 a_{0}-b_{0}\right) a_{4} b_{3}, \\
& e_{6}=3 a_{0}\left[\left(a_{0}-b_{0}\right)^{3}-3 a_{0}\left(a_{0}+2 b_{0}\right)^{2}\right]\left(a_{2} b_{2}+a_{3} b_{3}\right)+\left(a_{0}-b_{0}\right)^{3}\left[3 a_{0} a_{1} a_{3}-2\left(2 a_{0}+b_{0}\right) a_{1} a_{4}\right] \\
&+9 a_{0}^{2}\left(a_{0}-b_{0}\right)\left[\left(a_{0}-b_{0}\right) a_{4}-\left(a_{0}+2 b_{0}\right) a_{3}\right] b_{4}-\left(a_{0}-b_{0}\right)\left(2 a_{0}^{3}-30 a_{0}^{2} b_{0}+b_{0}^{3}\right)_{4} a_{3}
\end{aligned}
$$

5.Solving the System (6)

In order to solve system (6) one may use the technique of Groebner basis. However, we have used instead a much more effective algorithm [10] which exploits the special structure of the system (6). Its main 1dea is to consider several altemative cases:

$$
\text { 1) } a_{1} \neq 0, a_{4} \neq 0 \quad \text { 2) } a_{1} \neq 0, a_{4}=0 \quad \text { 3) } a_{1}=0, a_{4} \neq 0 \quad \text { 4) } a_{1}=a_{4}=0
$$

and two subcases inside each case:

$$
\text { a) } y_{1} \neq 0 \text { or } y_{2} \neq 0 \quad \text { b) } y_{1}=y_{2}=0 .
$$

One can find simple relations connecting a_{i}, b_{i} for each subcase and thus the system (6) can be considerably simplified. For example, in the case 1), the equations

$$
e_{1}=\hat{e}_{1}=0
$$

lead to two possibilities:

$$
\text { 1) } a_{3}=a_{4}, b_{3}=b_{4} \quad \text { 11) } a_{3} \neq a_{4} \text { or } b_{3} \neq b_{4}, a_{1} b_{1}=a_{4} b_{4}
$$

In the case 11) we can set $a_{1}=a_{4}$ and $b_{1}=b_{4}$ by taking into account
the invariance of the ten-parametric family (5) under the scale transformations $u \Rightarrow \alpha_{p} \nabla \Rightarrow \beta \nabla(\alpha, \beta \in \mathbb{C})$. On the other hand, the subcase a) implies $\mathrm{a}_{2} \mathrm{~b}_{2}=\left(2 \mathrm{a}_{3}-\mathrm{a}_{4}\right)\left(2 \mathrm{~b}_{3}-\mathrm{b}_{4}\right)$, so $\mathrm{a}_{2}, \mathrm{~b}_{2}$ can immediately be eliminated from the equations (6) for $\mathrm{k}=3+6$, etc. Applying this method and carring out all computations in the interactive mode of the computer algebra system REDUCE, we have found all the non-trivial solutions of (6) (see ref.[10] fore more details). It should be noted that in each alternative case the problem reduces to simple gcd and resuitant computations which are built-in in REDUCE. It turns out that in the most tedious case 1$) a_{1} \neq 0, a_{4} \neq 0$ the system (6) has a single non-trivial solution (up to a scale transformation)

$$
\begin{aligned}
& a_{0}=(3 \pm \sqrt{5}) / 6, a_{1} \neq 0, a_{2}=a_{1}\left(9 a_{0}-7\right) /\left(12 a_{0}-1\right), a_{3}=a_{1} /\left(3 a_{0}\right), a_{4}=a_{1}, \\
& b_{0}=(-3 \pm \sqrt{5}) / 6 \quad b_{1}=-a_{1} /\left(3 a_{0}\right), b_{2}=a_{1}\left(3 a_{0}+1\right) /\left(9 a_{0}-7\right), b_{3}=-a_{1}, b_{4}=-a_{1} /\left(3 a_{0}\right) .
\end{aligned}
$$

The evolution system (5) with the coelficients (7) can be transformed to the well-known integrable Drinfeld-Sokolov system [11] by appropiate linear transformation of the vector space (u, v). For the cases 2) 4), we have obtained a list of four nonlinear coupled systems of the form (5) with coefficients a_{1}, b_{i} satisfying (6) and containing four to six arbitrary constants.

