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1 • Introduction 

One or the most effective methods for studying and integrating 
linear ordinary differential equations (LODE) is the method o! facto­
rization of differential operators. Although tM method was known as 
early as in the last century, obstacle to its use in the theory and 
applications of LODE was the lack o! existence theorems and 
constructive technique or factorization as well. The existence 
theorema were proved 1n (11. and a constructive !actor1zat1on together 
with changes of the dependent and :Independent variable (nontrivial 
combination or both the approaches) was developed by one ot the 
authors [2-4J. In the mentioned works the factorization is used in the 
generalized Liouvillian extension, allowing to find solution of a 
given equation in quadrature i! possibly. on the base of the approach 
of [2-4l an algorithm was presented in £5J !or obtaining exact 
solutions o! some classes of ODE 1n quadrature and elementary 
functions. 

The present-day computer algebra systems £6, 7l are powerfUl 
means to implement exact methods of analysis and integration or 
differential equations in computers. It reveals the opportunity !or 
the broad user public of practical application of methods until being 
accessible !or the specialists only. Under the conditions the problem 
or development or constructive mathematical techniques and algorithms 
and creation o! effective programs to implement the algorithms as well 
acquires a particUlar significance, thus, for instance, 1n [8-101 
alger! thms o! constructing Llouvllllan solutions !or LODE with the 
rational and Llouvlllian coe!!lcients. One o! those £8J has been 
realized 1n computer al~bra systems [11,121. 

Recently [ 13 l, a project or creation of an integrator of 
differential equations in RBDUCB system was proposed relying on 
algcrlthmlc developments of many authors (see the references in [13J). 

In the present work the authors advance their own algor! thm 
implemented in RBDUCB system for both searching explicit 
transformation reducing an original second order LODE to that with the 
constant coefficients, and (if successfUlly) for finding its 
factorization and fundamental system of solutions. 
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2.PactorizaUon 

We consider second order llnear ordinary d1!!erent1al equations 

(LODE) of the form 

Ly $ y• + a1 (X)y' + "o(X)Y=O, (' )=dldx, XEI=(a,b), (1 ) 

the coefficients a1 (x),"o(X) or which make up a differential field K1 l 

called the basic 1n the following. 

The operator L(D), D=dldx is called decomposab~e 1n K 1! 1t 

admits a representation as a factorization 1n terms of !!rat order 

operators having the coef!lcients from K (generally, over the complex 

rrumber field) : 

Ly ~ (D - "2 (X)) (D - ~ (X) )y = 0. (2) 

Bxallple 1 . The equation 

admits the factorization 1n the rational !unction of x field: 

If an operator L is decomposable, its factorization is not the 

only possible. Thus, 1n the above example one may replace ra by -ra. 
For LODE (1 ) represented by (2) the differential analog or Viets 

formulas is valid: 

~ + "2 = - a1 • "1"2 - "i = "o• 

therefore 

uj + rf. + a1 (X)U + "o(X) = 0, 

!)Actually, a smoothness of the coe!Ucients is 1n order only,e.g., 

1\,(X)E~, k=0,1. 
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i.e. a 1 satisfies the Riccati equation. It proves that a transcenden­
tal extension of the basic differential field is necessary to proceed 
factorization 1n the general case. 

hBIIIJ>le 2. The Airy equation 

is indecomposable in its field K - the field of the rational functions 
of x. 

Indeed, by (4) a factorization coefficient has to satisfy the 
Riccati equation here a;+ aT + x = 0, which it is easy to show, dces 
not admit a rational function as a solution2 l 

one or the most important and frequently used extensions or the 
basic differential field is the so-called Liouvillian generalized 
extension [14 l , which resulting from !1n1 te counter of extensions 
consisted either in Joining integral or exponent of integral, or in 
finite algebraic extension of the field K. 

By the P1card-Vess1ot extension we shall mean the extension or 
the basic di!!erential field generated by the linearly independent 
solutions of LODE. Equation (1) is said to be integrable in quadrature 
i! its Picard-Vessiot extension belonge to the Liouvillian generalized 
extension. Then the factorization coefficients belong to that too. 

