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1. Introduction 

Let A and B be linear operators in a separable complex Hilbert 

space~. Then under suitable conditions concerning {A,B) the strong 

limit 

s-lim (exp(-~ A) exp(-~ B))n = exp(-tC) n n n«» 
(1.1) 

exists fort~ O, where the operator C can be constructed by means 

of A and B. This is the well-known Trotter-Lie product formula for 

strongly continuous (C
0
-) semigroups [lJ. (For finite matrices it 

has been established by Sephus Lie about 1875). 'since the discovery 

of the product formula it has permeated through mathematics and 

mathematical physics challenging the problem of relaxation and 

generalization of the hypotheses under which the formula holds, see 

(2-10). 

A solution of this problem implies that one has to do the 

following: 

(i) to find the set of pairs {A,B) for which the limit (1.1) 

exists; 

(ii) to identify the operator C and to describe the mapping {A,BJ: 

--+ C; 

(iii) to generalize '(if possible) the exponential functions 

involved in the left-hand side of (1.1) to a class of real-valued, 

Borel measurable functions f(.), g(.) such that in some operator 

topology T 

(1.2 ) 

forte~!= (x e ~ 1 : x ~ OJ (or its continuation into the right 

complex half-plane~+= {z e ~= Re(z) ~ OJ) where n is the 

orthogonal projection of ~ onto the closed subspace in which 

operator C is defined; 



(iv) to indicate a natural topology T in which the convergence 

(1.2) will take place. 

in 

A lot of papers has been devoted to the points (i) and (ii) of 

the above program when {A,B} is a pair of self-adjoint operators. 

It was Trotter [1] who for the first time has proved (1.1) for 

c
0
-semigroups whenever operators A,B are semibounded from below and 

the algebraic sum A+ Bis essentially self-adjoint on a common 

dense domain D = D(A) n D(B), i.e., the operator A+ B has a unique 

self-adjoint extension defined by the closure (A + B) c. 

For unitary groups (t ➔ it) the semiboundedness can be canceled. 

The proviso about the domain D is important because 

there exist examples of non-negative self-adjoint operators {A,B} 

such that D(A) n D(B) (0) and (D(Al/2) n D(B1/2))- x. 

Therefore, Chernoff [2] (see also Faris [3] and Simon [4]) has 

extensively studied (1.1) for C
0
-contraction semigroups to define a 

generalized sum of two unbounded non-negative self-adjoint 

operators A and B whenever their common form domain.Q D(Al/2) n 

D(B112 ) is dense 

e Q(B) = D(B112 ) 

in X and the quadratic form t
8

[u] = U s112 
u u

2
, u 

is bounded relative to tA[uJ: Q(A) c Q(B) and 

2 • 
tB[u] s. allul + btA[U], u E Q (A), for some a,b ,!: o. Then C = A + B 

is the form sum of A and B [5], i.e. I a unique non-negative 

self-adjoint operator associated with non-negative closed quadratic 

form 

h[u] = tA[u] + tB[uJ, u E Q(A) n Q(B). (1.3) 

The essential contribution to the theory at the point (iii) 

has,been made by Kato [6,7]. In two subsequent papers he has proved 

the product formula (1.2) in the strong operator topology T = s for 
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\I I 
.\ 
1 

a very general (but a natural) class of real-valued functions f,g: 

~~ ➔ [O,l] and an arbitrary pair {A,B} of non-negative unbounded 

self-adjoint operators in the Hilbert space x. Then n is .the 

orthogonal projection of X onto the closed subspace X' spanned by Q 

= D(A
1

/
2

) n D(B112 ) and C =A+ Bis self-adjoint operator in X' 

associated with the non-negative closed quadratic form h[u] 

n A
1

/
2 

un
2 

+ I s112 uu 2 ., u e Q, which is densely defined in x•. In 

the first paper [6] (Kato I) he has proved the product. formula 

(1.2) for the pairs. of functions {f(x) ,g(x)} including 

{e-x,(l+x)-l},{(l+x)-1 ,e-x} and {(l+x)-1 , (l+x)-1 ), while in the 

second one [7] (Kato II) a completely different proof which allows 

one to include the important case of {e-x, e~x} has been proposed. 

Below we shall refer to (1.2) for T s as the 

Trotter-Kato product formula. The problem to prove the Trotter-Kato 

product formula for unitary groups and imaginary resolvents {f,g} = 

{(l+ix)-
1
,(l+ix)-

1
} has been considered by Lapidus [B,9]. He has 

proved that in the latter case the.conditions on the pair {A,B} can 

be relaxed. If the self-adjoint operator A is assumed to be 

non-negative, then the positive part B+ of the self-adjoint 

o~erator B = B+ - B_ can be arbitrary while its negative ~art B_ 

has to be small with respect to A in the sense of quadratic" forms 

with the relative bound b < 1: Q(A) c Q(B_) and t
8 

[u] S. aHun 2 + 

btA[u], u E Q(A). Then again C =A+ B and :Jel = nx = (Q(A) n 

Q(B))-, Q(B) = D(!B1 1/ 2 ), where !Bl = (B*B) 1/ 2 denotes the absolute 

value of the operator B. 

Recently, one of the authors of the present paper has made an 

attempt to connect the topology T in the product formula with that 

in which semigroups involved in (1.1) are continuous for t e 

~~\{O} [10]. This question has been inspired by the point (iv) of 

3 



the above program for Gibbs semigroups, see (11,12). If at 

one of the operators A or B generates a self-adjoint 

least 

Gibbs 

semigroup and Trotter's conditions on the pair {A,B} are satisfied, 

then the strong operator convergence in (1.1) can be lifted fort> 

Oto T = I .1
1
-topology (trace-norm convergence). 

The purpose of the present paper is .to prove the Trotter-Kato 

product formula ( 1. 2) for T = I • _n 1 when at least one operator of 

the pair {A,B} is a generator of a self-adjoint Gibbs semigroup. We 

also discuss relaxation of the conditions on {A,B} imposed by Kato 

(6,7) which are relevant in applications to quantum statistical 

mechanics. 

To formulate the problem more precisely we recall some 

notation and definitions, see e.g. (13). If. X is a separable 

Hilbert space, then ep(X) is the Banach space of compact 

on X with finite n .BP-norm: 

{ a, } 1/p n XI = E (:>..k(X))p , l!>p<m. 
p k=l 

operators 

(1.4) 

Here (:>..k(X) li=l are the singular values of the operator Xe e p(X), 

i.e. eigenvalues of the operator IXI = (X*X) 112 , e.g. the trace 

class e
1

(X) and the Hilbert-Schmidt operators e 2 (X) are defined 

the trace-norm 1x1
1 

= TrlXI and the Hilbert-Schmidt norm 1xu 2 

by 

* 1/2 , are (Tr(X X)) , respectively. The Banach spaces {e (X) }1< < P -P ., 

•-ideals in the Banach space of compact operators e6m(X) 

and bounded operators 2(X) in~ ordered by 

ea, (X) 

el(~) C e2(X) C ••• C 'Cp(X) C ••• C e6m(~) C $(X). 

