


1. Introduction
Let A and B be linear operators in a separable complex Hilbert
space ¥. Then under suitable conditions concerning (A,B} the strong
limit

s-lim (exp(- % A) exp(~- % B))™ = exp(-tc) (1.1)

n+o .

exists for t 2 0, where the operator C can be constructed by means‘
of A and B. This is the well-known Trotter-Lie product formula for
strongly continuous (Co—) semigroups [1). (For finite matrices it
has been established by Sophus Lie about 1875). Since the diséovery
of the product formula it has permeated through mathematics and
mathematical‘ﬁhysics challenging the problem of relaxatipn and
generalizaﬁion df the hypotheses under which the formula holds, see
(2-10]. '

A solution of this problem imﬁlies that one has to do the
fbliowiné: '
(i) to find the set of pairs (A,B} for which the 1limit (1.1)
exists;
(ii) to idéntify the operator C and to describe the mapping (A,B}:
'-—; C; ;
(iii) to generalize '(if possible) the exponenfial functions
involved in the left-hand side of (1.1) to a class of real-valued,
Borel measurable functions f(.), g(.) such that in some operator
topology *

r-lim(£(E A) g(& B))? = exp(-to)n (1.2 )

o n n

for t e Ri = (X e Rl: X 2 0) (or its continuation into the right
complex half-plane C+= (z € C€: Re(z) 2 0)) where NI is the

orthogonal projection of % onto the closed subspace in which

operator C is defined;
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(iv) to indicate a natural topology 7 in which the conve;gence in
(1.2) will take place.

A lot of papers has been devofed to the points (i) and (ii) of
the above program when (A,B) is a pair of self-adjoint operators.
It was Troéter [1] who for the first time has proved (1.1) for
Co-sémigroups whenever operators A,B are semibounded from below and
the algebraic sum A + B is essentially self-adjoint on ‘a common
dense domain & = D(A) n D(B), i.e., the operator A + B has a unique
self-adjoint extension defined by the closure (& + By = C.
For unitary groups (t - it) the semiboundedness can be  canceled.

The proviso about the QOmain D is important because
there exist examples of non-negative self-adjoint operators (A,B)
such that 9(A) n ©9(B) = (0) and (2(AY?) n 2(8Y?%))” = =,
Therefore, Chernoff [2] (see also Faris [3] and Simon [4]) has
extensively studied (1.1) for Co—contraction semigroups to define é
genéralized sum of two unbounded non-negative self—:jioint

operators A and B whenever their common form domain.Q = D(A )y n

. _ 1/2 2
ﬂ(Bl/z) is dense in ¥ and the quadratic form tB[u] =1 B ul®, u
. ) . ] 4
c a(B) = p(BY/2) is bounded relative to t,[u]: Q(A) < Q(B) an
tB[u] < aﬂul2 + btA[u], u e Q(a), for some a,b 2 0. Then C = A + B
is the form sum of A and B [5], i.e., a unique non-negative

self-adjoint operator associated with non-negative closed quadratic

form
h(u] = t[u] + tglul, u e Q(A) n a(B). S @3

The essential contribution to the theory at the point (iii)
has.been made by Kato [6,7]. In two subsequent papers hg has proved

the product formula (1.2) in the strong operator topology t = s for

a very dgeneral (but a natural) class of regl—valued functions f,g:
Ri + [0,1] and an arbitrary pair {A,B} of non-negative qnbounded
self—adjoiné operators in the Hilbert space %. Then 0 is .the
orthogonal projection of % onto the closed subspace %' spannéd by @
= p(al/? 1/2

) n D(B ) and C = A + B is self-adjoint operator in %!

associated with the non-negative closed quadratic form hf{u] =
1 al/? w? 4o pl/2 unzv, u € Q, which is densely defined in %'. In
the first paper [6] (Kato I) he has proved the product' formula
(1.2) for the pairs, of functions (£(x),g(x)) including

1 1 1

(e—x,(1+x)—1)’((1+x)~ , (1+#x)" "), while in the

,e %) and ((1+x)”
second one [7] (Kato II) a completely different proof which allows
one to include the important éase of (e_x, e;x) has been proposed.
Below we shall refer to (1.2) for T = s as the
Trotter-Kato product formula. The problem to prove the Trotter-Kato
product formula for unitary groups and imaginary resolvents (f,g) =
((1+ix)_1,(1+ix)_1) has been considered by Lapidus [8,9]. He has
proved that in the latter case the conditions on the pair {A,B) can
be relaxed. If the self-adjoint operator A is assumed to be
non-negative, then the positive part B, of the self-adjoint
operator B = B, - B_ can be arbitrary while its negative part B_
has to be small with respect to A in the sense of quadratic.r forms

with the relative bound b < 1: Q(A) < Q(B_) and tB [u] < atwr® +

bt [u], u e Q(A). Then again C = A+ B and %' = 0¥ = (Q(A) n
a(B))”, a(B) = 2(|B|/2), where [B] = ("B)1/2 denotes the absolute
value of the operator B.

Recently, one of the authors of the present paper has made an
attempt to connect the topology r in the product formula with that
in which semigroups involved in (1.1) are continuous for t e

Ri\(O) [10]). This question has been inspired by the point (iv) of
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the above program for Gibbs semigroups, see [11,12]. If at least
one of the operators A or B :genefates a self-adjoint Gibbs
semigroup and Trotter's conditions on the pair (A;B) are satisfied,
then the strong operator convergence ih (1.1) can be lifted for t >
0 tor = I.Il-topology (trace-norm convergence) .

The purpose of the present paper is to prove the Trottér—Kato
product formula (1.2) for r = I.Fl when at leaﬁt one operator of
the paif {A,B) is a generator of a self-adjoint Gibbs semigroup. We
also discuss relaxation of the conditions on (A,B) imposed by Kato
[6,7] which are relevant in applications to quantum statistical
mechanics.