However,generally neither the equation is solvable in quadrature, 
nor the factorization coefficients are expressed explicitly. But 
factorization o! equation (1) always exists in itself according to the 
known MBIIII1Bil.8. theorem £1 ] and, moreover, can be expressed 1n the 
infinite number o! ways. 

Representation of LODE (1) in the form (2) is equivalent to the 
system 

( D- a 1 (x))y = y, ( D- "z(X))y = 0, (5) 

the solving of which leads to the fundamental system o! solutions 
(!.s.s.) o! LODE (1 ): 

2 lThe fact corresponds to the absence o! the Liouvillian solutions of 
the Airy equation (see [10, 14J). 
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i.e. knowledge of a factorization (2) is equivalent to knowledge of 
f.s.s. of the correspondlng LODE. The other way round, 1f y1 is a 
solution of equation (1 ), then one can take a1:y;ty1• Therefore, by 
(3),factorization (2) becomes 

(7) 

and in the general case, when f.s.s. y , y , of LODE (1) is known: 

+ qyz 
+ qy2 )Y : o, p,q : const, (8) 

where p:1 or q:1 . 

3.Tbe Killmer problem 

We cell so the problem of reducing LODE (1 ) to an equation of the 
following form 

IZ ~ z + b1 (t)z + b0 <t>z : o, (' ):d/dt, tEJ:(c,d), (9) 

11.:E~. k-Q,1 , by means of the Kuumer - Liouville transformation 

Y :V(X)Z, dt: U(X)dX; U,VEcf, UV#O, ¥XEI. (10) 
I 

Accord1ng to tlie Stiieltel-Lie theorem (10) is the most general point in 
the local variable trans!onnation which preserves the order' and the 
structure of equation [151. 

Purely theoretical interest apart, the Kuumer problem - the 
problem of equivalence of second order LODE - is of great applied 
e1gni:r1cance, ror 1 ts constructive solution allows 1n many cases to 
reduce LODE studied to the equations whose solutions are known in 
either form. 

The main reeul ts used later on are given by the following 
theorem. 

!ll8o1'8ll [3,41. Por LODE (1) to be reduced to equation (9) by 



transformation (10), it is necessary and sufficient feasibility or one 
of equivalent conditions: 

1) equation (1) admits factorization or the form 

v' u' v' Ly • < D- v- u- r 2 (t(x))u )( D- v- r 1 (t(x))u)y =a. (11) 

where r 1 (t), r 2 (t) are the factorization coefficients of LODE (9): 

(12) 

2) the transformation functions u(x), v(x) satisfy the equations 

1 u· 3 [u' )2 
2 z u - 4 u + B0 (t(x))u = A0(x), (13) 

1 1 2 1 ' Aa =SO- Z aj - 4 a1' Ba = ba- Z b1 

V(X) =1Ut-112exp(- ~· fa1 (X)dx + ~ fb 1 (t)dt)' (14) 

where A0 , B0 are semiinvariants or LODE (1.) and (9) (i.e. invariants 
with respect to transformation or the dependent variable only). 

To solve (13), it is necessary to know the dependence t(x) which, 
by (10), in turn is determined by the desired function U(XJ, so 
instead o! (13), one should actually consider the equation 1n tcxJ: 

11:.'-;! (t")
2 

+ B (t)t' 2 =A (XJ, (15) 
2 t' 4 t' 0 0 

which will be called the Kummer-schwarz equation together with 
(13).Note that the first pair or terms in (15) form the so-called 
Schwarz derivative. 

The stated theorem _is constructive: on the one hand, it defines 
the structure or LODE under consideration in terms or the 
transformation functions, and on the other - it gives explicit 
equations !or them. 

4. Reclucib111ty 

A special case or the Kummer problem is very important when ( 1 ) 
is reduced to an equation with constant coefficients, i.e.,to (9) with 
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b1, b0 = const. Then the or1g1nal LODE is called reducible, and its 

r.s:s. can be written as 

(16) 

where r 1 , r 2 are the characteristic roots or (9) (see also (12)). 