6.Liet of Integrable Syetems.Conclusion

Using our FORMAC program [5] we have checked the list obtained whether or not conditions (3) for $1=5+8$ are satisfied. We have found that only three evolution systems satisfy these conditions, namely

$$
\begin{align*}
& u_{t}=u_{3}+u u_{1}+\nabla v_{1}, \quad \nabla_{t}=-2 v_{3}-u v_{1} \tag{8}\\
& u_{t}=u_{3}+u u_{1}, \quad \nabla_{t}=4 \nabla_{3}+u \nabla_{1}+1 / 2 u_{1} v \tag{9}\\
& u_{t}=u_{3}+u u_{1}, \quad v_{t}=-2 \nabla_{3}-\nabla u_{1}-v_{1}, \tag{10}
\end{align*}
$$

The system (8) is the well-known Hirota-Satsuma system [12] with an
infinite algebra of symmetries. The system (9) was firstly considered in our paper [5]. Based on the generally accepted conjecture (see, for example, [3]) that the existance of higher-order symmetries implies integrability, we may conclude that the system (9) also has an infinite algebra of symmetries. In [5] we have found the following 5 -order symmetry for the system (9)

$$
\begin{aligned}
& u_{t}=u_{5}+5 / 3 \quad u u_{3}+10 / 3 u_{1} u_{2}+5 / 6 u^{2} u_{1}, \\
& v_{t}=16 \nabla_{5}+20 / 3 u v_{3}+5 / 2 \nabla u_{3}+10 u_{1} v_{2}+25 / 3 v_{1} u_{2}+5 / 6 u^{2} v_{1}+5 / 6 \nabla u u_{1}
\end{aligned}
$$

We belleve that the system (10) is also integrable. It has the 5 -order symmetry with the same first equation in accordance with the structure of (9) and (10)

$$
\begin{aligned}
& u_{t}=u_{5}+5 / 3 u u_{3}+10 / 3 u_{1} u_{2}+5 / 6 u^{2} u_{1} \\
& v_{t}=-4 v_{5}-10 / 3 u v_{3}-5 / 3 u_{3}-20 / 3 u_{1} v_{2}-5 v_{1} u_{2}-5 / 18 u^{2} v_{1}-5 / 9 u u_{1}
\end{aligned}
$$

We may conclude from the above computations that computer algebra is a powerful tool for investigating nonlinear evolution equations. It allows to make a complete classification of the integrable coupled systems from the ten-parametric family (5). All integrable cases are exhausted by the four systems (7)*(10).

Authors are thankiul to K.S.Kölbig and S.I.Svinolupor for useful discussions.

References

1. Sokolov,V.V., Shabat,A.B.(1984).Classification of integrable evolution equation.Math.Phys.Rev.4,221-280, New York.
2. Mikhailov;A.V.,Shabat,A.B.,Y8milov,R.I. (1987).Symmetry approach to classification of nonlinear equations.complete list of integrable systems.Usp. Mat. Nauk, 42;3-53(in Fussian).
3. Fokas,A.S. (1987).Symmetries and integrability.Stud.Appl.Math.77, 253-299.
the invariance of the ten-parametric ramily (5) under the scale transiormations $u \Rightarrow \alpha, v \Rightarrow \beta v(\alpha, \beta \in \mathbb{C})$. On the other hand, the subcase a) implies $a_{2} b_{2}=\left(2 a_{3}-a_{4}\right)\left(2 b_{3}-b_{4}\right)$, so a_{2}, b_{2} can immediately be. eliminated from the equations (6) for $k=3+6$, etc. Applying this method. and carring out all computations in the interactive mode of the computer algebra system REDUCE, we have found all the non-trivial solutions of (6) (see ref.[10] fore more details). It should be noted that in each alternative case the problem reduces to simple gcd and reaultant computations which are built-in in RewUCE. It turns out that In the most tedious case 1$) a_{1} \neq 0, a_{4} \neq 0$ the system (6) has a single non-trivial solution (up to a scale transformation)
$a_{0}=(3 \pm \sqrt{5}) / 6, \quad a_{1} \neq 0, a_{2}=a_{1}\left(9 a_{0}-7\right) /\left(12 a_{0}-1\right), \quad a_{3}=a_{1} /\left(3 a_{0}\right), a_{4}=a_{1}$,
$b_{0}=(-3 \pm \sqrt{2}) / 6 \quad b_{1}=-a_{1} /\left(3 a_{0}\right), b_{2}=a_{1}\left(3 a_{0}+1\right) /\left(9 a_{0}-7\right), b_{3}=-a_{1}, b_{4}=-a_{1} /\left(3 a_{0}\right)$.
The evolution system (5) with the coefficients (7) can be transformed to the well-known integrable Drinfeld-Sokolov system [11] by appropriate linear transformation of the vector space (u, v). For the cases 2) +4), we have obtained a list of four nonl inear coupled systems of the form (5) with coefficients a_{1}, b_{i} satisfying (6) and containing four to six arbitrary constants.