To formulate the problem more precisely we recall some
notation and definitions, see e.g. [13]. If % is a separable
Hilbert space, then 8p(2) is the Banach space of compact operators
on ¥ with finite I.Ip—norm}

T e 1/p
1 X ={z(xk(xnp} , 1<p<o. : (1.4 )
p k=1

Here (Ak(x))E=1 are the singular values of the operator X e Bp(X),

1/2, e.g. the trace

i.e. eigenvalues of the operator |X| = (X*X)
class 81(%) and the H;lbert—Schmidt operators 82(%) are defined by
the trace-norm VX!, = Tr|X| and the HilSert-Schmidt norm lef2 =
(Tr(x*x))l/z, respéctively. The Banach spaces (’ep(ﬂt’))1Sp<m are
*-jdeals in the Banach space of compact operators Sem(¥) = ¥ _(X)

and bounded operators 3(%) in % ordered by
€ (%) < €, (%) < ... < 2p(x) C ve. c Com(X) c B(X), (1.5 )

Definition 1.1 [1l1]. A Co—semigroup (G(t))tzo in a separable
Hilbert space ¥ is called a Gibbs semigroup if G(t): (0,0) =+

€ (%),

s R

Remark 1.2. From the continuity of multiplication (Griimm [14]):

n.t b
xy —B xy if x 2 x, vy —P vy asnsoe (1.6 )

for (X,)psq € B(®), (Y5 € 2,(%), 1< p< o it follows that

Gibbs semigroups are I .1 -continuous for t > 0.

1

The Gibbs semigroups naturally arise  in quantum statistical
mechanics (QSM) as one-parameter self-adjoint Co-semigroups
generated by a Hamiltonian H: GH(B) = exp(-fH). Here a parameter [}
> 0 is nothing but the inve£se temperature of the system described
by the operator H. For continuous systems of QSM H is a sum of two
parts: an ideal (kinetic-energy operator T) and a nonideal
(interaction operator U). 1It. is known [4] that for singular
two-body potentials the operator U is not being small with respect
to the kinetic-energy operator T in the usual operator sense [5].
Therefore, in this case the definition of the Hamiltonian of the
system is not very obvious. Moreover, as far as in QSM the main
object of investigations is the partition function Z(B) =
Tr(GH(B)), regularizations .or 1limit procedures defining the
Hamilitonian H have to be such that the corresponding families of
operators approximating Gibbs semigroup GH(B) should be
u.ul-convergent (11,15]). The same arguments are applied. to the
Trotter product formula which is often used (under the Tr) for
constructing a sum of T and U, trace Feynman-Kac formula and other
calculations, see e.g. [16j.

The outline of the paper 1is as follows. In section 2 we
accumulate technical preliminaries which in our opinion have also
their own interest fof the theory of the *-ideals tp(X), 1<ps w,
In section 3 we prove the Trotter-Kato product formula (1.2) in

I.ul- topology. This is done in two steps. First, we consider a



special case when Kato I conditions plus requirement that f(tA) e
ﬁp(%) for t > 0 and 1 £ p < » are fulfilled. In contrast with the
case of Co-semigroups and Tt = s (see [7]) we cannot avoid this
intermediate sﬁep exploiting monotony properties of auxiliary
operator families. The vindication of this 1line of reasoning
becomes clear when one follows the_proof of the product formula
(1.2) in the general case of conditions a 1la Xato II. The last
section 4 1is devoted to ‘remarks and -

concluding possible

applications.

2. Technical preliﬁinaries

In the following we prove some generalizations ' of the vexisting
convergence theorems in trace ideals which will be useful in the
sequel. The generalizaéions are mainly connected  with the
uniformity of certain convergences in 8p—ideals and,  therefore,
they are of independent interest.

Proposition 2.1. Let (xn)nzl and (Yn)nzl be operator sequences from
B (%) and ﬁp(%); 1< p<o, respectively, and let X € 8(¥) and Y e

ﬁp(%) be operators such that

-lim Y_ = Y. (2.1 )
n-mo n
(i) If s-lim X = X, then I.l _~lim XY, = XY.
n-w n-mw
(ii) If s-lim x = x*, then 1.1_-lim Y X_ = ¥X.
n+o n-o nn

Proof. The first conjecture is due to Grilmm [14], see Remark 1.2.

To prove the second conjecture we note that Kp(%) is *-jideal ' in

] . 3 . s *
B(%), i.e., the nomm is 1nvar1ant under the involution 2 -+ 2 .

n.
Hence Y ———EL Y yields Y ———E+ Y . Applying (i) to (X;Y;) we

nz1
obtain X Y ———E+ X Y . Using again the invariance of H.Hp under

the involution 2z + z*. we prove (ii).m
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Corollary 2.2. Let (Xn(.))nZl and (Yn(.)_)nzl be sequences of

operator-valued functions defined on X with values in &2(%¥) and

8p(2), respectively, such that

sup Hx () < 4w,
teX
nz1

Let X(.): X — 3(%¥) and Y(.): X — Ep(X) be operator-

functions such that
sup IY(t)l < +w
teX
and
.Hb—llm Yn(t) = Y(t)
n-o

uniformly in t € X.

(2.2 )

valued

(2.3 )

(2.4 )

(1) If s-1lim Xn(t) = X(t) uniformly in t e X and if for some

n-o

sequence of finite dimensional orthogonal projections

obeying s-lim P; = I we have
l1-o

lim sup (I - P )Y(t)H =0,
lro teX

then 1.1 _-1im Xn(t)Yn(t) = X(t)Y(t) uniformly in t e X.

n-o

(RS RETS

(2.5 )

(ii) If s-lim xn(t)* = X(t)* uniformly in t « X and if for some

n+o

sequence of finite dimensional orthogonal projections

obeying s-lim Q1‘= I we have
lvo

lim sup I Y(t) (I - Ql)ﬂ =0,
l+o teX p )

then I.Mp—llm Yn(t)Xn(t) uniformly in t € X.

n-o
Proof. We note that X (t) ;2 X(t) or X (6)* =% x(t)* ana
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imply
sup 1 X(t) 1 < 4w, . (2.7)
teX .