Definition 1.1 [11). A c
0

-semigroup {G(t)lt?:o in 

Hilbert space Xis called a Gibbs semigroup if G(t): 

el (X). 

4 

a 

(1.5) 

separable 

(O,m) -+ 

Remark 1.2. From the continuity of multiplication (Griimm (14)): 

D .U 
X Y __E_, XY n n if xn 

s 
--> 

D .D 
X, yn ___E_, y 

for {Xn}n?!l e $(X), {Yn}n?!l e ep(X), 1 $ p < .,, 

Gibbs semigroups are II .n 1-continuous fort> 0. 

as n ➔ en (1.6 

it follows that 

The Gibbs semigroups naturally arise in quantum statistical 

mechanics (QSM) as one-parameter self-adjoint C
0

-semigroups 

generated by a Hamiltonian H: GH((J) = exp(-(JH). Here a parameter (J 

> o is nothing but the inverse temperature of the system described 

by the operator H. For continuous systems of QSM His a sum of two 

parts: an ideal (kinetic-energy operator T) and a nonideal 

(interaction operator U). It is known (4) that for singular 

two-body potentials the operator U is not being small with respect 

to the kinetic-energy operator Tin the usual operator sense [5). 

Therefore, in this case the definition of the Hamiltonian of the 

system is not very obvious. Moreover, as far as in QSM the main 

object of investigations is the partition function Z((J) 

Tr(GH(fJ)), regularizations .or limit procedures defining the 

Hamilitonian H have to be such that the corresponding families of 

operators approximating Gibbs semi group GH(fJ) should 

u .u 1-convergent (11,15). The same arguments are applied .. to 

Trotter product formula which is often used (under the Tr) 

constructing a sum of T and U, trace Feynman-Kac formula and 

calculations, see e.g. (16). 

be 

the 

for 

other 

The outline of the paper is as follows. In section 2 we 

accumulate technical preliminaries which in our opinion have 

their own interest for the theory of the •-ideals ep(X), 1 $ p 

In section 3 we prove the Trotter-Kato product formula (1.2) 

also 

!! m. 

in 

I .n 1- topology. This is done in two steps. First, we consider a 

5 



special case when Kato I conditions plus requirement that f(tA) e 

tp(X) fort> o and 1 ~ p < IX) are fulfilled. In contrast with the 

case of C
0

-semigroups and T = s (see [7}) we cannot avoid this 

intermediate step exploiting monotony properties of auxiliary 

operator families. The vindication of this line of reasoning 

becomes clear when one follows the proof of the product formula 

(1.2) in the general case of conditions a la Kato II. The last 

section 4 is devoted to 

applications. 

concluding remarks and possible 

2. Technical preliminaries 

In the following we prove some generalizations of the existing 

convergence theorems in trace ideals which will be useful in 

sequel. The generalizations are mainly connected· with 

the 

the 

uniformity of certain convergences in ep-ideals and, therefore, 

they are of independent interest. 

Proposition 2.1. Let {Xn}~ 1 and {Yn}~ 1 be operator sequences from 

$(X) and tp(X), 1 ~ p <'m, respectively, and let Xe $(X) and 

tp(X) be operators such that 

y E 

11. n -lim Y 
p n➔ ID n 

Y. (2 .1 ) 

(i) If s-lim x 
n-+oo n 

X, then U .II -lim X Y = XY. 
p n➔ m n n 

(ii) If s-lim x* = x*, then 11 .n -lim Y x = YX. 
n-+oo n P n-+m n n 

Proof. The first conjecture is due to Grilmm [14], see Remark 1.2. 

To prove the second conjecture we note that tp(X) is *-ideal in 

$(X), i.e., the norm is 
II .a 

Hence Yn ____£, Y yields 
* * II. U * * 

obtain XnYn ____£, X Y. 

invariant under the involution Z 

* D. II * * * 
y ____£, y. Applying (i) to {X Y >n>l n n n _ 

* z • 

we 

Using again the invariance of II .up under 

the involution Z ➔ z* we prove (ii). ■ 

6 

Corollary 2.2. Let {Xn(.)}n~l and {Yn(•tln~l be sequences of 

operator-valued functions defined on X vith values in $(X) and 

tp(X), respectively, such that 

sup DX (t) II < +m. 
teX n 
n~l 

{2.2 ) 

Let X(.): X-+ $(X) and Y(.): X -+ tp(X) be operator-valued 

functions such that 

and 

sup IIY(t)H < +m 
teX 

II .II -lim Y (t) 
p n➔ OJ n 

uniformly int ex. 

Y(t) 

(i) If s-lim Xn(t) = X(t) uniformly in 
n➔ ID 

t E 

(2.3 ) 

(2.4 ) 

X and if for some 

sequence of finite dimensional orthogonal projections (P
1

}
1

~
1 

obeying s-lim P1 =Ive have 
l ➔ ID 

lim sup U (I - P1 )Y(t)i = O, 
l ➔ a, teX p 

(2. 5 

then II .n -lim X (t)Y (t) = X(t)Y(t) uniformly int ex. 
p n➔ m n n 

(ii) If s-lim X (t)* = X(t)* uniformly int e X and if for some 
n-+m n 

sequence of finite dimensional orthogonal projections {Q
1

}
1

~
1 

obeying s-lim Q1 =Ive have 
1 ➔ m 

lim sup II Y(t) (I - Q
1

)U = O, 
l➔ m teX p 

then a .n -lim Y (t)X (t) uniformly int ex. 
p n➔ m n n 

Proof. We note that Xn(t) s 
---+ 
n➔ m 

X(t) or Xn(t)* 

7 

s 
---+ 
n➔ Dl 

X(t) * 

(2. 6) 

and (2.2) 



imply 

sup n X(t) a < -too. 
~x 

To prove (i) we use the estimate 

nxn(t)Yn(t) - X(t)Y(t)I s HXn(t)I HYn(t) - Y(t)Dp + 

(2.7) 

+ DXn(t) - X(t)II ll(I - P1 )Y(t)lp + l(Xn(t) - X(t))PlUp HY(t)U. 

The first term tends to zero uniformly int e X as n ➔ oo by (2.2) 

and (2.4). The second term goes to zero uniformly int e X and n~l 

as 1 ➔ oo by (2.2), (2.7) and (2.5). Choosing a suitable integer 1 

and fixing it we obtain that on account of the estimate 

H (X (t) - X(t))P
1

II S ll/p H (X (t) - X(t))P1 II 
n p n 

and the uniformity of convergence Xn(t) 
s 

--+ 
n➔ oo 

X(t) in t E X the 

expression n (Xn(t) - X(t))P
1

11 converges to zero uniformly int e X 

as n ➔ oo. Hence, by (2.3) the third term tends to zero uniformly in 

t ex as n ➔ oo. summing up we prove part (i). 

