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1.Introduction

One of the most effective methods for studying and integrating
linear ordinary differentlal equations (LODE) 1s the method of facto-
rizatlion of differential operators. Although the method was known as
early as in the last century, obstacle to its use iIn the theory and
applications of TODE was the lack of existence theorems and
congtructive technique of factorization as well. The existence
theorems were proved 1In (1], and a constructive factorilzation together
with changes of the dependent and Independent varlable {nontrivial
comblnation of bpoth the 4&pproaches) was developed by one of the
authors [2-4]. In the mentioned works the factorization is used in the
generallized Liouvillian extenslon, allowing to find solution of a
given equatlon in quadrature if possibly. On the base of the approach
of (2-4) an algorithm was presented 1n [5]1 for obtaining exact
solutions of some classes of ODE 1n quadrature and elementary
functions.

The present-day  computer algebra systems [6,7} are powerful
means to Implement exact methods of analysis and integration of
dirfterentlial equations 1n computers. It reveals the opportunity for
the broad user public of practical application of methods untll being
accesslble for the specislists only. Under the conditions the problem
of development of constructive mathematical techniques and algorithms
and creation of effective programs .to implement the algorithms as well
acquires a particular significance, thus, for instance, in [8-101]
algorithms of constructing ILiouvillian solutions for IODE with the
rational and ITiouvillian coefficients. One of those {8] has been
realized 1n computer algebra systems [11,12].

Recently (131, a project of creation of an integrator of
differential equations 1n REDUCE system was proposed relying on
algorithmic developments of many authors {see the references in [13]).

In the present work the authors advance their own algorithm
implemented In REDUCE system for both searching explicit
transformation reducing an original second order ILODE to that with the
constant coefficients, and (1f successfully) for finding 1ts
factorization and fundamental system of solutions.



2.Factorization

We consider second order linear ordinary differential equations
(10DE) of the form

Iy = y° + 8, (0)y’ + 85(X)¥=0, (")=0/dx, XeI=(a,D), M

the coefficlents &, (x),a5(x) of which make up a differential field .o
called the basic In the following.

The operator L(D), D=d/dx 18 called decompoaagble in K 1f 1t
admits a representation as a factorizatlon 1n terms of first order
operators having the coefficlents from K {generally, over the complex
number fieldj:

Iy = (D - ay(x))(D - a;(x))y = 0. 2)

Example 1. The equation

y - {(a+ 2x"2)y=0, acR,

admits the factorization in the rational function of x field:

(p-L+-2LB— waND+f-—TE— vVEY=0
Yazx-1 Yax-1

If an operator L 1s decomposable, 1ts factorization is not the
only possible. Thus, In the above example one may Teplace v& by —a.

For LODE (1) represented by (2) the difrerentlal analog of Viets
formias is valld:

@ +0p = - By, Gl — U = Bgr @
therefore
ay + & + a8 (x)a + ag(x) = 0, (4)

I)Actuallsr, a smoothness of the coefficlents ls in order only,e.g.,
&, (£)€CT, k=0,1.



l.e. @, satisfies the Riccatl equation. It proves that a transcenden-
tal extenslon of the basic differential fleld 1s necessary to proceed
factorizatlion in the general case.

Example 2. The Airy equation
YV +xm=0

18 Indecompossble in its field K - the field of the rational functions
of x.

Indeed, by (4) a factorization coefficient has to satisty the
Riccatl equation here aj+ a% + X = 0, which it is easy to show, does
not admit a rational fumction as a solution?®’.

One of the most important and frequently used extensions of the
basic differentis] field 1s the so-called ILiouvlillian generalized
extension [14], which resulting from finite c<ounter of extensions
conglisted either in Jolning integral or exponent of integrsl, or in
finite algebraic extiension of the field K.

By the Plcard-Vesslot extension we shall mean the extension of
the baslc differential fleld generated by the linearly Independent
solutions of LODE. Equation (1) 1s said to be integrable in gqusdrature
it its Pilcard-Vessiot extension belongs to the Liouvilllan generalized
extension. Then the factorization coefficients belong to that too.

However,generally neither the equation is solvable In quadrature,
nor the factorization coefficients are expressed explicitly. But
factorization of equation ¢1) always exists in itself according to the
known Mammana theorem {11 a&nd, moreover, can be expressed In the
infinite number of ways.

