

co06m oбreannenneri
 ииститута mapmax ncenoanalla аубиа

N.I.Chernov, Ts.I.Ioseliani*, V.S.Kurbatov, G.A.Ososkov

EFFICIENCY OF THE ESTIMATORS OF MULTIVARIATE DISTRIBUTION
PARAMETERS
FROM THE ONE-DIMENSIONAL OBSERVED FREQUENCIES

[^0]1. Introduction. The present paper continues the inveatigation of atatiatical methods in analysis of multivariate distributions which has been started in the paper $/ 1 /$, where the problem of parameter estimation from a grouped sample for a hypothetical distribution of a random vector was considered. The problem arised because of the condition that only one-dimensional (marginal) observed frequencies for each single variable (component of the vector) were avallable. This precludes the application of the classical χ^{2}-test for goodness-of-fit teating parameter estimation. For lack of an appropriate theory the above problem was usually being solved by a certain method based on sumaing up $X^{2 / s}$ constructed for every one-dimensional (marginal) diatribution. The incorrectness of the above heuristic method was ahown in $/ 1 /$. The correct T_{m} statistic that has an asymptotic χ^{2} distribution in the case of testing simple hypothesis as well as in the case of parameter estimation was proposed in that paper too.

However, the conventional parameter estimators minimizing χ^{2} are asymptotically efficient among unbiased estimators from the grouped sample because they are asymp totically equivalent to the maximum likelihood estimators for multinomial distributions (see /2/, p. 426). Our statistic T_{m} depends on incomplete grouped frequencies, so the question of the efficiency of the estimator minimizing T_{m} among all the unbiased estimators cannot be solved witinin the framework of the common theory based on Rao-Cramer inequality. Nevertheless we succeded in proving its asymptotical efficiency in the class of estimators minimizing statistics that quadratically depend on the marginal observed frequencies. This statement is proved in the present paper. As an quantitative illustration we compare the efficiency of the eatimate minimizing T_{m} with that of the estimete minimizing, the marginal $\chi^{{ }^{2}}{ }^{\prime}$ mentioned above using the numerical example from /1/. The firat eatimate proves to be much more efficient. For the example we have chosen a physical model - so called isobar model of pion-nucleon interactions $/ 3 /$ with the production of an additional pion. The model as well as the aetup of the whole problem was taken from experimental high-energy physics.
2. Formalation of the problem and neceasary conventions. Now we give the exact formulation of our problem preserving all the notation from the parer $/ 1 /$.

Let F be the distribution of a random vector (E_{1}, E_{2}) inside a rectangle T defined by inequalities $E_{1}^{\prime} \leqslant E_{1} \leqslant E_{1}^{\prime \prime}$ and $E_{2}^{\prime} \leqslant E_{2} \leqslant B_{2}^{\prime \prime}$. The intervals ($E_{1}^{\prime}, E_{1}^{\prime \prime}$) and ($E_{2}^{\prime}, E_{2}^{\prime}$) are subdivided into m_{1} and m_{2} aubintervals respectively creating a grid with $m_{1} \times m_{2}$ cells inside π. The distribution F induces the discrete distribution $p_{i j}$ ($1 \leqslant i \leqslant m_{y}$, 1 \& $j \leqslant m_{2}$) of the probabilities that an observed value of the random veotor belongs to the cells which we call the expected frequencies. Having a sample of size N we obtain the numbers $N_{1 j}$ of observations belonging to the cells which we call the observed frequencies. The values

$$
\begin{array}{ll}
N_{i \cdot}=\sum_{j} N_{i j} ; & p_{i \cdot}=\sum_{j} p_{i j} \\
N_{\cdot j}=\sum_{i} N_{i j} ; & p_{\cdot j}=\sum_{i} p_{i j}
\end{array}
$$

are called the marginal frequencies (the observed ones and the expected ones). Let us introduce so-called "through" numeration for the marginal frequencies: $N_{k}=N_{k}, p_{k}=p_{k}$. for $k=1, \ldots, m_{1}$ and $N_{k+m_{1}}=N_{\cdot k}, p_{k+m_{1}}=p_{\bullet k}$ for $k=1, \ldots, m_{2}$ and denote $m=m_{1}+m_{2}$.