In order to prove part (ii) we have only to-use the results of 

(i) and the invariance of the operator norm U .II and the ideal norm 

II .n under the involution z ➔ z*. ■ 
p 

The next lemma will be necessary to establish a certain 

generalization of the Grilmm convergence theorem [13,14). 

Lemma 2.3. Let (Xn(.))n~l be a sequence of operator-valued 

functions defined on X with values in 2(X) such that (2.2) is 

valid. Let X(.): X-+ 2(X) be an operator-valued function such that 

for some sequences of finite dimensional projections {P1 ) 1~ 1 and 

{Q1 )1~1 obeying s-lim P1 = s-lim Q1 = I we have 
l ➔ m l➔ m 

8 

r 
l 

I 
11 
l 
~ 
! 

·\ 

lim sup U (I - P1 )X(t)fl 
l ➔ oo teX 

lim sup UX(t) (I - a1 )H 
l ➔ oo teX 

o. (2. 8 ) 

. . * If s-ll.m X~(t) = X(t) and s-ll.m Xn(t) * X(t) uniformly int e X, 
n➔ m n➔ oo 

. m m . * m *· m 
then s-l1m Xn(t) = X(t) , s-l1m (Xn(t) ) = (X(t) ) , me ~. and 

n➔ m n➔ m 

• /J /J • *9 *fJ s-l1m IXn(t)I = IX(t)I, s-l1m IXn(t) I = IX(t) I, O < /J < +oo, 
n➔ m n➔ m 

uniformly int ex. 

Proof. The first two assertions can be proven by induction and the 

proof is following the line of reasoning of the previous Corollary 

2.2. Similarly we show the validity of the last two assertions for 

/J = 2,4,6, .... To handle the case O < /J < 2 we exploit the 

representation 

1Xn(t)12u 
+oo X (t)*X (t) 

1 n n d>-. 
c., f ,_1-u ,_ + x (t)*x (t) 

0 n . n 

O < u < 1. We remark that for 6 > 0 we get the estimate 

6 
1 

U C f 1-u u >. 
0 

* X (t) X (t) u 
n n d>-IISC6 

* u >. + Xn(t) xn~t) 

which is uniform int e X and n e ~- Further, the identity 

>. { 
* Xn(t) Xn(t) 

* >- + xn (t) xn (t) 

* X(t) X(t) } _ 
>- + xct1*xct1 -

>. * 
>- + X (t)*X (t) {Xn(t) Xn(t) - X(t)*X(t)) -

n n 

>. 
>- + X (t) *x (t) (Xn(t) *xn(t)-X(t) *x(t)) Q X(t) *x(t) 

n n 1 * >- + X(t) X(t) 

(2. 9 ) 

(2. J.O) 

>. 
>- + X (t)*X (t) (Xn(t)*Xn(t)-X(t)*X(t))(I-Q) X(t)*X(t) 

n n 1 * >- + X(t) X(t) 

and (2.8) imply the uniformity of 

9 



* X (t) X (t) 
s-lim >.. { n ~ 

>.. + Xn(t) Xn(t) n➔ m 

* X(t) X(t) } 
>.. + X(t) *x(t) 

0 (2.11) 

int e 'X. and>..~ 6. Now the decomposition 

6 

IX (t)12u - IX(t)12u 
n . 

cuf ~ ).1-u 

* 
{ 

Xn(t) .Xn(t) - X(t) *x(t) } 

>..+x (t)*x (t) >..+x(t)*xctl 
n n 

+ C u 

+m 

J~>.. ). 2-u 
6 

0 

Xn(t)*xn(t) 

{ >.. + X (t)*x (t) 
n n 

X(t) *x(t) } 
>.. + X(t) *x(t) 

(2.10) and (2.11) immediately prove s-lim 
~m 

I Xn(t) I 2u IX(t)12u 

uniformly int e 'X. for O < v < 1. Combining the result for 8 ~ 

2,4,6, ... and 8 = 2u, o < u < 1, and taking into consideration 

(2.8) we easily show that s-lim 1Xn(t)1
8 

= IX(t)1
8 

for O < 8 < +m 
n➔ m 

uniformly int e 'X. if one follows the proof line of Corollary 2.2. 

. . . . f i I >*1° I *1° Similarly we prove the uniformity o s-1 m Xn(t = X(t) , 
n➔ m 

0 < 8 < +m, in t e 'X.. ■ 

Proposition 2.4. (uniform.Grtimm convergence theorem) 

Let (Xn(.))~
1 

be a sequence of operator-valued functions defined 

on 'X. with values in ~p(X), 1 $ p < +m, such that (2.2) is 

satisfied. Let X(.): 'X.-:-' ~P(X) be an operator-valued function such 

that for some sequences of finite dimensional projections {P1 J1~1 

and {Q
1

}
1

~
1 

obeying s-lim P1 = lim Q1 = I the condition (2.8) holds 
l➔ m l➔ m 

and in addition 

either lim sup n (I - P1)X(t)U =O) 
l➔ m te'X. · P 

or lim sup DX(t) (I - Q1 )B = 0 
l➔ m te'X. p 

·is valid. If s-lim Xn (t) 
n•m 

. * X(t), s-lim Xn(t) 
n•m 

10 

* X(t) and 

(2. 12) 

\ 
I 
r 
f 
ii 
\I 
i 
! 

' I 

I 

l 
( 
! 

t 

l 
!' 

limUX(t)H =IIX(t)H ,p=l,2, ... , 
n➔ m n P P 

_uniformly int e 'X., then U .I -lim Xn(t) = X(t) uniformly int 
. P n➔ m 

for every p = 1,2,3, •.. 

(2 .13) 

e 'X. 