To prove (i) we use the estimate

X (£)Y(E) = X(E)Y(E)E < WX (E)1 1Y (E) = Y(O)b +

+1X (£) = X(E)1 H (T = PPY(E) + F(Xp(t) = X(£)) Pyl 1Y ()0

The first term tends to zero uniformly in t € X as n »'® by (2.2)
and (2.4). The second term goes to zero uniformly in t € ¥ and n21
as 1 » » by (2.2), (2.7) and (2.5). Choosing a suitable integer 1

and fixing it we obtain that on account of the estimate

(X (€)= X(£))Py1 < 1v/p (X (t) = X(£))Py!

S

and the uniformity of convergence Xn(t) oy X(t) in t € % the
expression H(xn(t) - X(t))Plﬂ converges to zero uniformly in t e %

as n » o. Hence, by (2.3) the third term tends to zero uniformly in
teXas n -+ o, Summing'up we prove part (i).

In order to prove part (ii) we have only to use the results of
(i) and the invariance of the operator norm I.! and the ideal norm
“.ﬂp under the involution z - 2%

The next lemma will be necessary to establish a certain

generalization of the Griimm convergence theorem [13,14].

Lemma 2.3. Let (xn('))n>l be a sequence of operator-valued

functions defined on X with values in 2®(%¥) such that (2.2) is
valid. Let X(.): X — B(X) be an operator-valued function such that
for some sequences of finite dimensional projections (Pl)l>l and

obeying s-1lim P, = s-lim Q, = I we have
1 1 1
Y. lro

Q)15
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lim sup 4 (I ~- Pl)x(t)ﬂ = 1lim sup IX(t) (I - Q) = o. (2.8 )
1+ teX lrw teX

If s-linm Xn(t) = X(t) and s-lim Xn(t)* = X(t)* uniformly in t € X,
n-w n-mw

then s-lim X ()™ = X(t)", s-1lim (xn(t)*)m = (x(t)" 3™, me N, and
n-w n-+o

8 * 8

s-1im |x_(8)]% = [x(t) |, s-1im |X (6)"] 1, 0<6 < +a,
n-ow :

n-o

= |X(t)

uniformly in t e %,

Proof. The first two assertions can be proven by induction and the
proof is following the line of reasoning of the previous -Corollary
2.2. Similarly we show the validity of the last two assertions -for

8 = 2;4,6,... . To handle the case 0 < 8. < 2 we exploit the

representation
. +w *
X_(t) X_(t)
|xn(t)|2U =c, | i_u n n ar. (2.9 )
o A A X (8) X (8)

0 < v < 1. We remark that for & > 0 we get the estimate

*
- X, () X, (%)

S
1 v
dan I £ ¢ & (2.10)
v I 1-v * v
o A A+ X (E) xn%t)

which is uniform in t € X and n € N, Further, the identity

*
. { X, (€)X (£)

X(£) *x(t) } _
*
A+ X (6) X (t)

A+ X(t)'X(Y)

_ A ) * *
=t (X (B X (V) - X(E)X(t)) -

*
A+ X (E) X (b)
A

I S X(e) *x(t)  _
*
A+ X (8) X (E)

* *
(X_(t) X (t)-X(t) X(t)) Q
n n a4 xey*x(t)

*
— ()X ()X (1) "X (1) ) (1-gy) —FLELXE)
A+ X (6)7X(8) A+ X(E) TX(E)

and (2.8) imply the uniformity of



*
X, (£) "X (£)

x(8) *x(£) } -0 (2.11)

s=1lim A { +
A+ X(t) X(t)

n-o

*
A+ X (6)7X (%)

in.t € X and A 2 &§. Now the decomposition

S *
X () .X _(t) *
Ixn(t)l2u -.IX(t)lzv =C,’ ?ﬁv { - . - X f(t) }
\ o A AHX (€)X (£)  A+X(E) X(t)

e X (8) "X (1) *
+c, I g{u N { n : _ __X(%) Xit) }

s A A+ X () X (B) A+ X(E)TX(E)

(2.10) and (2.11) immediately prove s-lim |Xn(t)|2” = |X(t)|2u

n-»o

uniformly in t e % for 0 <wv < 1. Combining the result for 8 =
2,4,6,... and 8 = 2v, 0 <v < 1, and taking into consideration

(2.8) we easily show that s-1lim |Xn(t)|8 = |X(t)|8 for 0 < 8 < +o
n-mo

uniformly in t € X if one follows the proof line of Corollary 2.2.

8 8

I

Similarly we prove the uniformity of s-1lim |Xn(t)* = |x(t)*| '
n-o

0 <8 < +w, in t € X.n

Proposition 2.4. (uniform.Griimm convergence theorem)

Let (Xn(.))nzl be a sequence'of operator-valued functions defined
on X with values in Ep(%), 1 < p < +w, such that (2.2) is
satisfied. Let X(.): X — 3p(%) be an operator-valued function such
that for some sequences'of finite dimensional projections (Pl)121

and {Q,},,, Obeying s-lim P, = 1lim Q, = I the condition (2.8) holds
v 17121 P S gy |

and in addition

either lim sup ! (I - Pl)x(t)l =0 )
1o teX - P

or lim sup I1X(t)(I - Ql)n =0
lvow teX ) p

(2.12)
)

is valid. If s-lim X_(t) = X(t), s-lim X )" = x(t)* and
n-ow n+m n
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lim IX_(t)0_ = EX(t)® ,P=1,2,..., 2.13
Lin 1%, (€)1, (1, . p - (2.13)

~uniformly in t e X, then H.ﬂp-lim Xn(t) = X(t) uniformly in t e X

n-o

for every p = 1,2,3,... .