Let us remind some results of the paper $/ 1 /$ needed for the further discussion. Denote by x the random columin-vector

$$
x^{T}=\left(\frac{N_{1}-N p_{1}}{\sqrt{N p_{1}}}, \frac{N_{2}-N p_{2}}{\sqrt{N p_{2}}}, \ldots, \frac{N_{m}-N p_{m}}{\sqrt{N p_{m}}}\right)
$$

by u_{1} and u_{2} the colum-vectors

$$
u_{1}^{T}=\left(\sqrt{p_{1}}, \sqrt{p_{2}}, \ldots, \sqrt{p_{m_{1}}}\right), u_{2}^{T}=\left(\sqrt{p_{\cdot 1}}, \sqrt{p_{\cdot 2}}, \ldots, \sqrt{p_{\cdot m_{2}}}\right)
$$

and by v_{1} and v_{2} their m-dimensional "extensions"

$$
\begin{aligned}
& v_{1}^{T}=\left(\sqrt{p_{1}}, \sqrt{p_{2}}, \ldots, \sqrt{p_{m_{1}}}, 0,0, \ldots, 0\right) \\
& v_{2}^{T}=\left(0,0, \ldots, 0, \sqrt{p_{\cdot 1}}, \sqrt{p_{\cdot 2}}, \ldots, \sqrt{p \cdot m_{2}}\right)
\end{aligned}
$$

(here and on T denotes transposition). The symmetric matrix V of order $m \times m$ is defined as follows: it consists of 4 blocks:

$$
v=\left|\begin{array}{c:c}
v_{1} & v_{12} \\
\hdashline v_{12}^{4} & \\
\hdashline v_{2}
\end{array}\right|
$$

where $V_{1}=I_{m_{1}}-u_{1} u_{1}^{T}, V_{2}=I_{m_{2}}-u_{2} u_{2}^{T}$ (here and later on I_{k} is the $k \times k$ unit matrix) and the block V_{12} consiats of the elements

$$
v_{i j}=\frac{p_{i, j}-p_{i \cdot} p_{\cdot j}}{\sqrt{p_{i \cdot} p_{\cdot j}}}
$$

$\left(1 \leq i \leq m_{1}, 1 \leq j \leq m_{2}\right)$.
As show in $/ 1 /$, the vector x is asymptotically normal with the mean 0 and covariance matrix V . The eigenvalues $\lambda_{1} \leqslant \lambda_{2} \leq \ldots \leq \lambda_{\mathrm{m}}$ of V are defined in auch a way that $\lambda_{1}=\lambda_{2}=0$ but generally $\lambda_{3}>0$ (the case $\lambda_{3}=0$ is a degenerate one and corresponds to a sort of determinate dependence between E_{1} and E_{2}).

The above heuriatic method of the sum of the marginal $X^{2, s}$ uses the atatistic $T=x^{T} x$. On the contrary, the statistic T_{m} proposed in /1/ has the form $T_{m}=x^{T} Q x$ where the "weight" symmetric matrix Q is the solution of the matrix equation

$$
\begin{equation*}
A^{T} Q A=I_{m}-c_{m_{1}} c_{m_{1}}^{T}-c_{m_{2}} c_{m_{2}}^{T} \tag{1}
\end{equation*}
$$

where c_{k} is the m-vector consisting of $m-1$ zeroes and the only one at the k-th position. In its turn, the matrix A is a low-triangular one and satisfies the matrix equation

$$
\begin{equation*}
A A^{T}=V \tag{2}
\end{equation*}
$$

The equation set (1-2) is always compatible but does not define Q matrix uniquely. Precisely, if we consider Q and V as linear operators in $\mathbb{R}^{\mathbb{M}}, Q$ is uniquely defined only in the ($m-2$)-dimensional vector subspace $L \subset \mathbb{R}^{m}$ which is orthogonal to the vectors v_{1} and v_{2} while the vectors $Q v_{1}$ and $Q v_{2}$ may take arbitrary values. If we restrict the operators Q and V to the subspace L then $Q=V^{-1}$ (L is an eigenspace for both operators). Since $x \in L$ our definition of Q matrix defines the value of $T_{m}=x^{T} Q_{x}$ uniquely.