The second order LODE are always reducible [2,31; the question is 

to find corresponding pair of the transronnat1on functions U(Xl, V(Xl 

(if only one of vast number of possible ones). As it is clear from the 

main theorem, the KUIIIIlei"-5chwarz equation ( 13) plays a fUildamental 

part here, which we rewrite in the form 

1 u"" 3 (u') 2 
1 2 2 2 u- 4 u - iOU = A0 <xl. 0=b1 - 4b0 = const. (17) 

Since we are free in choosing the coefficients b1, b0 or the 

reduced equation (9), one can consider the discriminant 0 as an 

arbitrary constant and equation ( 17) - as the first integral or a 

third order ODE. Then, d1!!erent1at1ng (17) with respect to x and 

substituting R=u-1, we arrive at the resolvent equation [41: 

(18) 

It is known (see, e.g.,[161) that the general solution or third 

order LODE (the equation belongs to those too) can be represented as a 

qua<lrBtic form or r.s.s. of the corresponding second order LODE. In 

the case we have 

(19) 

Y' + i,<XlY = 0. (20) 

The latter is obtained from (1 ) via the trans!onnation 
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so via (19) we have !1nally !or U<XJ: 

where y 1 <XJ, y2<XJ is !.s.s. o! LODE (1 ).Thus, the Kumner - Schwarz 
equation (17) has a nonlinear superposition law (21) with respect to 
solutions o! reducible LODE. 

According to Viet's !ormula (3), it !allows !rom (11 ): 

(22) 

so that (11) can be represented as 

1 u' 1 u' 1Y s [ D + 2 (a1- ij + OU)] ( D + 2 (a1+ ij- Ou)]Y =0. (23) 

By virtue or (21 ) , the Liouvillian and Picard-Vessiot extensions or 
the basic di!!erential !1eld K are necessary !or factorization (23). 
Formula (22) implies the interrelationship between the !Unctions U(XJ 
and V<XJ (see also (14)): 

(24) 

Taking into account (16) and (24), !.s.s. o! reducible LODE 
becomes 

Y1,2 <XJ = IUI-112exp(~Ja1 dX ± ~JudX), 0 ~ 0, 
(25) 

Note that the !unction V(XJ satisfies LODE 

(26) 

as well it U(Xl ia coriaidered. to be a known function. or 1ntegro­
di!!erential equation (by (24)) 

x [k + b1Jv-2exp(-Ja1dx)dxJ-2 = 0, 
where k=1 1! b1=0, or k=O i! b1 ~. 
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Por a,~o. b1=0 (27) converts to the Ermakov equation 

(28) 

studied in detail in l17J. The KUIIIIler - Schwarz equation (17) is 

reduced to a s:!Jnilar equation, but with A0(Xl in place or a0 (xJ and 

014 in place or -b0, bY means or the substitution V=u-2. It is clear 

!rom above that equation (17) has a nonlinear superposition law with 

respect to r.s.s. or the corresponding reducible LODE or type or (1) 

as well as equations (26)-(28). 

5.1Xplicit !orms of transformations 

As has. been shown, the KUIIIIler problem (and the reducibility 

problem in particular) a100unts to the solvability problem or the 

KUIIIIler-Schwarz (15) (or (17)), that in tum, is equivalent to solving 

LODE under consideration. Sure, one !ails to do this !or any, 

arbitrary given equation. However, it is possible to specify 

transformations su!!1c1ently "powerfUl" to cover vast classes o! LODE. 

In addition, the Kwrmer - Schwarz equation serves as a criterion o:f 

membership o! a given LODE to one o! these classes. 
A typical example o! the mentioned trans!ormstion is 

(P=P(XJ), with a !unction P(Xl being chosen. (Note that in a number or 

cases it is more convenient to use the modulus under the root in (29) 

to avoid complex valued U(IJ, though it is not essential, as the 

form o! factorization (11) :!mpl1es that the trans!ormstion !unctions 

U(XJ, V(Xl (10) are determined with a precision o! constant multiplier 

(possibly, complex-valued). Its value a!!ects the values or the 

coefficients b1, b0 only). 
Trans! ormation (29) includes a number or substitutions o! the 

most c0111110n in the theory and applications o! d1!!erential equations 

(see, e.g., [31) as special cases. Thus, for b1=0, Pril=B0 (XJ we get 

the Liouvillian trans!ormstion 
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which is corresponded by the factorization of reducible LODE 
(see (23) !or r1 ~r2~r) 

1 1 ao 1 IlJ ~ ( D + 2", - 4 ao + ,.,.;; ) ( D + 2", 1 ao + - - - NiL )y ~ 0 .t a
0 o 

(30) 

Taking into consideration that (1) is easy reduced to the semi­
canonical form (20), the transformation related to (30) is useful: 

(31) 

N.P.Erug1n [181 applied the transformation 

y ~ z, dt ~ ~ dx (32) 

which is confirmed by the factorization 

1 ao IlJ " ( D - 2 a
0 

- r2~ )( D - r 1 ~ )Y ~ 0. 