Proof. Due to Lemma 2.1 it is clear that either (lxn(.)|)n2'1 and
|X(.)| or (|Xn(.)*|)nzl and |X(.)*| satisfy the assumptions of
Proposition 2.4 too. Since the second case can be tried analogously
to the first one we consider only this case. First of all let us
show that for any fixed 1 = 1,2,... we have

if: N(I-Ql)|xn(t)|(I-Ql)np = H(I-Ql)|X(t)|(I-Ql)Hp (2.14)

uniformly in t € X. By a simple calculation we prove that
- - P _ P -
(D - Q) X (0] (X - o)1 h - 1x (1]

e {10 - o a0 (1 - o IP - ENCILE
p-1 3
T Tr {[(1 - Ix BT - o 1P oy ix 8] - X (e ¢
J=0

_1— ]

+ o lx (e)]e) Ix ()P 3}.

on account of Proposition 2.1 and Lemma 2.3 we find that for any
fixed 1 = 1,2,... the expression under ' the.  trace tends in the
I.1,-norm to [(I’Ql)lx(t)[(I'Ql)]]('Qllx(t)l-lx(t)|Q1+Qllx(t)lQl) x
x |X(t)|p_l_] as n » o uniformly in t € X. But this implies that

i - P Pl _
iff {H(Iv- Ql)|xn(t)|(1 Ql)@p n|xn(t)|np} (2.15)
{H(I - e IxE) (T - 9)1h - n|x(t)|ng}

uniformly in t € X. On account of (2.12) and (2.2) which imply

(2.7) we obtain sup N|X(t)|“p < +w. Since (2.13) there is n, . such
teX

that (“lxn(t)lﬂ is uniformly bounded in t € X and n 2 n_.

pln21,tex
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Hence, the uniformity of (2.13) vyields the uniformity of

convergence s-lim u;xn(t)|ug = I|x(t)|lg in t e %. Thus, from
n-o

(2.15) we conclude that
i - - P _ - - P
i}: (1 Ql)lxn(t)I(I Ql)jp (1 Ql)lx(t)l(I Ql)lp (2.16)
uniformly in t ¢ X for every fixed 1 = 1,2,... . Finally, using the
inequality [a - b| < |ap - bp|1/p, a20,b2o0, p21, we obtain
(2.14) from (2.16).

Further, a straightforward calculationAgives the estimate

X (t) - x(ﬁ)lp <

T(x, (t) -~ x(t))Ql'p + X (e[ (T - Ql)'p + x| (1 - Ql)lp <
"(xn(t)‘x(t))Qllp + IIQllxn(t)I(I'Ql)'p - “Qllx(t)l(I‘Ql)“pl +
|"(I‘Ql)|xn(t)|(1'01)'p - '(I—Ql)lx(t)l(I-Ql)"pl +

+ 20| X(t) | (T - Ql)lp.

By (2.12) there is a suitable integer 1 such that the last term is
sufficiently small uniformly in t e X. Let us fix this 1. Now the
first term goes to zero uniformly in t € X as n » +m by Proposition
2.1. On account of Proposition 2.1 and Lemma 2.3 we find that
n.up—;}: QX (e) (T - Q) = Ql|X(t)|(I - 0;) uniformly in t e x.
Hence, the second term goes td zero uniformly in t € X as n -+ 4w,
The same property of the third term can be derived from (2.14).s
Remark 2.5. The previous proposition was proved for p = 1,2,... .
But using (2.9) the proof can be extended to every p € [1,+®).
Proposition 2.4 admits a certain modification which we will

need in the following.
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Corollary 2.6. Let (Xn('))n21 and (Yn(f))nzl be sequences of
operator-valued functions defined on X with values in ﬁp(%),
1 £ p < +o, such that (2.2) is satisfied, Let X(.): X — 8p(%) be
an operator-valued function obeying (2.8) and (2.12). If

* .

s=-1lim X_(t) = X(t), s-1lim X (t)* = X(t) , t+. _-lim Yn(t) = X(t)

n n P
n-+o n-+o n-o .

uniformly in t € X and
nxn(t)up < nvn(t)up , n=1,2,3,..., t e, (2.17)

then 1.1 -lim X_(t) = X(t) uniformly in t e X.
no ‘

proof. In order to apply Proposition 2.4 we have to establish

(2.13). Obviously, we get that

PXp (R0 S EX (R)1 S Y (e,

1=1,2,..., n=1,2,..., t € X. Hence, we derive the estimate
- 1 < | £yl - EX(E)N + (2.18)
X (e) 0 = EX(E)0 | |1y, (t) p (O
DX (e)Qy iy = IX(8) Q! ] + J1X(0)Qyt ) = IX(E)H ]
On account of (2.12) and the estimate
- < - ]
|“X(t)01"p HX(t)Hp[ X(e) (I - Q) p

we find a suitable 1 such that the last term of (2.18) is
sufficiently small uniformly in t e X. Fixing such an 1 and
applying Proposition 2.1 we obtain that the sefo?d term goes to
zero uniformly in t € X as n » +w. Since Yn(t) E;BE* X(t) uniformly
in t € X the first one also converges to zero uniformly in t € X as
n » +o. Thus, we have verified (2.13). Similarly, assuming the
other alternative condition of (2.12) we yeriff (2.13) too. ”Now,

using Proposition 2.4 we complete the proof.s
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Remark 2.7. In particular, Corollary 2.4 holds if (xn('))nzl’
(Yn('))nzi and X(.) are independent of t. Since in this case the
condition (2.2),.(2.8) and (2.12) are automatically satisfied we
can omit them.

Furthermore, we will apply a certain generalization of the
Lebesqgue dominated convergence theorem for Bp(x)—ideals (cf. [13]).

Proposition 2.8. Let and Y be sequences of

(xn)nzl
non-negative self-adjoint operators strongly converging to X and Y,
respectively. If Yn € Bp(x), n=1,2,3,..., Ye BP(X), 1< p< +o,

(B ]

Yn—n:E’ Y and

X <Y, o, n=1,2,3,..., (2.19)

then X e £ (%), n =1,2,3,..., X e 2, (®), 1 5 p < o, and

Hoh _=1im Xn = X.
n-mw

Proof. The first two assertions are obvious consequences of (2.19)

and the assumed strong convergence. From (2.19) it follows that

1/2

n }y)" — % and

there are uniquely ‘defined contractions rn: (R(Y

r: ((y’2?))” — % such that xi/z = rnyi/z and X172 = ryl/2, see
_ . 1/2 s J1/2 1/2 s 1/2
‘[17,Corollary 7.2]. Since Xn e X “ and Yn o Y [5] we
get
s-1lim rnpn =TP, (2.20)

n-mw

where Pn and P denote the orthogonal projections of % onto the

subspaces (x(y;/z))' and (x(Yl/z))_, respectively. Moreover, we
1/2 1/2 . 172 . V2
have Yn € ezp(X), Y € ezp(X) and ii: lYn nzp 1y nzp. Then
by the Griimm convergence theorem [14]
bor, -1im ¥Y/2 = y1/2, (2.21)
2p ns® '
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Therefo:e, by Proposition 2.1, (2.20) and ?2.21) we get that
. bt