The distribution F and the expected frequencies $p_{i j}$ and p_{i} depend on parameters $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}(s<m-1)$. The parameter vector $\alpha=$ $=\left(\alpha_{1}, \ldots, \alpha_{s}\right)$ is defined in a domain IC \mathbb{R}^{s}. As in $/ 1 /$ we suppose that
(i) the functions $p_{i j}\left(\alpha_{1}, \ldots, \alpha_{s}\right)$ have the continuous second derivatives;
(ii) the "true" value $\alpha_{0}=\left(\alpha_{1}^{0}, \ldots, \alpha_{g}^{0}\right)$ of the parameter vector α is an inner point of $I_{;}$
(iii) $p_{k}(\alpha)>c^{2}$ for some $c>0$ and for all k, α;
(iv) the matrix $D=\left(\partial p_{k} / \partial \alpha_{r}\right), 1 \leqslant k \leqslant m, 1 \leqslant r \leqslant B$ is of rank B for all α;
(v) $\lambda_{3}>c$ for all $\alpha\left(\lambda_{3}\right.$ is the eigenvalue of v, see above).

The latter condition is an extra one if comparing with the classic case of estimating by minimum χ^{2} method ($/ 2 /$, p.p. 426-427).

The last notation from the paper /1/ we need is the matrix B of order $m \times s$ consisting of the elements $\left(1 / \sqrt{p_{i}}\right) \times\left(\partial p_{i} / \partial \alpha_{r}\right)$, $1 \leqslant i \leqslant m, 1 \leqslant r \leqslant s$. The matrices V, Q, B and the vector x depend on the parameters $\alpha_{1}, \ldots, \alpha_{g}$ but in the subsequent formulae they are considered only at the point α 。for the "true" value of the parameter vector.
3. The main result. As shown in $/ 1 /$ (see the formula (15)) the estimate $\hat{\hat{\alpha}}=\left(\hat{\alpha}_{1}, \ldots, \hat{\alpha}_{s}\right)$ of the parameters $\alpha_{1}, \ldots, \alpha_{s}$ by the minimum T_{m} method satisfies the relation

$$
\begin{equation*}
\hat{\alpha}-\alpha_{0}=\frac{1}{\sqrt{N}}\left(B^{T} Q B\right)^{-1} B^{T} Q x+\frac{1}{\sqrt{N}} o_{p}(1) \tag{3}
\end{equation*}
$$

where $O_{p}(1)$ denotes a random vector approaching 0 in probability. As noted in $/ 1 /$ the proof of (3) does not use the special form of Q matrix, i.e. it is valid for any symuetric positive definite matrix R omoothly depending on α. Thus, the estimate $\hat{\alpha}_{R}$ minimizing $T_{R}=$ =x x^{2} satisfies the relation

$$
\begin{equation*}
\hat{\alpha}_{R}-\alpha_{0}=\frac{1}{\sqrt{N}}\left(B^{T} R B\right)^{-1} B^{T} T_{R X}+\frac{1}{\sqrt{N}} o_{p}(1) \tag{4}
\end{equation*}
$$

Relation (4) implies the following lemm:
Lemma 1. The vector $\sqrt{N}\left(\hat{\alpha}_{R}-\alpha_{0}\right)$ is asymptotically normal with the mean 0 and covariance matrix

$$
\begin{equation*}
C_{R}=\left(B^{T} R B\right)^{-1} B^{T} R V R B\left(B^{T} R B\right)^{-1} \tag{5}
\end{equation*}
$$