Representation of LODE (1) in the form (2) 18 equivalent to the
gystem

(D-a X))y =¥ (D-a@Ny=0, S

the solving of which leads to the fundamental system of solutions
(r.s.8.) of IODE (1):

2)me tact corregsponds to the absence of the Liouvillian solutions of
the Alry equation (see [10, 141).



¥ (X)=exp(fa, (X)dx), ¥,(x)=y, (X)[exp(exp(f(a, - o )dx)dx, (6)
i.e. knowledge of a ractorization (2) 18 equivalent to knowledge of
f.s.8. of the corresponding IODE. The other way round, if ¥ ig a
solution of equation (1), then one can take a,=y{/y,. Therefore, bY
(3),tactorization (2) becomes

(D+a,.5;/9) (D ~yi/7 )7 =0, M

and in the general cagse, when f.s.s. y , ¥ ., of LODE (1) 1s known:

Yy ‘t{ + qyé ¥y + q¥s _ _ '
(D+B1+py1+qy2)(D—m)Y—U’P;Q—COHSt- (8)

where p=1 or g=1.
3.The Kimmmer problem

We call so the problem of reducing LODE (1) to ean equatlon of the
following form

Mz = B+ by (1) + bWz = 0, (H=0/dt, ted=(c,d), (9)

bkecl}. k=(,1, by means of the Kummer - Liouvllle transformation

¥ =v(x)2, dt = u(x)dx; u.veci. uv#0, vxel. (10)

According to the StécRel-Lie theorem (10) is the most general point in
the local variable transformation which preserves the order and the
structure of equatlon [1561.

Purely theoretical Interest sapart, the HKummer problem - the
problem of equivalence of second order IODE - 1s of great applled
significance, for iis constiructive eolution allows In many cases 1o
reduce IODE studled to the eguatlons whose solutions are known 1n
either form. - ‘

The main resulte used later on are given by the following
thecrem.

Theorem (3,41. FPor IODE (1) to be reduced to equation (9} by



transformation (10), 1t is necessary and sufflcient feasibllity of one
of equivalent conditlons:

) equation (1) admits factorization of the form

Iy = (D - % - % - T (3E)u (D - ;— ry (t(x)Hwy = 0, (11)
where Ty{t), rp(t) are the factorization coefficients of LODE {(9):

Mz = ( Dy - rp(t))( Dy - T, (t))z = 0, D,=d/dt; (12)

2) the transformation functions u(x), #(x) satisfy the equations

Y -3 + mmnd - @, (3
. 1., 1.2 _ 1o, - 12 |

Afg=8g 78 ~ 78 Bg=b5 -7 -7y,

v(x) =1w~"2exp(- 1 fa, (x)dx + 1 jb, (Drat)y, (14)

where A, B, are semlinvariants of LODE (1) and (9) (l.e. invarilants
wlth respect to transformation of the dependent variable only).

To solve (13), it 1s necessary 1o know the dependence t(x) which,
by (10), 1n turn 1s determined by the desired fumction u¢x), 8o
instead of (13), one should actually consider the equation In t(X):

18 3 [-t—']a +B ()12 =4 (), : (15)
2t a4\t o . 0

which will be called the Kummer-Schwarz equation together with

(13).Note that +the <first pair of terms in (15) form the so-called

Schwarz derlvative.

The stated theorem 1s consiructlve: on the one hand, 1t defines
the satructure of LODE under consideration In terms of the
transformation functions, and on the other - 1t gives explicit
equations for them.

4.Reducibility

A speclal case of the Kummer problem 1s very important when (1)
1s reduced to an equation with constant coefficlents, 1.e.,to (9) with



by, by = const. Then the original IODE is called reducible, and 1ts
f.8.8. can be written as

¥y (X vu)exp(rkj‘u(mdx. k=1,2, T #T,.

(16)

[

PG 9) v(xexp({rfuxdx), ¥,(X) =¥, (x) fuxydx, r,=T,=T,

where r,, T, are the characteristic roots of (9) (aee also (12)).