Proof. Due to Lemma 2.1 it is clear that either {IXn(.)I >n~l and 

IX(.JI or <IXn<·>*I }~1 and IX(.)*I satisfy the assumptions of 

Proposition 2.4 too. Since the second case can be tried analogously 

to the first one we consider only this case. first of all let us 

show that for any fixed 1 = 1,2, ... we have 

lim ll(I-Q1 )1X (t)I (I-Q1 )U = ll(I-Q1 )1X(t)1 (I-Q1 )11 
n➔ m n P P 

uniformly int e 'X.. By a simple calculation we prove that 

II (I - Q1)1xn(t) I (I - Q1 )H~ - UIXn(t) IH~ = 

Tr {[(I - Q1 )1Xn(t)1 (I - Q1)Jp - IXn(t>IP} 

(2 .14) 

p-1 . 
E Tr {[(I - Q1 )1X (t)I (I - Q1)JJ {-Q1 1x (t)I - IX (t)IQ1 + 

j=O n n n 

+ Q1IXn(t)IQ1l IXn(t)lp-1-j}· 

on account of Proposition 2.1 and Lemma 2.3 we find that for any 

fixed 1 = 1,2, ... the expression under the trace tends in the 

n.n
1

-norm to [(I-Q1)1X(t)[(I-Q1)Jj{-Q11X(t)I-IX(t)IQ1+Q1 [X(t)IQ1 } x 

x IX(t)lp-l-j as n ➔ m uniformly int e 'X.. But this implie~ that 

lim {uc1 - Ql)IXn(tJl(I - Ql)llp - 111xn(t)lllp} 
n•m P p 

(2.15) 

{11c1 - Q1 i1xcti1c1 - Q1 JH~ - 111xcti111~} 

uniformly int e 'X.. On account of (2.12) and (2.2) which imply 

such (2.7) we obtain sup n IX(t)III < +m. Since (2.13) there is 
te'X. P 

no 

that {UIXn(t) 1Hp>n~l,te'X. is uniformly bounded int e 'X. and n ~ no. 

ll 



Hence, the uniformity of (2.13) yields the uniformity of 

convergence s-lim I IX (t)jnP = ljX(t)jlP in t _e X. Thus, from 
n•oo n p p 

(2.15) we conclude that 

lim I (I-Q1 )1Xn(t)I (I-Q1 )1P = I (I-Q
1

)1X(t)l (I-Q
1

)1P 
n•oo P P 

(2 .16) 

uniformly int e X for every fixed 1 1,2, •••. Finally, using the 

inequality I a - bl 5 I aP - bpi l/p, a ~ o, b ~ o, p ~ 1, we obtain 

(2.14) from (2~16). 

Further, a straightforward calculation gives the estimate 

UXn(t) - X(t)lp 5 

n (Xn{t) - X(t))Q1tp + 81Xn(t)l (I - Ql)lp + YjX(t)l (I - Q1 pp 5 

n (Xn{t)-X(t))Q11P + jnQ1 jxn(t)I (I-Q1 )1P - AQ1 jx(t)I (I-Q
1

)Upl + 

p (I-Q1 )1Xn(t)l (I-Q1 )1p - I (I-Q1 )1x(t)l (I-Q1 )Hpl + 

+ 21jX(t)l(I - Q1 J•p· 

By (2.12) there is a suitable integer 1 such that the last term is 

sufficiently small uniformly int ex. Let us fix this 1. Now the 

first term goes to zero uniformly int e X as n • +oo by Proposition 

2.1. On account of Proposition 2.1 and Lemma 2.3 we find that 

D .I -lim Q1IX (t)l (I - Ql) = Q1IX(t)l (I - Ql) uniformly int 
P n•oo n 

e 

Hence, the second term goes to zero uniformly int ex as n • 

The same property of the third term can be derived from (2.14). ■ 

Remark 2.5. The previous proposition was proved' for p = 1,2, ••. 

But using (2:9) the proof can be extended to every p e [1,+oo). 

x. 

+oo. 

Proposition 2.4 admits a certain modification which 

need in the following. 

we will 
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Corollary 2.6. Let {Xn(.)}~ 1 and {Yn(r} }n~l be sequences of 

operator-valued functions defined on X with values in tp(X), 

1 5 p < +oo,·such that (2.2) is satisfied. Let X(.): X--+ tp(X) be 

an operator-valued function obeying (2.8) and (2.12). If 

. . * * s-lim Xn(t) = X(t), s-lim Xn(t) = X(t) 
n-+co n-+co 

uniformly int e X and 

II .II -lim Y (t) 
P n•oo n 

IIXn{t)llp 5 HYn(t)llp , n = 1,2,3, ... , t e X, 

then H .n -lim X (t) = X(t) uniformly int ex. 
P n•oo n · 

X(t) 

(2.17) 

Proof. In order to apply Proposition 2.4 we have to establish 

(2.13). Obviously, we get that 

ffXn(t)QlHp 5 nxn(t)llp 5 IIYn(t)llp 

1 1,2, .•. , n =1,2, ... , t e X. Hence, we derive the estimate 

jHX {t)U - UX(t)II j 5 jHY {t)II - UX(t)II j + n p p n p p 
(2.18) 

pxn{t)Q1 up - IIX(t)Qlllpl + px(t)Q1 np - HX(t)Npl · 

On account of (2.12) and the estimate 

jUX(t)Qllp - UX(tPpl 5 UX(t)(I - Ql)llp 

we find a suitable 1 such that the last term of (2.18) is 

sufficiently small uniformly in t e x. Fixing such an 1 and 

applying Proposition 2.1 we obtain that the second term goes to 
N .I 

zero uniformly int e X as n ➔ +oo. Since Y (t) _____e_, X(t) uniformly n ~oo 

int e X the first one also converges to zero uniformly int e X as 

n ➔ +oo. Thus, we have verified (2.13). Similarly, assuming the 

other alternative condition of (2.12) we verify (2.13) too. Now, 

using Proposition 2.4 we complete the proof. ■ 
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Remark 2.7. In particular, Corollary 2.4 holds if {Xn(.)ln~l' 

(Yn(.)ln~l and X(.) are independent oft. Since in this case the 

condition (2.2),. (2.8) and (2.12) are automatically satisfied we 

can omit them. 

Furthermore, we will apply a certain generalization _of the 

Lebesgue dominated convergence theorem for Bp(X)-ideals (cf. [13]). 

Proposition 2.s. Let {XnJ~ 1 and {Yn)~ 1 
be sequences of 

non-negative self-adjoint operators strongly converging to X and Y, 

respectively. If Y e B (X), n = 1,2,3, •.. , Ye B (X), 1 Sp< +oo, 
LIi n p p 

Y ___e_. Y and 
n n-+m 

Xn s Yn , n 1, 2, 3, ... , 

then xn e BP(X), n = 1,2,3, ..• , 

11.n -lim x = x. 
p n➔ oo n 

(2 .19) 

X E Bp(X), 1 S P < +oo, and 

Proof. The first two assertions are obvious consequences of (2.19) 

and the assumed strong convergence. From (2.19) it follows that 

there are uniquely aefined contractions r n= (~(Y~/
2
))­

r: (~ (Y112 )) - --+ x such that x 11 2 = r y 11 2 and x112 
n n n 

[17,Corollary 7-2]. since x 11 2 ~ x 11 2 and y 11
2 ~ n n-+m n n-+oo 

get 

s-lim r p = rP, 
n-+oo n n 

--+ x and 

ryl/2, 

yl/2 [ 5 ] 

see 

we 

(2 .20) 

where Pn and P denote the orthogonal projections of X onto the 

subspaces (~(Y1/ 2 ))- and 
n 

(~(Yl/2)) - , 

have y 11 2 e B2 (X), yl/2 e B 2p (X) and 
n p 

by the Griimm convergence theorem [14] 

n ·"2p-lim y 1/ 2 = yl/2 
n-+oo n • 

14 

respectively. 