1/2 2 1/2 .. : . : :

Xn E:;—Ee X which implies Xn ETEE* X.n

Corollary 2.9. Let (xn('))nzl' X(.) and Y(.) be operator-valued
functions defined on X such that for any t € X the . conditions of

Proposition 2.8 are satisfied. If in.addition s-1lim Xn(t) = X(t),
B n-+ow

H.Hp-lim Yn(t) = Y(t) uniformly in t € X and conditions (2.3) and

n-o

(2.6) are satisfied, then H.Hp—lim Xn(t) = X(t) uniformly in t € %,
n-+o

Proof. Obviously, we have the estimate
X (t) - < - -
nft) x(t)"p £ X (L) X(t))Qlup + X (e) (I Ql)"p +

I1X(t) (T - Ql)ﬁp.
Applying the equality .
_yo*o, 172
Izl = | ]
2p 12T, 2 e X 00,

1 £ p < +o, and the estimate [13)]

uxup < uyup , 05 X<Y, X,Ye Ep(*),

=
1A

p < +w, we find
PXn(E) = X(E)I < (X, (€) - X(£))Qbp + uyn(t)u;/2 x
1/2 1/2
x 1Y (£) (I - Ql)Hp/ + ny(t)up/ VY (t) (T - Ql)ﬂpl/z.
Taking into account the inequality
1Y (8) (T - 012 < wy (t) - v(e)1 M2 4 uyqe) (1 - g1 2/2
n 1 ’p n ) ( Ql) p

P

one calculates
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1/2
X (e) - X(t)"p < (X () - X(t))Qll'p + nYn(t)"p x

_ 1/2 1/2 i o172 _ 1/2
x YL (E) =Y (0 7+ {nyn(t)np Yy } PY(£) (1-9)1 %

By virtue of (2.3) and (2.6) we get sup lY(t)np < +m, Since Yn(t)
teX

[ |
57524 Y(t) uniformly in t € X and sup lY(t)ﬂp < +» there is an
teX

. integer n, such that (“Yn(t)up)nzl,te% is uniform{y bounded in n 2
ng and t € X. Using this statement' and (2.6) we can choose a
suitable integer 1 such that the third term is uniformly small in n
2 ng and t € X. For a such fixed 1 the first term goes to zero
uniformly in t € X as n » +w on account of the uniformity of the
limit X_(t) ﬁ§;+ X(t) and Corollary 2.2. The second term tends to

zero uniformly in t € X as n » + o by the uniformity of convergence

N
Y (€) _ﬁfg’ Y(t) in t € X.»

3.>Product formula
3.1, Special case - Kato I
Let A2 0 and B2 0 be self-adjoint operators in a separable
Hilbert space. Denoting by Q = D(Al/z) n D(Bl/z) we do not assume
that Q@ is dense in ¥. By ¥' we denote the closure of Q, i.e. %r=qQ",
In general ¥' is a proper subspace of %, i.e. ¥ = %'. The
ofthogonal projection of * onto %¥' is indicated by N. We recall
that C is the self-adjoint operator in %' associated with the
non-negative closed quadratic form f -+ | Al/zf 12 4 Bl/zf Hz, fe
Q, i.e. C = A + B.

Further, we introduce a class of 'Borel functions f and g

defined on Ri ={ te rl: £ 2 0 } characterized by

16

]

0 < £(t) £ 1, £(0)
(3.1)
0= g(t) £ 1, g(0)

~1

1, f1(0) = -1 } .
1, g'(0) '

Notice that f(ta)® —=» I and g(tB)“ S, I as t —» +0 for any « 2 0.

In addition, throughout this section we assume that

1

0 < f(t), t e R+, (3.2)
and that
P(t) = ¢ (zrey - 1) and w(t) = ¢ (1 - g(t))
" (3.3 )

are monotonously nonincreasing functions.

Condition (3.2) is necessary in order to give a correct statement
of condition (3.3). The condition (3.3) itself has. been firstly
used by Kato in t6]. The conditions are satisfied for

£(t) = (1 + kt) X, 0 < kx <1, and g(t) = e %, for example.

In accordance with Kato [6]) we define the family (M(t))t>b’

M(t) = £ (£(tA)™ - g(tB) ], (3.4)

of non-negative self-adjoint and in general unbounded operators.
Since (3.1) and (3.2) the operators M(t) are- well-defined on
D(M(t)) = R(£(tA)), t > 0.

Furthermore, we assume that
f(tA) e 8p(x), t >0, 15 p< +m. ) (3.5 )

Lemma 3.1, If the conditions (3.1) - (3.3) and (3.5) are satisfied,

then

1

A+ ME)) T < e () (3.6 )

for A > 0 and t > 0.

17



Proof. On account of the identity .
-1
(* + M)t = (3.7 )
t £t 21 + em 20t - geeB)) £(ta) Y27 £(ea)l/?

the result follows if one proves that the operator in the curved
brackets is boundedly invertible for A > 0 and t > 0. For At 2 1 we

get

I+ £(ta)Y20t - g(tB)) £(ta) /2 »

v
H

For 0 < At < 1 we get the inequality
I+ £(t8) 20t - g(tB))£(tAa) /2 2 AtI. w

owing to the condition (3.3) one .concludes that the family
(M(t) )y 0 is monotonously nondecreasing as t » +0. Therefore, the
resolvent family {(» + M(t))_l)t>0 for A > 0 1is monotonously
nonincreasing as t + +0. Then, as it has been demonstrated by Kato

[6] one has

s-lim (x + M(t)) F= a + ) te 0, , . (3.8 )

t++0
A > 0, where 0 denotes the null operator on ¥ e %',

Lemma 3.2. If the conditions (3.1) - (3.3) and (3.5) are satisfied,

1

then for A > 0 (A + C) ~ e (') and

1 1

1.0 -lim (A + M(t)) " = (A +C) " e 0. - (3.9)

t++0

Proof. The monotonicity implies

1 < 1

(A +C) T e 0< (A + M) " e ep(x), t > o0,

which proves the first conjecture. Furthermore, using (3.8) we get

the monotonously nonincreasing convergence of the eigenvalues

18

Ho((A + M) to Ho (0 + c)l e 0) ast » +0 for every n =

1,2,... . But this fact immediately yields (3.9).s

Let us introduce the operator-valued functions

2 s(ta) g(tB)Y? and s(t) =L (I - F(t)} 20, t > o.