The second order IODE are always reducible [(2,31; the question is
to find corresponding pair of the transformation fumctions w(x), v(X
(17 only one of vast number of possible ones). As it 18 clear Irom the
main theorem, the Kummer-Schwarz equation (13) plays a fundamental

part here, which we rewrite in the form

. 2
1u_3fu 18,2 2
183 [B] - Jowt- s, 00F - 4 = const. (7
Since we are free in choosing the coefficlents b,, b, of the
reduced equation (9), one can consider the discriminant 6 as an
arbitrary constant and equation (17) - as _the first integral of a
third order ODE. Then, differentisting (17) with respect to x and

substituting R=u~ !, we arrive at the resolvent eguation {4]:
R7"+ a4, (X)R' 424, (R = 0. (18)

It 1s known (see, e€.g.,(161) that the general solution of third
order LODE (the equation belongs to those too) can be represented as a
quadrstic -féorm of f.s.s. of the correspording second order LODE. In
the case we have

R = ¢,¥5 + ¢, Y,Y, + caYg » ©14C, Cy=cODSE, ©(19)
where Yifx). Ye(x) is f.s.8. of 1LODE
Y o+ AO(I)Y = 0. 20)

The latter is obtained from (1) via the transformation

y=exp (- Jé 1‘31 (X)dmY,



80 via (19) we have finally for ucx):
urx) = exp(-fa, (X)dx)(c:‘yf + 0.y, Y, + czys y71, cg - 6,028, (@)

where ¥, (X), ¥,(X) 1s f.s.s. of LODE (1).Thus, the Kummer - Schwarz
equation (17} has a nonlinear superposition law (21) with r'espect to
solutions of reducible I0DE.

According to Viet's formula (3), 1t follows from (11):

-23 +pu-Yog, (2)
80 that (11) can be represented asg
=[D+3 (a-F+owl[D+ ] (a+ T suy 0. (23)

By virtue of (21), the Tiouvillian and Picard-Vessiot extensions of
the basic differential fleld K are necessary for factorization (23).
Formula (22) implies the Interrelationship between the functions u(x)
and v(x) (see also (14)):

vaxy = 1u~"2exp(ffa, (x)dx + b, fucxidx). (24)

Taking Iinto account (i6) and (24), f.s8.8. of reducible ILODE
becomes

¥y, = 1" 2exp(-Lya dx « lafuax), 6 # 0,
(25)
¥,0 = 1w 2exp(-}fa,ax), ¥, = ¥, xfudx, 6 = O.
Note that the function v(x) satisfies IQDE -
. . 2 -
Vo4 B XV o+ [ay(X) - but@mlv = 0 . (26)

as well 1if u(x) 1s considered to be a known function, or integro-
differential equation (by (24))

V't 8, (DY + 8,(D)V - by lexp(- 2fa 4X) x
' (27)

x [k + b fv %exp(-fa dx)dx1? = 0,
where k=1 if b1=0, or k=0 1r b, #0.



For 8,=0, b,=0 (27) converts to the Ermakov equation
» -3 _
¥+ 8,(X)F - BV T = 9] (28)

studied in detall in (17). The Kummer - Schwarz equatlon (17) 1s
reduced to a simllar equatlon, but with A (x) 1n place of &,(x) and
8/4 1n place of -bo, by means of the substltution v=u"%, It 1s clear
from above that equation (17) has a nonlinear superpositlon law with
respect to I.8.s. of the corresponding reducible LODE of type of 1)
ag well as equations {(26)-(28).

5.Explicit forms of iransformatlons

As has_ been shown, the Kumner problem (and the reducibllity
probler In particular) amounts to the solvabllity problem of ‘the
Kumner-Schwarz (15) (or (i7T)), that in turn, is equivalent to solving
IODE under consideration. Sure, one falls to do this for any,
arbitrary glven equation. However, 1t 1s possible to specify
transformations sufficlently "powerful”™ to cover vast classes of LODE.
In sddition, the Kummer - Schwarz equation serves as a c¢riterion of
membership of s given LODE to cne of these classes.

A typical example of the mentioned transformation 1s

¥ = 1PV 4exp(- Lfa,cxrax + zb, f¥TPTax)z, dt = ¥TPTdz, (29)

(P=P(x)), with a function P(X) being chosen. (Note that in a number of
cages 1t 18 more convenlent to use the modulue under the root in (29)
t0 avold complex valued wx), though 1t 1is not easential, 8as the
form of factorization (11) implies that the transformation functions
w(x), v(x) (10) are determined with a preclsion of constant muliipller
(possibly, complexr-valued). Its value affects the values of the
coefficlenta b,, b, only). .