1. I ylf2u 
1.m n 2p 

n➔ oo 

Moreover, we 

1/2 
I Y n 2P. Then 

(2. 21) 

• ! 

I 
!1 

l 
l 
·' 

Therefore, by Proposition 2.1, (2.20) and (2.21) we get that 
1/2 I O II 2 1/2 II . II 

X ~ X which implies X ___e_. X. ■ n n-+m n n-+m 

Corollary 2,9, Let {Xn(.)ln~l' X(.) and Y(.) be operator-valued 

functions defined on X such that for any t ex the. conditions of 

Proposition 2.8 are satisfied. If in.addition s-lim Xn(t) = X(t), 
n•oo 

II .u -lim Y (t) = Y(t) uniformly int ex and conditions 
p n•oo n . 

(2.3) and 

(2.6) are satisfied, then II ,I -lim X (t) = X(t) uniformly int e ~. 
p n➔ oo n 

Proof. Obviously, we have the estimate 

IIXn(t) - X(t)llp s II (Xn(t) - X(t))Qlllp + IIXn(t) (I - Ql)llp + 

IIX(t) (I - Ql)Hp, 

Applying the equality 

11 zn 2P 11 z*zn 
11 2 , Z e B2 (X), 
p p 

1 s pc +oo, and the estimate [13] 

U XII p S II YII p , 0 S X S Y, X,Y e Bp(X), 

1 S pc +oo, we find 

IIX (t) - X(t)II S II (X (t) - X(t))Q
1

H + IIY (t)ii 1/ 2 
x n p n p n p 

x IIY (t)(I - Q1 )u
1f 2 + DY(t)ll 1/ 211Y(t)(I - Ql)II l/2 . 

n P P P 

Taking into account the inequality 

II Y (t) (I _ Q ) 11 1/2 < 
n 1 P - Uy (t) - Y(t)ll 1/ 2 + IIY(t) (I - Q p 1/ 2 

n p 1 p 

one calculates 
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UX (t) - X(t)II 5 H (X (t) - X(t))Qll + Uy (t)Hl/
2 

x .n p n p n p 

x ny (t)-Y(t)H 112 + {ny (t)R 112 + flY(t.)0 112} UY(t)(I-Q )II 
11 2

. n p n p p lp 

By virtue of (2.3) and (2.6) we get sup IY(t)H < +oo. 
te9C p 

U .H 
-L Y(t) uniformly 
n•oo 

int E 9( and sup IY(t)i 
te9C P 

< +oo 

Since 

there 

Yn(t) 

is an 

. integer n
0 

such that (HYn(t)lp)~l,te9C is uniformly bounded inn ?. 

n
0 

and t e 91'.. Using this statement and (2.6) we can choose a 

suitable integer l such that the third term is uniformly small inn 

?. n
0 

and t e 9C. For a such fixed l the first term goes to zero 

uniformly int e 9C as n • +oo on account of the uniformity_ of the 

limit Xn(t) 
s X(t) and Corollary 2.2. The second term tends to ---+ n•oo 

zero uniformly int e 9C as n • + oo by the uniformity of convergence_ 
H .I • 

Y (t) -L Y(t) int e 91'.. ■ n ~oo 

3. Product formula 

3.1. Special case - Kato I 

Let A?. 0 and B?. 0 be self-adjoint operators in a separable 

Hilbert space. Denoting by Q = D(A112 ) n D(B112
) we· do not assume 

that Q is dense in x. By x• we denote the closure of Q, i.e. X'=Q-. 

In general x• is a proper subspace of x, i.e. X ~ x•. The 

orthogonal projection of X onto x• is indicated by n. We recall 

that c is the self-adjoint operator in X' associated with the 

non-negative closed quadratic form f • I A1
/

2 f 1
2 + I B

112
f n

2
, f e 

Q, i.e. C =A+ B. 

Further, we introduce a class of ·Borel functions f and g 

defined on~!= { t e ~
1 : t?. o} characterized by 

16 

:j 
r 
f 
I 

0 5 f(t) 5 1, f(0) = 1, f'(0) = -1} 
( 3 .1 ) 

0 5 g(t) 5 1, g(0) = 1, g' (0) = -1 

Notice that f(tA)a ~ I and g(tB)a ~ I as t --> +0 for any a ?. 0. 

In addition, throughout this section we assume that 

0 < f(t), t E ~!, 
and that 

1 1 
,, (t) = t <qt) 1) and ~(t) = ½ (1 - g(t)) l 
are monotonously nonincreasing functions. 

(3. 2 ) 

(3. 3 ) 

Condition (3.2) is necessary in order to give a correct statement 

of condition (3.3). The condition (3:3) itself has been firstly 

used by Kato in (6]. The conditions are satisfied for 

-k -t f(t) = (1 + kt) , 0 < k 5 1, and g(t) = e for example. 

In acco'rdance with Kato [6] we define the family {M(t) >t>O' 

M(t) = ½ [f(tA)-l - g(tB)], (3.4 

of non-negative self-adjoint and in general unbounded operators. 

Since (3.1) and (3.2) the operators M(t) are well-defined on 

D(M(t)) = ~(f(tA)), t > 0. 

Furthermore, we assume that 

f(tA) E tp(X), t > 0, 1 5 p < +oo • (3 .5 ) 

Lemma 3.1. If the conditions (3.1) - (3.3) and (3.5) are satisfied, 

then 

(). + M(t)) -l e e (X) 
p 

for). > 0 and t > o. 

(3.6) 
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Proof. On account of the identity 

(A+ M(t))-l (3. 7 ) 

t f(tA) 1/ 2{I + f(tA) 1/ 2 (At - g(tB))f(tA) 1/ 2 }-l f(tA)l/ 2 

the result follows if one proves that the operator in the curved 

brackets is boundedly invertible for A > 0 and t > 0. For At~ 1 we 

get 

I + f(tA) l/2 (At - g (tB)) f (tA) l/2 ~ I. 

For 0 <At< 1 we get the inequality 

I+ f(tA) 1/ 2 (At - g(tB))f(tA) 1/ 2 ~ AtI. ■ 

owing to the condition (3.3) one concludes that the family 

(M(t)Jt>O is monotonously nondecreasing as t -,· +o. Therefore, the 

resolvent family {(A+ -1 
M(t)) lt>O for A > 0 is monotonously 

nonincreasing as t-, +o. Then, as it has been demonstrated by Kato 

(6) one has 

s-lim (A+ M(t))-1 ·= (A+ C)-l a, 0 , 
t->+0 

A > o, where o denotes the null operator on Xe x•. 