F(t) = g(tB)/ :

Due to (3.5) we have F(t) € Ep(x).
Lemma 3.3. If the conditions (3.1) - (3.3) and (3.5) are satisfied,

then for A > 0 we have

a1 -lim (A + s(£))T'F(e) = (2 + o) Ve 0. (3.10)

t++0

1

Proof. Notice that (A + ¢) "~ e Ep(x'), A > 0, by Lemma 3.2.

Starting from the identity (3.7) one gets

1/2 1 1/2

(A + M(t))"
1

g(tB)

A+ s(E))

g(tB)
g(tB) 2 (1 - £(ta 1 + M(E))”

= ( + S(t)) TR(E) + (3.11)

tgeen) /2.

Taking into account (3.9) and Proposition 2.1 we find

1.1 -lin gtBy 2+ M gem Y2 = 2 + )7l e 0. (3.12)

t-» +Q

Turning to the right-hand side and using the estimate

1 1

g8 2 (1 - £ea)1(r o+ M(e)) T
1

N+ S(t)) g(tBl/z)np <

H(I - £(tA)) (A + M(t))~ up
we prove (3.10) using again Proposition 2.1.m.

Corollary 3.4. Under the assumptions of Lemma 3.3 we have

B -lim (z - S(t)) YF(t) = (z - ¢}V s o, (3.13)

t++0
1
z e C\R+.

Proof. From the resolvent identity for A > 0 we get
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R (S(t)) = {R,(C) @ 0} = [ T ~ (A + Z)R,(5(t))] x

« fx +sENTo g+ e 0))[-I + (A + 2)(R(C) © 0)],

z e C\Ri, where Rz(.) = (zI. - . )-1 denotes the resolvent.

Multiplying from the left by F(t) we obtain

R, (S(t))F(t) - {R,(C) @ O} = (3.15)

190)])(

[I-(+ 2)R,(S(E)] [ + S(E) F(E) = ((A+C)”
x [-I + (A + 2)(Ry(C) @ 0)] + [ I = (A + 2)R,(S(E))] x
x (I- F(O)(( + )7 e 0)(-I + (A # 2)(R,(C) ® 0]}~
(I - F(£))(R,(C) ® 0)..

The first term goes to zero as t + +0 by (3.10). The second term

-1
tends to zero as t » +0 by s-1lim (I - F(t)) =0, (A + C) € 3p(2')

t++0
and Proposition 2.1. To handle the third term we note the relation

R,(C) = (A + O NI, + (A + 2)R,(C)) € E (X)), (3.16)

z e C\Ri. Hence, taking into account s-lim (I - F(t)) = 0 and
. t++0

Pfoposition 2.1 we find that the third term converges to zero as
t » +0.8
Corollary 3.5. Under the assumptions of Lemma 3.3 we have
1o -1im e 5 p(ry) = e 6 0 (3.17)
7440
uniformly in t on compact sets X ¢ (0,®).

Proof. Using the Dunford-Taylor formula one gets

et ey - (7t 6 0) =
(3.18)
E%T [ az otz (Ry(S(T))F(r) - (R,(C) @ 0))

20

1

where I' is a positively oriented contour in the resolvent set C\R

with Ri withinr., For t € [a,b), 0 < a < b < +0, we obtain

1™ p) - (7 o), < ‘ (3.19)
37 J 19z &R ar)r (s(r)) - (Ry(0) © op1 4
r .

3 1 19z @R ap@)R (s() - (Ry(€) @ 0pi )
r
+

where ' _ = {(z € I': Re(z) £ 0) and r,=1(z e 't Re(z) > 0}. On

account of (3.15) and (3.16) we get the estimate
PR, (S(T))F(r) - (R,(C) o o;np < C(z,r,x){n(x + S(T))_lF(r) -

0}
@ } p]r
1

where C(z,7 ,A) = max {H(A + S(t))( z - S(r))_H I(A +C)(z-C) "o

1 1

(A +C) "o O)up + 20(I - F(r)){(x + )"

1

& (~Lp )t I(A +C)(z-C) e (-Ixex.)l]. A straightforward calcu-

lation shows that

0 <C(z,T,A) £1 4 [ 32%%%E§_1 ]2,

1

for =z e C\R+, and

0 < c(z,7 ) [ 2+ TﬁE%ETT ]2, )
for z e {z C\Ri: Re(z) < 0). Hence, choosing a suitable contour I
it is possible to guarantee that C(z,7,A) will be uniformly bounded
int >0 and z e T for a fixed A > O.Therefore, R R (S(7))F(r) -
-(RZ(C) ® O)Ip is uniformly bounded in r > 0 and z € I'.Thus, using
the Lebesgue dominated convergence theorem for. Zp- ideals
(Proposition 2.8) and Corollary 3.4 we obtain (3.17) from (3.18).=:

Now we come to our main theorem:
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Theorem 3.6. Let A and B be two non-negative self-adjoint operators
defined in the separable Hilbert space % and let £ and . g be two

Borel functions obeying (3.1)-(3.3). If (3.5) is satisfied, then

Ho1 -lim (f(%»A)g(% )" = e € e o, (3.20)

n>o

where C = A + B, uniformly iﬁ t on any compact set X < (0,m).