Transformation (29) includes a number of substitutions of the
most common 1n- the theory and applications of differentlal equations
{see, ©.g., [3)) as pBpecial cases. Thus, for b,=0, P(X)=a,(X) We get
the Liouvillian transformation



¥ = 18,/ *exp(-Lfa dx)z, dt = 73, dx . (30)

which 18 corresponded by the factorization of reducible LODE

(see {23) for T =T,=T)

(o

- 1, 1% 1 _
ly=(D+z8 - gg +TE; )(D+ia + ~rve, )y =0

(o]

JI

1
q

Taking into consideration that (1) 18 easy reduced to the semi-
canonical form (20), the transformation related to (30) 1lg useful:

¥ = A ~1/4em (- 3ra,ax + Jo, (TESTAX)z, db=vTE Tax. (31)
N.P.Erugin (18] applied the transformation

y=3z, dt = va; dx : _ (323

which 18 confirmed by the factorization

a’ :
I.ys(D—%%—raﬂg)(D—rtfia )y =0-
By way of the example, let us show how one can describe the class
of LODE reducible by means of a given transformation of the form (32).
Any pair of the functions u¢x), v(X) has to satisty the system of
two equations arised from factorization (11) of IODE (1) according to
Viet's formulas (3): equation (22) and
(Y

. w v Y .
—+r2u+ﬁ)(.v+r_1u) (v+r1u) =

v (33)+

8y

The latter suggests immediately the Iorm of the function u(x) for
transformation (32) with v(x)=1: r,ru —b u? =8, Whence, setting b o=t
we come to u(x)="8,(xy. Equation (22) remains to be fulfilled. In the
glven case it 1s _the reducibility condition:

"~ Thus, LODE reducible by means of (30) have to be of the form



]

¥y o+ [b{/a_o-—%-é]y’ +ay =0

Q

or in the eguivalent one:
y* + 8,y + [E@(c - b JE@Ax]I Y = 0, Exy=exp(-fa,ax),

where ¢ and b, are arbitrary constants amd 8&(X) or a(x) 18 an
arbitrary function. .

The setting of classes of LODE reducible by means oI varlous
transformations and compilation of an appropriate handbook would be
very useful - in fact, 1t can easy exceed the volume of the Kamke's
classical handbook [16] in range of scope. The way, however, has an
essentiasl and apparently ineradicable shortage: the worth of such
surveys 1s directly proportional to their completenesses, 1.e..
volumes, but when they increase, working hours of using the reference
books for studying particular equations increase more fast. An
alternative consists in peculiar "contraction of informaticn”: using
one or several transformations of type (29) which are high in thelr
converdences snd generalize & set of the others, in the presence of &
uniform test for success relative to any presented equation. The
functions u(x) and v(X) can be formally found from the gystem (22) and
{33) whose, consequence is (17) 1f vx) is expressed in terms of w(x)
by means of (22) (see (24)), and (27) otherwise. But since the system
(z2) and (33) is not solvable In the genersl case, one 18 constrained
to assign the form of one of the functions u(x) and v(x) determining
then another to satisfy the system. In addition, the universal
eriterion of reaching the sim by means of the chosen transformation
can be relation (17) or (27), and another function 1s obtained from
(22). The Kummer-Schwarz equation should be favoured because 1t does
not contain integrals. If u(X) 1s chosen correctly, there exists such
a value of the constant 3 (discriminant) that (17) is fulfilled
1dentically with respect 10 x, 1.e.,

1 u’ us2 = _
a‘é’[au——atﬁ) —4A°]=OOﬂSt—G. (34)

Than the function v(x) 1s determined by (24}, but it is not
actually required because the factorization and f.s.s. of reducible

10



LODE cen be obtained from (23) and (25) depending on w(x) and & only.
Por transformation (29) formulas (34), (23) and (25) become
respectively:

%[ﬁl-%(g)a-qo]sconst=6. (35)

I

W= [D+ie -5+ 0P )]I[Df%(a#%;—@ )1y=0 (36)

Vy,2'% = 1P17" exp(- Ly dx » L/5(vPax), & # 0, an

¥, X)=1Pi~" *exp(- Lfa dx), ¥, (X)=y, (X3[vPEx, 8=0.