By way of the example, let us show how one can describe the class 
of LODE reducible. by means of a g1van transformation of the form (32). 

Any pair of the functions U(XJ, v<Xl has to satisfy the system of 
two equations arised from factorization (11) of LODE (1) according to 
Viet's formulas (3): equation (22) and 

v· u' v' v' V + r2u + U )( V + r1u ) - { V + r1u )' = ao. (33)• 

The latter suggests immediately the form of the function U<Xl tor 
transformation (32) with v<x>~1: r1 r2u2~b0u2~a0 whence, setting b0=1, 
we come to U(X)=fao(X). Equation (22) remains to be fulfilled. In the 
given case 1t is the reducibility condition: 

Thus, LODE reducible by means of (30) have to be of the form 
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a' 
y• + (b ra:: - C. __Q )y' + a_v = 0 

10280 0" 

or 1n the equivalent one: 

where c and b1 are arbitrary constants and a<Xl or a(X> is an 

arbitrary function. 
The settlng o! classes or LODE reducible by means or various 

transformations and compilation of an appropriate handbook would be 

very usefUl - 1n fact, 1 t can easy exceed the volume of the Kamke • s 

classical handbook l16l in range of scope. The way, however, has an 

essential and apparently ineradicable shortage: the worth or such 

surveys is directly proportional to their completenesses, i.e., 

volumes, bUt When they increase, working hours of uslng the reference 

books for studylng particular equations increase more fast. An 

alternative consists in pecUliar "contraction of 1n!ormat1on": using 

one or several transformations of type (29) which are high in their 

conveniences and generalize a set of the others, 1n the presence of a 

unifonn test for success relative to any presented equation. The 

!unctions U<Xl and V<Xl can be !onnally round !rom the system (22) and 

(33) whose, consequence is (17) if V<Xl is expressed in terms of U(Xl 

by means or (22) (see (24)), -and (27) otherwise. But since the system 

(22) and (33) is not solvable in the general case, one is constrained 

to assign the form or one or the functions u<Xl and V(Xl determinlng 

t~en another to satisfy the system. In addition, the universal 

criterion o! reachlng the aim by means of the chosen transformation 

can be relation ( 17) or (27), and another !unction is obtained !rom 

(22). The KUIIIIIE!r-Schwarz equation should be favoured because it does 

not contain integrals. If U<X> is chosen correctly, there exists such 

a value o! the constant 0 (discriminant) that (17) is fulfilled 

identically with respect to x, i.e., 

1 u· u' 2 
u2 [ 2 u - 3( u ) - 4A0 ] 5 const = o. (34) 

Than the !unction v <X l is determined by (24), but it is not 

actually reqUired because the factorization and !.s.s. o! reducible 
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LODE can be obtained from (23) and (25) depending on U<X l and 0 only. 
For transformation (29) formulas · (;:!4), (23) and (25) become 

respectively: 

1 [ p• s ( F')2 
P r- • P 4A0 ) • const = 0, 

1 1 P' 1 1 P' ~ • [ D + ;;(a1 - ;; p + -.l!lP )) [ D + ;;(a1+ ;; I' - -.l!lP ))Y=O 

Y1 , 2 <Xl = IFI-114exp(- ~Ja 1 dx ± ~~JY!'dx), 0 F 0, 

y1 <Xl=IPI-114exp(- ~Ja1 dx), y2 <Xl=Y1 <X>JYPUx, 0=0. 

(35) 

(36) 

(37) 

Unfortunately, one fails to algor1tbmise completely the process 
or choosing the function P<Xl ror the given coerticients a

1 
<Xl an<! 

a0 (X l of the LODE under invest:tsation. However, the authors have 
worked out a number or recommendations along these lines; having no 
opportunity to go through into details here, we quote only some 
1nstruct1ve reasons. 