(3. 8 ) 

Lemma 3.2. If the conditions (3.1) - (3.3) and (3.5) are satisfied, 

then' for A> 0 (A+ C)-l e 'e (X') and p 

II .II -lim (A + M(t))-l = (A + C)-l a, 0. 
P t-,+o 

Proof. The monotonicity implies 

(A + C)-l il> 0 :S (A + M(t) )-l E 'e (X), t > 0, 
p 

(3. 9) 

which proves the first conjecture. Furthermore, using (3.8) we get 

the monotonously nonincreasing convergence of the eigenvalues 

l8 

-1 -1 µn((A + M(t)) ) to µn((A + C) a, 0) as t ~ +o for every n 

1,2, •••• But this fact immediately yields (3.9). ■ 

Let us introduce the operator-valued functions 

F(t) = g(tB) 1
/

2 f(tA) g(tB) 1/ 2 and S(t) =½[I - F(t)J ~ o, t > o. 

Due to (3.5) we have F(t) e 'ep(X). 

Lemma 3.3. If the conditions (3.1) - (3.3) and (3.5) are satisfied, 

then for A >owe have 

H • II -lim (A + S (t)) -lF (t) 
P t-,+o 

(A + C)-l il> 0. (3.10) 

Proof. Notice that (A+ C)-l e -e (X'), A > o, by Lemma 3.2. p 
Starting from the identity (3.7) one gets 

g(tB) 1/ 2 (A+ M(t))-l g(tB) 1/ 2 = (A+ S(t))-1 F(t) + (3.11) 

A(A + S(t))-l g(tB) 1/ 2 [I - f(tA)](A + M(t))-l .g(tB) 1/ 2 . 

Taking into account (3.9) and Proposition 2.1 we find 

n .II -lim g(tB) 112 (A + M(t))-1g(tB) 112 = (A + C)-l a, o. (3.12) 
P t-,+o · 

Turning to the right-hand side and using the estimate 

11A (A + S (t)) -l 

U(I-f(tA))(A 

g(tB) 1/ 2 [I 

+ M(t) )-lu 
p 

- f(tA))(A + M(t))-l g(tB1/ 2 Jn p 

we prove (3.10) using again Proposition 2.1. ■· 

Corollary 3.4. Under the assumptions of Lemma 3.3 we have 

:, 

II .H -lim (z - S(t))-1F(t) = (z - C)-l a, 0, 
P t-,+o 

(3.13)' 

Z E q; \IR 1 +· 

Proof. From the resolvent identity for A >Owe get 
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Rz(S(t)) - {Rz(C) $OJ= [ I - (>, + z)Rz(S(t))] X 

x [(>, + S(t))-l - {(>- + C)-l G> OJ)[-I + (>- + z){R (C) G> OJ], z 

z e C\~!, where Rz(.) = (zI )-l denotes the resolvent. 

Multiplying from the left by F(t) we obtain 

Rz(S(t))F(t) - {Rz(C) $ OJ (3.15) 

I - (>- + z)Rz(S(t))J [(>- + S(t))-1F(t) - {(HC)-l e OJ] x 

x [-I+ (>- + z) {Rz(C) e O)J + [ I - (>- + z)Rz(S(t)) J x 

x (I - F(t)){(A + C)-l e O)[-I +(A+ z)(Rz(C) e OJ]­

(I - F(t)){Rz(C) G> OJ, 

The first term goes to zero as t ➔ +o by (3.10). The second term 
-1 

tends to zero as t ➔ +Oby s-lim (I - F(t)) = O, (>- + C) e B (X') 
t➔ +O p 

and Proposition 2.1. To handle the third term we note the relation 

R (C) =(A+ C)- 1 {-I=, + (>- + z)R (C)J EB (X'), z ~ z p 

z e C\~!- Hence, taking into account s-lim (I 
t➔ +O 

F(t)) 

(3.16) 

0 and 

Proposition 2.1 we find that the third term converges to zero as 

t ➔ +o. ■ 

Corollary 3.5. Under the assumptions of Lemma 3.3 

11.11 -lim e-tS(T)F(T) 
p T ➔ +O 

e-tc e o 

uniformly int on compact sets~ c (O,oo). 

Proof. Using the Dunford-Taylor formula one gets 

e-tS(T)F(T) - {e-tc e OJ= 

1 f -tz 2n1 dz e (Rz(S(T))F(T) - {Rz(C) e 0)) 

r 

20 

we have 

( 3 .17) 

(3 .18) 

where r is a positively oriente,d contour in the resolvent set 

with~! within r. Forte [a,bJ, O <a< b < +oo, we obtain 

le-tS(TJF{TJ - {e-tc·e OJI s 
p 

~n f fdzl e-bRe(zJ DF{T)Rz(S(TJ) - (Rz(CJ e O)Up + 
r_ 

~n f ldzl e-aRe(z) UF(TJRz(S(T)) - {Rz(C) e opp 

r+ 

C\~l 
+ 

(3.19) 

where r {z er: Re(z) s OJ and r+ = {z e r: Re(z) > OJ. On 

account of (3.15J and (3.16) we get the estimate 

IR cs(TJJF(TJ - tR ccJ e op s ccz,T,>->{•c>- + scTJJ- 1 F(TJ -z z p 

{(>- + C)-l e Oji + 2H (I - F(TJ){(>- + C)-l e 0)11 }, 
p p 

where C(Z,T,AJ = max {n<>- + S(T))( z - S(T)l-1,i II(>-+ C)(Z - CJ-1 e 

-1 } . e (-Ixex•J• ,1 (>-+CJ (z - CJ e (-Ixex•>• • A straightforward calcu-

lation shows that 

0 < C(Z,T ,>-) s 1 + ( Re ( z J + >- ) 2 
Im(z) • 

for z e C\~!, and 

o < c ( z, T , >- ) 5 ( 2 + I Re~ z) I ) 2 , 

for z e {z e C\~!= Re(z) <OJ.Hence, choosing a suitable contour r 

it is possible to guarantee that C(z,T,>.) will be uniformly bounded 

in T > o and z er for a fixed>-> o.Therefore, I Rz(S(T))F(T) -

-{Rz(C) e O)lp is uniformly bounded in T > o and z er.Thus, using 

the Lebesgue dominated convergence 

(Proposition 2.8) and Corollary 3.4 we 

Now we come to our main theorem: 
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theorem for B -. p ideals 

obtain (3.17) from (3.18). ■ 



Theorem 3.6. Let A and B be tvo non-negative self-adjoint operators 

defined in the separable Hilbert space x and let f and g be tvo 

Borel functions obeying (3.1)-(3.3). If (3.5) is satisfied, then 

II.II -lim (f(! A)g(! B))n p . n. n 
n->CD 

e-tc e o, (3.20) 

vhere c =A+ B, uniformly int on any compact set~ c (O,oo). 