Unfortunately, one fails to algorithmise completely the proceas
of choosing the function P(x) for the glven coefficilents a,(x) and
8,(x) of the LODE under investigation. However, the authors have
worked out a number of recommendations along these lines; having no
opportunity to go through iInto detalls here, we quote only some
instructive reasons.

Consider (assuming uZ(x)=P(x) is known) assoclated LODE (26) for
ViX):

v+ 8 IV + [a,@-byu® @) 1v=0. (38)

4 way for choosing P(X) 1s based on the fact that, on the one hand,
equation (38) could be soived, and on the other - one would recover a
solution Vo(X) coordinated with the chosen F(x) in that relation (24)
with u(xJ-*/PTx“is valid. Then, the pair of the functions v, (x), ¥F(x)
determine the transformation (29) to be founded.

let, for instance, the coefficient a,(x) be representable in the
1oTm 8, (X)=p,(X34G,(x) With such q,(x) tnat a solution of LODE =

¥+ a v o+ gV =0 (39)
is known. Equation (39) is obtained from (38) for by=1, F(X)=p,(x)
l.e., the corresponding additive part of the coetricient &,(X) can

be advised as P(x). In particuiar, for Pix)=a,(x) (29) becomes the
generalized Liouvillian transformation (see (30))

11



y=18,1 7" ‘exp(-Lfa,ax + Zb, [VE0x)z, Gt=vB dX. (40)

Semi-canonical form (20} of IODE (1) is corresponded by the
equation In v(x)

v+ A, (X) - bOP(x)lv =Q,

so an additive part of the seml-invariant A,(x) can be also chosen as
Pixy. At Pux)=4,(X) we come to transformation (31).

Example 3 (see [16], 2.115D).

. ‘
v+ (k+ Dy - (P - K 4 13X )y=0, k,n=const.

Taking P (X)=- n?e?X, (39) becomes

2
vk Py ErEgv=0 (41)
By mesns of the standard transformation of the dependent variable
=exp(- 3fa, (X)ax)V, (42)

where in the case a (X)=k + £, IODE (41) is reduced to the semi-
canonical form V- - 1/4 V = O with f.s.s. V. (X)= etX/2_ Hence, bY
(42), f.8.8. of IODE (41) 18 V, ,(X)=exp(- Sra’+ $rax = 5), but only
the functlon v(X)=1/vfi v, (X) satisfies’ (24) with w(X)=vj @) =ine®,
t=v=T, b,=0.

Thus, the desired transformation (29) imkes the form

y = 17 (xr)e” %2, gi=tneax

and reduces the initial LODE to % + z=0. Formilas (36) and (37) with
P(x:=p0(x)=-naea‘. 8={ give the factorization and 1.8.8.:
i 1
{D+ R

1 x k 1 x —
-zme" }(D+o+ gtz De ¥y =0,

bél—

= 1 _ kx x
y.,,z(x)-xexp( 5 + nev).

The above consideration concerning with LODE (38) admlts =a
generalization. Let the coefficlent a (x) be representable as
a, (X)=p, (X) + Q, (X). Substituting

12



v=exp(- 5 [p, (X)dx )V, (43)
transform (38) to the form
V+ g @V + lagX) - %— a,p, + 4% - -12- P, -b PRIV = 0- (44)

The further reasonings are analogous to those stated above, i.e., 1t
is advantageous to choose P(Xx) as an additive part of the expression
a1 1.2 _ 1.
Qxi=a, - 78,0y + 3Py - 3P~
For ingtance, (44) 18 éasy solved when P(x)=Q(X). Hence, the familiar
transformations are obtained as speclal cases: for p,=0, Q(X)=8,(X) we
come to (40) and for p,=a,. Q(X)=A,(x) - to (31).
Obviously, the use of the expression Q(x) allows significantly

higher scope Ior choosing the function FP(x) and expands the sphere of
appllication of transformatlion (29), respectively.