Proof. Notice that e-tc ® 0 ¢ (%) by Lemma 3.2. Taking into

account the definitions F(t) = (g(tB)) /2 £(ta) (g(tB)) Y2 and s(t)
1

= Z F(t)) 2 0, t > 0, one has

o€ (e € (1 +ts(e) + 20+ The e,

t > 0. Hence we get

0 < (F(%))“*1 < e ES(t/M) F(%)} t > o. (3.21)
By Corollary 3.5 we have

b4 -lim e tS(E/M) ply = et e 0 (3.22)
n-mw

uniformly in t on compact sets X ¢ (0,»).0n the other hand, by Kato

[6] and by the uniformity of the convergences
1/2 s

t t 1/2 s t .
f(n A) (g(n B)) e’ I and (g(n B)) e’ in t on bounded
sets of Ri we get

s-lim [F(%)]"*l =e¥s o0 (3.23)

n-mw
uniformly in t on compact sets X < (0,@). Then using (3.21) -

(3.23) and taking into account proposition 2.8 we obtain

1. —lim [F(%)]"+1 ) (3.24)

n+o
for t > 0. To prove the uniformity in t we remark that the

continuity of the functions f£(.) and g(.) at zero and their

22

boundedness imply ' -

s-1lim F(g) =1
“him (3.25)
uniformly in t on bo 1
unded sets of R;. Now a straightforward

calculation shows that the uniformity of {(3.23) and (3 25)

yields the uniformity of

e -
s=lim F(3) Loets o
n+o (3.26)

in .
in t on compact sets X ¢ foam)' Taking into account (3.21), (3.22)
. r

(3.26) and owing to Corollary 2.9 one gets the. uniformity in t on

compact sets X < (0,0) in (3.24). Mofeover, by virtue of
t t +2
(£(E nyg(s nt2 _ ot L 1/2 gk
(£ MI(E B)) £ M E Y2 rEH™ gk 572
and ghe uniformity of t t 172
Yy convergences f(ﬁ A)(g(ﬁ B)) / 5

m—m' I and
ER-R PRS- S :
n ) in t on bounded sets of R+ we conclude from

{3.24) and Corollary 2.2 that

1 -1im (£ a)g(E B))t2 = o€
plin (£(5 Mg B)) e e 0
uniformly in t on compact sets X ¢ (0,»). Due to the uniformity we
obtain
s _(t) s

X (t)
-1 £( -2 n +2 -
: n}g (e n A)g( n B))n = et

e 0

s __n . : :
{s,(t) = 15 t)»,, uniformly in t on compact sets %X < (0,m)
o).

Hence, after substitution we get
i

1.0 _~1lim (f(=t _t_ pgyyt2 o tC
i (f(z M9z B) " e e 0

uniformly in t on compact sets X ¢ (0,).s

23



3.2 General case - Kato II

The aim of the présent section is to extend the results of the
previous section, in particular, to drop the conditions  (3.2) 'and
(3.3). To this end we denote by f and g a pair of functions obeying

only (3.1). We relate to the pair {f,g} two functions o cand  y

defined by
. . -1, 1 <
0< e (t) =inf p(s) =inf s (fTET -1 =1,
O<s<t O<sst
., (3.27)
0 <y (t) = inf w(s) = inf s"1(1 - g(s)) < 1,
o<s<t 0<sst
where we agree to set f(;) = 40 if f(s) = 0. Defining fo(t) by
1 , t =0 ’ )
£,(t) = - (3.28)
(1+te (£)) 7, t>0
L]
we get 0 < fo(t) < 1 (condition (3.2)) and
0 £(t) £ £ (E) < 1. (3.29)
Since lim f(t) = 1, we find lim f_(t) = 1. Moreover, we have
ts+0 t++0
1 = lim p(t) = lim inf p(t) = lim p_(t) = 1.
t+40 t+40 t++0
Thus, using lim f.(t) = 1 we find
t->+0 °
() -1 Po(t) L (E)E(£) N
lim 2— = -lim +—————= = -lim ¢ = -1,
ts+0 °© ta+o 1+ TPt ts+0 ©  °©
Consequently, fo obeys (3.1). Since t—l(f_%ET - 1) = po(t) and
’ o

po(t) is monotonously nonincreasing, by construction the condition

(3.3) is satisfied. Let

1 , t =0
g (t) = (3.30}
© 1 -ty (t), t > 0.

24

since w (t) < w(t), t > 0, we get 0 < g(t) = 1 - ty(t) £ 1 - ty (t)

= go(t), t > 0. Furthermore, the representation

0 <y (t) = t7h - g (t) ' (3.31)

implies 0 £ 1 =~ go(t) or go(t) <1, t > 0. Thus, summing up we

obtain 0 £ g(t) < g, (t) < 1. Taking into account

1 = 1lim y(t) = lim inf y(t) = lim wo(t) =1
t+»+0

t++0 t»+0
O N 9p(t) -1 .
we find lim —F = -lim wo(t) = -1. Hence, g_ obeys (3.1).
ts+0 240 °
Since t_l(l - gg(t)) = v (t) is monotonously nonincreasing

by construction the condition (3.3) is valid.
Therefore, starting with the functions f and g obeying (3.1)
we construct the associated pair (fo,go) to use the results of the

previous section. To this end we replace the condition (3.5) by

£,(tA) < E (®), £ >0, 1< p < +o. (3.32)
For example, let f(t) = e”t. It is easy to check that in this
case fo(t) = (1 + t)-l. Hence, (3.32) means that (I + tl\.)m1 €

Ep(%), t>0, 1< p< 4o,
Lemma 3.7. Let F_(t) = (g,(tB)) /2 £, (ta) (go(tB))l/z. If the
condition (3.32) is satisfied, then f(tA) e Ep(%), t >0, 1% p <

+o, and
m .
1F(e)™ ) < nFo(t)mﬂp ,t >0, (3.33)

for m 2 1.
Proof. The first conjecture follows from (3.29) and (3.32). Now let

F(t) = (g(tB))/? £, (ta) (g(tB)) /2. since F(t) € F(t) we get [13]

25



np(t)mng = Te(F(t)™P) < Tr(F(t)™P) = nf'(t)“‘ug (3.34)

Let F(t) = (fo(tA))l/z g(tB) fo(tA)l/z and ¥_(t) = (£ (ta)) /2 «

x g, (tB) (fo(tA))l/z. Obviously, one has

n%(t)“‘ng = Tr(F(t)™P) = Tr(¥(t)"P) = PE(e)™ P (3.35)
and, analogously,

u?o(t)“‘ug = upo(t)mng. . (3.>36)
on account of (3.34), (3.35), (3.36) and F(t) < Fo(t) we find

nr(t)“‘up < Ilf‘(t)mllp < ufo(t)“‘up = upo(t)mnp

which proves (3.33).s

Theorem 3.8. Let A and B be two non-negative self-adjoint operators
defined in the separable Hilbert space ¥ and let £ and g be two
Borel functions obeying (3.1). If (3.32) is satisfied, then (3.20)
holds uniformly in t on any compact set X ¢ (0,m:).