6.Liet of Integrable systems.conclusion

Using our FORMAC program [5] we have checked the list obtained whether or not conditions (3) for $1=5+8$ are satisified. We have found that only three evolution systems satisly these conditions, namely

$$
\begin{align*}
& u_{t}=u_{3}+u u_{1}+v v_{1}, \quad v_{t}=-2 \nabla_{3}-u v_{1} \tag{8}\\
& u_{t}=u_{3}+u u_{1}, \quad v_{t}=4 \nabla_{3}+u v_{1}+1 / 2 u_{1} \nabla \tag{9}\\
& u_{t}=u_{3}+u u_{1}, \quad v_{t}=-2 v_{3}-\nabla u_{1}-\nabla_{1} \tag{10}
\end{align*}
$$

The system (8) 1s the well-known Hirota-Satsuma system [12] with an
infinite algebra of symmetries. The system (9) was firstly considered in our paper [5]. Beged on the generally accepted conjecture (see, for example, [3], that the existance of higher-order symmetries implies integrability, we may conclude that the system (9) also has an infinite algebra of symmetries. In [5] we have found the following 5 -order symmetry for the system (9)

$$
\begin{aligned}
& u_{t}=u_{5}+5 / 3 u u_{3}+10 / 3 u_{1} u_{2}+5 / 6 u^{2} u_{1} \\
& v_{t}=16 \nabla_{5}+20 / 3 u v_{3}+5 / 2 v_{3}+10 u_{1} v_{2}+25 / 3 \quad v_{1} u_{2}+5 / 6 u^{2} v_{1}+5 / 6 \nabla u u_{1}
\end{aligned}
$$

We believe that the system (10) is also integrable. It has the 5 -order symmetry with the same first equation in accordance with the structure of (9) and (10)

$$
\begin{aligned}
& u_{t}=u_{5}+5 / 3 u u_{3}+10 / 3 u_{1} u_{2}+5 / 6 u^{2} u_{1} \\
& v_{t}=-4 \nabla_{5}-10 / 3 u v_{3}-5 / 3 u_{3}-20 / 3 \cdot u_{1} v_{2}-5 v_{1} u_{2}-5 / 18 u^{2} v_{1}-5 / 9 u u_{1}
\end{aligned}
$$

We may conclude from the above computations that computer algebra is a powerful tool for investigating noninear evolution equations. It allows to make a complete classification of the integrable coupled systems from the ten-parametric iamily (5). All integrable cases are exhausted by the four systems (7) $\div(10)$.

Authors are thankful to K.S.Kölbig and S.I.Spinolupor for useful discussions.

References

1. Sokolov,V.V.,Shabat,A.B.(1984).Classification of integrable evolution equation. Math. Fhys.Rev.4,221-280, New York.
2. Mikhailov,A.V.,Shabat,A.B.,Yamilov,R.I.(1987).Symmetry approach to classification of nonlinear equations.Complete list of integrable sys tems.Usp. Mat.Nouk,42;3-53(in Russian).
3. Fokas,A.S. (1987).Symmetries and integrability.Stud.Appl. Math.77, 253-299.
4. Gerdt,V.P.,Shvachka,A.B.,Zharkov,A.Yu.(1985).FORMINT - a program for classification of integrable nonlinear evolution equations. Comp. Phys.Conm.34,303-311..
Gerdt,V.P.,Shvachka,A.B., Zharkov,A.Yu. (1985).Computer algebra application for classification of integrable nonlinear evolution equations.J.Symb.Comp.1,101-107.:
5. Gerdt,V.P.,Shabat,A.B.,Svinolupov,S.I.,Zharkov,A.Yu. (1987).Computer algebra application for investigat ing integrablitty of nonlinear evolut ion systems.Preprint JINR E5-87-40,Dubne.To be published in proceedings of EUROCAL'87 (June 1987,Le1pz1g).
6. Buchberger,B. (1985).Groebner basis:a method in symbolic mathematics. In: (Bose,N.K.,ed.) Multidimensional Systems Theory,pp.184-232. Dordrecht:Reidel.
7. Hearn, A.C. (1987).REDUCE user's manual.Version 3.3. RAND publication, CP78.
8. Gerdt,V.P.,Shvachka, A.B.,Zharkov A.Yu. (1984).Classificat ion of integrable high-order KaV-l lke equat tons. Preprint JINR R5-84-489, Dubna (in Russian).
9. Boege,W.,Gebauer,R.,Kredel,H. (1986).Some examples for solving of algebraic equations by Groebner basis.J.Symb.Comp.2,83-98.
10.Gerdt,V.P.,Zharkov,A.Yu. (1989).Solving the polynomial system arising in classification of tntegrable coupled KaV-like systems. Preprint JINR R5-89-231, Dubne (In Russian).
11.Drinfeld,V.G., Sokolov,V.V. (1984). Ile algebra and KdV-like equations. In:Yodern problem in mathemat ics.V.24, MOscow, VINITI, pp.81-180 (in Russian).
12.H1rota, R., Satsuma, J. (1981).Soliton solutions of a coupled Kortevegde Vries equation. Phys.Lett. 85A,407-408.

Received by Publishing Department on April 4, 1989.