Example 4 ( see [161, 2.80 ).

v - (Feexys (k§+ - 0712 )y = 0, Kn=const,
2z
f<f(x) 18 an arbitrary functicn. Assume p,=- 2k, P(x)=Qx)=-n L .Then

(44) Dbecomes V* - {.V = 0, one of solutions of which is V=conat.
Setting V= 1/¥fi, we find by (43) v(D)=1/f X%} satisfying (24) at
b1=0. u(x) = vF{X) = inf(x). Consequently, by means of transformation
y=1/vh ekxz. dt={nf(x)dx the original equation is reduced to 2+z=0 and
has the factorization and f.s.s.

(p-f-xenr)y(p-k-nti=o
y1.2(x1 = exp(kx + exp(nff(x)dx)).

The examined examples are illustrative; in practice there 1s no -
need at all times to consider equatlon (38) and to search for itse
golutions satisfying (24) for the chosen P¢x). It is more convenient
to use jJust condition (35). Indeed, substitution of {24) to (38) leads
to the Kummer - Schwarz equation (17) a corellary otf which 18 (35) for
transformation (29). Generally, employment of the universal criterion
(34), that is independent on the way of chocsing the fumction u(x)

13



allows to sautomate the process of searching an adequate
transformation.

Bxample 5 (see (161, 2.81).

” 1y - KrE o, 1 _
v [ 2n2 ]7 12an = 0, f=f(X), k,n=const.

Putting P(x)=ay(x)=- K°1'2/(2%+n7) and substituting 1t into (35),
we assure that the condition is fulfilled when d=—4. Then due to (36)
and (37) the factorization and f.s.s. of the inltial equation:
Kt .

[0+t - - A2)(0+ o)y -0
1240 12407 7240
i@ = (T+ V12t 3t X,

6.Algorithm description

On the base of the above technique the authors have worked out an
algorithm for searching trensformation of type (29) which reduces the
glven LODE (1) to equation (9) with the constant coefficlents b,, b,
and, 1if successfully, finding factorization and f.s.s. according 1o
tormulas (36) and (37). Below the algorithm 1s outlined. The notations
accepted above hold true.

Problem: to find a function P(x» satisfying conditicn (35) and
thereby to determine transformatlon (29).

Algorithm:

Input: the coefficlents 8, (X),B4(X) of TODE under consideratlon and
the functions p, (X),Pn(X)-

Qutput: the coefficlents a, (X),0,(X) of factorization (2), (36) and
1.8.8 ¥,(X),¥,(X).

Begin

Az = exp(- 1 Ja,ax); o

it ao=0 then begin y1:=1; y2:=j‘A1clx: a,:=0; a,:=8,; end;

PR PR -
else A,i=8,78,-3%

14



1f Ag=const then begin a, :=—-;—a1+ﬂ'5'; a2:=—;a1—1(§5;
17 Ao--O then begin ¥, :=A1; Yoi=XA,; end;
else begln ¥ :=A exp(vA x); ¥pi=A,exp(-vA x}; end; end;
el8e DeBln Ggi=8yPoi 4,=18,Py5 Q:=Podg—jp 30,9, 174744
generate {gi#const.1=1+n5128}—the array of all sorts combina-
tions of terms from Q; .

for 1:=1 to n do begin P:=g,; D:=%[ %— - 3C %')2-41&0]:

1f D-const then begin «,:=—3(a,+1 ;—M):
a,:=—5(8,-3 I +/D%P); ena;
1f D=0 then begin y, := 1.'P:"”"; Y=y, f¥TPTdx; end;
else begin
y1:=A1iPr"/“exp(-21—j‘v'IﬁP): YA, 1P 2exp(- 1v/D%Pax);
end; end;

else return 'no transformaticn has been found' end;

end

Note thet a version of the algorithm described above provides a
way of verifying hypotheses of the form of DPplX) and P,(xX) In the
interractive regime. The above algorithm 1s Implemented 1in the
computer algebrs system REDUCE-3.3,

The program has been tested successfully on examples from the
chapter II of the handbook [16). Qur pProgram allows to solve more than
T0% of equations. In order to illustrate its erfectiveness note, that
exampies 3 and 4 above take 21 and 22 seconds of ES—1061 running time
and about 1000K memory.

The authors acknowledge Prot, E.P.Zhidkov for fruitful discussions.
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