Proof. Firstly, we note that by Kato [7] and again by the uniformi-

ty of the limits £(5 a) @E Y% 25 1 ana (e Bt o1
in t we obtain
“s-1im p(5MT < e s o (3.37)
n-o

uniformly in t on compact sets X ¢ (0,0). In addition by Lemma 3.1

the condition

up(%)“”u < nFo(%)"ﬂM

o , t >0, (3.38)

P
is satisfied. Moreover, from (3.24) we derive

. t,n+l _ _-tC
I.Hp lim Fo(ﬁ) = e @0 (3.39)

n-+m
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uniformly in t on compact sets X < (0,»). Consequently, by

Corollary 2.6 we find

. t,n+1 -tC
[ I . = =
Ip lf: F(n) e ® 0 (3.40)

uniformly in t on compact sets X ¢ (0,w). In order to derive (3.20)
from (3.40) one has to follow the line of reasoning after (3.26).s
Corollary 3.9. If the conditions of Theorem 3.8 are satisfied, then

the convergence in (3.20) really takes place in y.ul—norm:

b1, -lim (£(F agE B = e o 0 (3.41)

n+o

uniformly in t on compact sets X ¢ (0,m).

Proof. Let us note that (3.20) can be rewritten as

I -11]}2 (f(;—n A)g(;—n B))" = ¢ (Y/P)C °0 (3.42)
(n2p)

uniformly in t on compact sets X ¢ (0,®»). Then
£ £ np _ ,~(t/p)C p
"(f(pn A)9(pn B)) (e ® 0) "1 <
p-1 t t n 1 t t n (ﬁ/p)c
I (£(=— A)g(— (e > t - -
1£o (E(gr Mg BT (£(5q A g(ps B)) (e e oy x

- p-1-1
x 1e”(8/PIC ¢ o

1

t >0, n2 p, and by (3.42) we get

.. t t np -tcC
[ - r L =
1 lim (f(p A)g( B)) e e 0

n-+mw

uniformly in t on compact sets X ¢ (0,0). Since (f(gﬁ A)g(gﬁ B))m
s

e’ I, 0<mz<=< p-1, uniformly in t we find
. _t t n ~tC y
bl =1lim (f A = . .
171 (B (et M IGmpy B)) =6 e 0 (3.43)

uniformly in t on compact sets X ¢ (0,0) by Corollary 2.2 where [.]
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denotes the entire part of a real number. Now, the uniformity of

(3.43) in t admits to derive (3.41) from (3.43).s

4. Application and conclusion
As an application of the above results for the Gibbs semigroups we
mention continuous systems of QSM in a finite volume.

Let us consider an N-particle system enclosed in a box A < R”
which is a bounded open connected subset of the v-dimensional
Euclidean space with a smooth boundary dA. Hence, the appropriate
Hilbert space is ¥ = LZ(AN). In our discussion the statistics of
particles is not important, therefore, we ignore the symmetry of

the wave function y € ¥. The kinetic-energy operator Ta for the

particles of the mass m is a self-adjoint extension of the sum

!

N 1 v
T, = E (->=4,), A, = [
N ioq 0 2M ] ! o~

a2
j= j 3,

1
with domain D(TN) = CZ(AN). The domain - 2(T)) is specified by a
boundary condition ¢ € C{3A). Then one can check that T_ is a

p-generator for the self-adjoint Gibbs semigroup Gp (t)y [12], i.e.,
Co o

for gi < p < +o we have
1
Rz(To) < tp(x), z e C\IR+. (4.1 )
The stable particle interaction UN > - Nul is a self-adjoint

multiplication operator with a real-valued measurable function
defined on the domain D(UN) = {y e X Uy« ¥}, see e.g. [18].

Therefore, we have to generalize our results a bit to include
the semiboundedness of the operator UN’ Moreover, to describe the
short-distance behavior of the two-body interaction a hard-core
potential is frequently used [18]. Then, the original Hilbert space
of the wave functions ¥ = LZ(AN) should be reduced to %' = NI¥ =
LZ(AN\SN) where Sy is a region forbidden by hard-cores.
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Theorem 4.1. Let T 2 0 and U 2 =-ul be “self-adjoint operators
defined in a separable Hilbert space %. If Q = D(Tl/z) n D((U +

+ u1) Y2, then

1.1,-lin (exp (- £ oy exp (- Eup™ = e PHp (4.2 )

n+o

uniformly in the inverse temperature f§ > 0 varying in a compact
interval bounded away from zero. Here H= T + U and 1 is the
orthogonal projection of ¥ (e.qg. LZ(AN)) onto & (e.g.
12 (a"\s")) spanned by @. ‘

Proof. Let us introduce A = T 2 OAand B=U+ uT =2 0. Then by (4.1)

we get that exp(-fT) € 31(2) for all g > 0 and

I.Il-lim (e—(p/n)T e—(ﬂ/n)(U'+ uI))n _ ~BC

n+o

e n (4.3 )

uniformly in f# > 0 on any compact interval bounded away from zero
by Corollary 3.2. Here C = H + ul and canceling both parts of
(4.3) by exp(~fu) one gets (4.2).m
Remark 4.2. We have to remark that our results are not applicable
to interactions‘U which are not semibounded from below (e.g. for
Coulomb systems) in spite of the semiboundedness of the operator H.
The reason leading to Remark 4.2 is obvious. It is not so
obvious fdr the unitary group and r = s, see [8]. We hope to return

to this question elsewhere.
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