COnsider (assuming u2 (Xl=P(Xl is known) associated LODE (26) ror 
V(X): 

(38) 

A way ror choosing Pcx> is based on the tact that, on the one hand, 
equation (38) could be solved, and on the other - one would recover a 
solution v0 (Xl coordinated with the chosen P(Xl in that relation (24) 
with U(X)=YI'(Yj"is valid. Then, the pair or the functions v0 (Xl, YI'ID 
determine the transformation (29) to be rounded. 

Let, for instance, the coefficient a0 <xl be representable in the 
form a0(Xl=p0 (Xl+~("l with such ~(Xl that a solution or LODE · 

y• + a 1 (X)V' + ~{X)V = 0 

is kncwn. Equation (39) is obtained from (38) for b0=1, P(Xl=P0 (Xl 
i.e., the corresponding additive part or the coefficient a0 (Xl can 
be advised as P(Xl. In particular, for P(X)=a0(Xl (29) becomes the 
generalized Liouvillian transformation (see (30)): 

ll 
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(40) 

Semi-canonical rorm (20) or LODE (1) is CoiTesponded by the 

equation 1n vrxl 

so an additive part ot the sem1-tnvar1ant A0 (X) can be also chosen as 

PcXJ. At PcXJ=A0 cxl we come to transrormation (31 ). 

Blample 3 (see [161, 2.115b). 

2 2 2X k 1-k2 

y· + (k + xlY' - (n e - x + -,--- )y=O, k,n=const. 

Taking p0
cxJ=- n2e2x, (39) becomes 

2 
V" + (k + g)V'+ (~ + ~)V = 0 

X X 4 

By means or the standard transformation or the dependent variable 

v=exp(- iJa1 rxJdX)V, 

(41) 

(42) 

where 1n the case a 1 
CXl=k + i• LODE (41) is reduced to the semi­

canonical rorm v· - 1/4 v = 0 with r.s.s. v1 ~Xl= eu12 • Hence, by 

(42), r.s.s. or LODE (41) is v1 , 2 cxJ=exp_<- ~J<a'+ ildX ±~),but only 

the !unction vrxJ=11-.'ii v
2

rxl satis!ies (24) with ucxJ=-oip
0

rxl =lnex, 

(..,r.:r. b 1 =0. 

ThUs, the desired transformation (29) takes the !orm 

and reduces the initial LODE to z + Z=O. Formulas (36) and (37) with 

PCXJ=p0 cxJ=-n2e2x, 0=1 give the factorization and r.s.s.: 

( D + ~ + 1-! nex )( D + ~ + 1 + 1 + nex )y = 0, 
2 X 2 2 X 2 

Y <Xl = 1 exp(- ku:: ± nex) 
1,2 X 2 • 

The abOve consideration concerning with LODE (38) admits a 

generalization. Let the coe!!icient a1 CXl be representable as 

a1 rxJ=p1cxJ + Q1 cxJ. Substituting 
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V=exp(- ~ Jp1<X)dX )V, (43) 

transform (38) to the form 

The turther reason1ngs are analogous to those a ta ted ·above. 1. e. , 1 t 
is advantageous to choose P<XJ as an additive part or the expression 

For inatance, (44) is easy solved when P<X)=Q(X). Hence, the !amiliar 
transformations are obtained as special cases: for p1=0. 0<X>=a

0
<X) we 

come to (40) and !or p1=a1. Q(X)=A0 (x)- to (31 ). 
Obviously, the use o! the expression Q (X) allows signi!icantly 

higher scope !or choosing the !unction P(x) and expands the sphere o! 
application o! transformation (29), respectively. 

I!UIIIple 4 ( see [161, 2.80 ). 

y• - ( f' + 2k )y'+ ( k f' + k"- n2! 2 )y = 0, k,n=const, 
2 2 

!=!(X) is an arbitrar,r !unction. Assume p1=- 2k, P(X)=Q(X)=-n ! .Then 
(44) becomes v· - f v = 0, one or solutions o! which is V=const. 
Setting V= 1h'n, we !ind by (43) V(X)=1Hii eK<xJ satisfying (24) at 
b1=0, u(x) = l"!''D = !n!(x). Consequently, by means o! transformation 
y=1/~ ekxz, dt=!n!(XJdX the original equation is reduced to z+z=o and 
has the factorization and f.s.s. 