Proof. Notice that e-tc e o E tp(X) by Lemma 3.2. Taking into 

account the definitions F(t) = (g(tB)) 1/ 2 f(tA) (g(tB))l/
2 

and S(t) 

½ (I - F(t)) ~ o, t > O, one has 

0 :S F(t) :S er + ts(tl + t 2scti2 + ... )-
1 

:S 
-tS(t) e , 

t > 0. Hence we get 

0 :S (F(!))n+l :S e-tS(t/n) F(!)~ t > 0. 
n n 

. (3. 21) 

By Corollary 3.5 we have 

II II -lime-tS(t/n) F(!) 
· P n•oo n 

e-tc e o (3.22) 

uniformly int on compact sets~ c (O,oo).On the other hand, by Kato 

[6) and by the uniformity of the convergences 

f (t A) ( (t B)) l/ 2 ~ I and ( (t B)) l/
2 ~ I n g n n•oo g n n•oo 

int on bounded 

. 1 
sets of ~+ we get 

s-lim [F(~) ln+l e-tc e o (3. 23) 

n•CD 

uniformly int on compact sets X c (O,oo). Then using (3.21) 

(3.23) and taking into account Proposition 2.8 we o.btain 

n .11 -lim [F(!) Jn+l = e -tc e o 
P n•oo n 

(3.24) 

fort> O. To prove the uniformity in t we remark that the 

continuity of the functions f(.) and g(.) at zero and their 
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boundedness imply 

s-lim F(!) 
n-+m n 

I (3 .25) 

uniformly int on bounded sets of ~1 
+· Now a straightforward 

calculation shows that the uniformity of (3.23) 

yields the uniformity of 

and (3 .25) 

s-lim· F (!) n+l = e -tc e o 
n-+m n 

(3. 26) 

int on compact sets X c ~O,_m). ~aking into account (3.21), (3.22), 

(3.26) and owing to Corollary 2.9 one gets the uniformity in t on 

compact sets X c (O,oo) in (3.24). Moreover, by virtue of 

(f(! A)g(! B))n+2 = f(! A) (g(! B))l/2 F(!)n+l g(! B)l/2 
n n n n n n 

and ;:he uniformity 

(g(! B))l/2 ~ I 
n n-+m 

of convergences f(* A) (g(* 

int on bounded sets of~! 

(3.24) and Corollary 2.2 that 

I ·•p-lim (f(! A)g(! B))n+2 
n-+m n n 

-tc e e o 

B))l/2 

we 

s 
--+ n•oo 

conclude 

I and 

from 

uniformly int on compact sets X c (O,m). Due to the uniformity we 

obtain 

s (t) s (t) 
u .H -lim (f( _n __ A)g( _n __ B))n+2 = -tc 

· P n•m n n e e o 

(sn(t) n~2 t)~ 1 , uniformly int on compact sets X c (O,oo). 

Hence, after substitution we get 

a .1 -lim (f( ~2 A)g( ~
2 

B))n+2 = e-tc e o 
p n•oo n n 

uniformly int on compact sets X c (O,m). ■ 
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3.2 General case - Kato II 

The aim of the present section is to extend the results of the 

previous section, in particular, to drop the conditions (3.2) and 

(3.3). To this end we denote by f and g a pair of functions obeying 

only (3.1). We relate to the pair {f,g} two functions P0 ,and ~o 

defined by 

o s p
0

(t) 

o s ~
0

(t) 

inf p (s} 
O<sSt 

inf ~(s) 
O<sSt 

inf s-1 1 
O<sSt (f(s) - 1) s 

1. l 
inf s-1 (1 - g(s)) 
O<sSt 

S 1, 

1 (3.27) 

where we agree to set f(!) = +oo if f(s) o. Defining f
0

(t) by 

{ 

1 t = 0 
f (t) = 

0 (1 + tp
0
(t))-1 , t > 0 

(3.28) 

.. 
we get O < f

0
(t) S 1 (condition (3.2)) and 

o s f(t) s f
0

(t) s 1. (3.29) 

since lim f(t) 
t➔ +O 

1, we find lim f (t) = 1. Moreover, we have 
t-++O o 

1 = lim p (t) 
t➔ +O 

~~:
0
inf p(t) = ~~:

0
p 0 (t) 

Thus, using lim f· (t) = 1 we find 
t➔ +O o 

1. 

-lim Po(t) 
t➔ +O 1 + tpo(t) 

-lim p (t) f (t) 
t➔ +O o o 

. -1 1 
consequently, f

0 
o~eys (3.1). since t (T7tT 

0 

1) 

p
0

(t) is monotonously nonincreasing, by construction the 

(3.3) is satisfied. Let 

go(t) = { : 

t = 0 

- t~
0

(t), t > o. 
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-1. 

p
0

(t) and 

condition 

(3.30} 

Since ~
0

(t) s ~(t), t > O, we get o s g(t) = 1 - t~(t) S 1 - t~
0

(t) 

g
0

(t), t > 0. Furthermore, the representation 

o s ~
0

(t) = t-1 (1 - g
0

(t)) (3. 31) 

implies OS 1 - g
0

(t) or g
0

(t) S 1, t > O. Thus, summing up we 

obtain OS g(t) S g
0

(t) S 1. Taking into account 

1 lim ~(t) 
t➔ +O 

we find lim 
go(t) 

t➔ +O 
t 

lim inf ~ (t) 
t➔ +O 

- 1 

lim ~
0

(t) 
t➔ +O 

1 

= -lim ~ (t) = - 1 . Hence, 
.t➔ +O o 

Since t-1 (1 - go(t)) = ~o(t) is monotonously 

by construction the condition (3.3) is valid. 

g
0 

obeys (3.1). 

non increasing 

Therefore, starting with the functions f and g obeying (3.1) 

we construct the associated pair (f
0

,g
0

) to use the results of the 

previous section. ·To this end we replace the condition (3.5) by 

f
0

(tA) e ~P(X), t > O, 1 Sp< +oo. (3.32) 

For example, let f(t) = e-t It is easy to check that in this 

-1 case f
0

(t) = (1 + t) . Hence, (3. 32) means that (I + tA)-l 

~ p(X), t > O, 1 Sp< +oo. 

Lemma 3.7. Let F
0

(t) = (g (tB)) 1/2 f
0

(tA) (g (tB)}l/2. If 
0 0 

condition (3.32) is satisfied, then f(tA) e ~p(X), t > o, 1 S; p 

+oo, and 

E 

the 

< 

UF(t)ml s nF (t)mU ,· t > o, 
p O p 

(3. 33) 

form~ 1. 

Proof. The first conjecture follows from (3.29) and (3.32). Now let 

F(t) = (g(tB)) 1/ 2 f
0

(tA) (g(tB)) 112 . Since F(t) S F(t) we get (13] 
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HF(t)mllp = Tr(F(t)mp} 5 Tr(F(t)mp} 
p 

. 
n F(t)m11 p 

p 

Let f(t) 

x g
0

(tB). 