!' ( D- I- k + n! )( D- k- n! )y = 0, 

Y1, 2 <XJ = exp(kx ± exp(nJ!<X)dX)). 

The examined examples are illustrative; in practice there is no 
need at all times to consider equation (38) and to search !or its 
solutions satisfying (24) !or the chosen P<XJ. It is more convenient 
to use jUSt condition (35). Indeed, substitution o! (24).to (38) leads 
to the KUBmer- Schwarz equation (17) a corollary o! which is (35) !or 
transformation (29). Generally, employment o! the universal criterion 
(34), that is independent on ths way o! choosing the !Unction U<XJ 
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allows to automate the process o! searching an adequate 

transfomation. 

Example 5 (see l16l, 2.81 ). 

Putting P<XJ=a0 <XJ=- k"f' 2/(f2+n2) and substituting it into (35), 

we assure that the condition is fulfilled when 0=-4. Then due to (36) 

and (37) the factorization and !.s.s. of the initial equation: 

( D + .....!L_ - f' - ~ ) ( D + ~ )y - 0 
!2+n2 r- lf2+n2 lf2+n2 - • 

6.AlgPritbm description 

on the base of the above technique the authors have worked out an 

algorithm !or searching trans!omation o! type (29) Which reduces the 

given LODE (1) to equation (9) with the constant coefficients b
1

, b
0 

and, 1! successfully, finding factorization and !.s.s. according to 

formulas (36) and (37). Below the algorithm is outlined. The notations 

accepted above hold true. 
PrOblem: to !1nd a function P<Xl satisfying condition (35) and 

thereby to determine transfomation (29). 

AlgPritbm: 

Input: the coefficients a
1

<xJ,a0 <Xl o! LODE under consideration and 

the functions p1 <Xl.p
0

(Xl. 
OUtput: the coefficients a1 <XJ,~<Xl or factorization (2), (36) and 

!.s.s y 1 {Xl,y2 (X). 

Begin 

A 1 : = exp(- i Ja1dX); 
i! a0=0 then begin y1:=1; y2 :=JA~dX; a 1:=0; ~:=a1 ; end; 

else A0:=a0~;-la~; 
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1! Ao=const then begin a 1 :=-is,+~; a, :=-is,-~; 
if A0=0 then begin y

1
:=A

1
; y2:=xA

1 ; end; 
else begin y1 :=A 1 exp(~x); y2 :=A1 exp(-~x); end; end; 

else begin q,:=a0-p0 ; q1=:a,-p,; Q:=p0+q, !P~ ~p,q1 ~~ ~P;-i<!;; generate <gt"const,i=1+n,.128J-the array of all sorts combina­
tions of terms from Q; 

end 

tor i:=1 ton do begin P:=gi; D:=f;( ~- -if ~·) 2-4AoJ; 
1t D=const then begin a 1 :=-i<a14 f->'D*P>; 

a,:=-i<a1-i f- +>'D*P); end; 
1! D=O then begin y

1 :=A
1 tPt- 114; y2 :=y1JiTPTdX; end; 

else begin 
y1 :=A1 1PI-114exp(~J>"D*l'); y2:A

1 1PI-114exp(- ~J>'D*PdX); 
end; end; 

else return 'no transformation has been found' end; 

Note that a version of the algoritbm described above provides a 
way of ver1ty1ng hypotheses of the ro:rm of p0 (X l and p1 (X l in the 
interractive reg!me. Tha above algoritbm is 1mplemented in the 
computer algebra system ~3.3. 

The program has been tested successfUlly on examples from the 
chapter II of the handbook [161. OUr program allows to solve mere than 
701 of equations. In order to illustrate its effectiveness note, that 
examples 3 and 4 above take 21 and 22 seconds of ES-1061 running time 
and about 1 OOOK memory. 

The authors acknowledge Prof •. E.P. Zh1dkov for !rui tful discussions. 
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