= (f
0

(tA)) 1/ 2 g(tB) f
0

(tA) 1/ 2 and f
0

(t) 

(f
0

(tA)) 112 . Obviously, one has 

IIF(t)mUp 
p 

and,analogously, 

Tr(F(t)mpl 

nt (t)mUp = HF (t)mnP. 
0 p O p 

Tr(f(t)mp} llf(t)mllp 
p 

(3. 34) 

(fo(tA))l/2 x 

(3.35) 

(3.36) 

on account of (3.34), (3.35), (3.36) and f(t) 5 f 0 (t) we find 

IIF(t)mll 5 llf(t)mll 5 11t (t)ml! p . p O p 
II F (t)mll 

0 p 

which proves (3.33) . ■ 

Theorem 3.8. Let A and B be two non-negative self-adjoint operators 

defined in the separable Hilbert space X and let f and g be two 

Borel functions obeying (3.1). If (3.32) is satisfied, then (3.20) 

holds uniformly int on any compact set X c (0,oo). 

Proof. Firstly, we note that by Kato [7] and again by the uniformi­

ty of the limits f(! A) (g(! B)) 1/ 2 ~ I and (g(! B)) 1/ 2 ~ I n n ~oo n ~oo 

int we obtain 

s-lim F(t)n+l = e-tc e o 
n ... oo n 

(3.37) 

uniformly int on compact sets X c (0,oo). In addition by Lemma 3.1 

the condition 

UF(!)n+lll 5 HF (!)n+lll t > 0 
n p on p ' ' 

(3.38) 

is satisfied. Moreover, from (3.24) we derive 

I .n -1· t p 1m F (-)n+l 
n-+oo o n 

e-tc e o (3.39) 
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uniformly in t on compact sets X c (0,oo). Consequently, by 

Corollary 2.6 we find 

U.1 -lim F(!)n+l _ -tc 
p n➔ oo n - e e 0 (3. 40) 

uniformly int on compact sets X c (0,oo). In order to derive (3.20) 

from (3.40) one has to follow the line of reasoning after (3.26). ■ 

Corollary 3.9. If the conditions of Theorem 3.8 are satisfied, then 

the convergence in (3.20) really takes place in )I.ff 1-norm: 

n.u 1-lim (f(* A)g(* B))n 
n➔ oo 

e-tc e o (3. 41) 

uniformly int on compact sets X c (0,oo). 

Proof. Let us note that (3.20) can be rewritten as 

11.11 -lim (f(!_ A)g(!_ B))n = e-(t/p)C e 0 
p n➔ oo pn pn (3. 42) 

(~p) 

uniformly int on compact sets X c (0,oo). Then 

n (f(!_ A)g(!_ B))np - {e-(t/p)C e oiPn < 
pn pn 1 -

p-1 
E II (f(!_ A)g(!_ B))nllln (f(!_ A)g(!_ B))n - {e-(t/p)C e 0)11 

l=0 pn pn p pn pn P 
X 

x Ue-(t/p)Ce on 
p-1-1 

p 

t > o, n <: p, _and by (3.42) we get 

U .II 1-lim (f(!_ A)g(!_ B))np 
n➔ oo pn . pn 

e-tc e o 

uniformly int on compact sets X c (0,oo). Since (f(;n A)g(~n B))m 

~ I, o 5 m 5 p-1, uniformly ih t we find 
n➔ oo 

II .nl-lim (f(-t __ A)g(-t __ B))n - -tc 
n➔ oo p(n/p] p[n/p] - e e 0. (3.43) 

uniformly int on compact sets X c (0,oo) by Corollary 2.2 where[.] 
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denotes the entire part of a real number. Now, the uniformity of 

(3.43) int admits to derive (3.41) from (3.43). ■ 

4. Application and conclusion 

As an application of the above results for the Gibbs semigroups we 

mention continuous systems of QSM in a finite volume. 

Let us consider an N-particle system enclosed in a box h c ~v 

which is a bounded open connected subset of the v-dimensional 

Euclidean space with a smooth boundary ah. Hence, the appropriate 

Hilbert space is X = L2 (hN). In our discussion the statistics of 

particles is not important, therefore, we ignore the symmetry of 

the wave function~ e X. The kinetic-energy operator T 
Cl 

for the 

particles of the mass mis a self-adjoint extension of the sum 

N 1 
TN= E (--2 d.), 

j=l m J 
d. 

J 

., 
Ea~ 

a=l J,a' 

with domain D(TN) = C~(hN). The domain D(Tcr) is specified by a 

boundary condition cr e c(ah). Then one can check that Tu is a 

p-generator for the self-adjoint Gibbs semigroup GT (t) (12], i.e., 

Nv for 2 $ p < +oo we have 

1 
Rz(Tcr) e ep(X), z e ~\~+· 

Cl 

( 4 .1 ) 

The stable particle interaction UN ~ NuI is a self-adjoint 

multiplication operator with a real-valued measurable function 

defined on the domain D(UN) = {~ e X: UN~ e X), see e.g. (18]. 

Therefore, we have to generalize our results a bit to include 

the semiboundedness of the operator UN. Moreover, to describe the 

short-distance behavior of the two-body interaction a hard-core 

potential is frequently used (18]. Then, the original Hilbert space 

· 2 N of the wave functions X = L (h) should be reduced to X' 

L2 (hN\SN) where SN is a region forbidden by hard-cores. 
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Theorem 4.1. Let T ~ o and u ~ -uI be ·self-adjoint operators 

defined in a separable Hilbert space x. If Q = D(T
112

) n D((U + 

+ uI) 112 ), then 

I I -lim {exp (- ~ T) exp (- ~ U)}n 
• l n~oo n n 

e -PHn (4. 2 ) 

uniformly in the inverse temperature p > o varying in a compact 

interval bounded away from zero. Here H 

orthogonal projection of X 

L2 (hN\SN)) spanned by Q •. 

(e.g. 

T .j. 

L2(hN)) 

U and 

onto 

n 

X' 

is the 

(e.g. 

Proof. Let us introduce A= T ~ o and B = U + uT ~ o. Then by (4.1) 

we get that exp(-PT) e e 1 (X) for all P > O and 

I ·•1-lim (~-(P/n)T e-(P/n) (U + uI)ln = e-PC n (4.3 l 
n~oo 

uniformly in P > 0 on any compact interval bounded away from zero 

by Corollary 3.2. Here C = H + uI and canceling both parts of 

(4.3) by exp(-Pu) one gets (4.2). ■ 

Remark 4.2. We have to remark that our results are not applicable 

to interactions U which are not semibounded from below (e.g. for 

Coulomb systems) in spite of the semiboundedness of the operator H. 

The reason leading to Remark 4.2 is obvious. It is not so 

obvious for the unitary group and T = s,_ see [SJ. We hope to return 

to this question elsewhere. 
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