Since $Q_{\mathrm{T}} \mathrm{V}^{-1}$ in the subspace L we obtain $Q V=I_{m}-V_{1} V_{1}^{T}-$ $-v_{2} v_{2}^{T}$ simplifying (5) for $R=Q$:

$$
\begin{equation*}
C_{Q}=\left(B^{T} Q_{Q B}\right)^{-1} \tag{6}
\end{equation*}
$$

The main result of the present paper is the following theorem:
Theorem 1. The estimator minimizing $T_{m}=x^{T} Q_{x}$ is asymptotically efficient in the class of estimators minimizing $T_{R}=x^{T} R x$ with a aymmetric positive definite matrix R amothly depending on α. In other words the concentration ellipaoid defined by the covariance matrix C_{Q} lies wholly within the concentration ellipsoid defined by any covariance matrix C_{R}.

Proof. It is known (see $/ 2 /$, p. 300) that the concentration ellipsoid of an estimate of a s-dimensional parameter with the covariance matrix C is defined by the equation $y^{T} C^{-1} y=s+2$, where $y=\left(y_{1}\right.$, $\mathrm{X}_{2}, \ldots, y_{3}$) is the column-vector of independent variablea. If C_{1} and C_{2} are two covariance matrices then the condition of the embedment of the corresponding ellipsoids of concentration (the firat one is inside
the second one) can be expressed in the form: $C_{1}^{-1} \geqslant c_{2}^{-1}$ (i.e. the matrix $\quad c_{1}^{-1}-c_{2}^{-1}$ is nonnegative definite).

Therefore the theorem 1 is equivalent to the matrix inequality

which must be valid for any aymmetric positive definite matrix R (note that the nonaingularity of the matrix $B^{T} R V B B$ needs a special proof, see below).

Let us proof the inequality (7). First we show that the matrix $B^{T}{ }_{\text {RVRB }}$ is really nonsingular. Let $y \in \mathbb{R}^{s}$, then $\left(B^{T} \mathrm{~T}_{\mathrm{RVRBy}}, \mathrm{y}\right)=$ $=$ (VRBy, RBy) and the latter quantity is equal to 0 only if the vector RBy is orthogonal to L. But $B \mathbb{R}^{3} \subset \mathrm{~L}($ see $/ 1 /$), so ($\mathrm{RBy}, \mathrm{By}$) $=$ $=0$ in contradiction to the positive definiteness of R .

$$
\text { The inequality (7) means that for any vector } y \in \mathbb{R}^{s}
$$

$$
\left(B^{T} \mathrm{Q}_{\mathrm{Q} y}, \mathrm{y}\right) \geqslant\left(\mathrm{B}^{\left.\mathrm{T}_{\mathrm{RB}}\left(\mathrm{~B}^{\mathrm{T}} \mathrm{~T}_{\mathrm{RB}}\right)^{-1} \mathrm{~B}_{\mathrm{RBy}}, \mathrm{y}\right)}\right.
$$

It is equivalent to the condition that for any vector $w \in B \mathbb{R}^{B}$

$$
\begin{equation*}
\left(Q_{w}, w\right) \geqslant\left(R B\left(B^{T} R V R B\right)^{-1} B^{T} \mathrm{~T}_{\mathrm{w}}, w\right) . \tag{8}
\end{equation*}
$$

We shall prove a more strong condition that (8) holds for any vector $w \in L$. Denote $P=I_{m}-v_{1} v_{1}^{T}-v_{2} v_{2}^{T}$ the orthogonal projective matrix of the m-dimensional vector space onto the subapace L. Then $P w=w$, $\mathrm{PB}=\mathrm{B}, \mathrm{B}^{\mathrm{T}} \mathrm{P}=\mathrm{B}^{\mathrm{T}}$ and (8) can be rewritten in the form

$$
\left(Q_{w}, w\right) \geqslant\left(\operatorname{PRPB}\left(B^{T}{ }_{P R P V F R P B}\right)^{-1}{ }_{B} T_{P R P W}, w\right)
$$

or

$$
\begin{equation*}
(Q w, w) \geqslant\left(R _ { 1 } B \left(B^{\left.\left.T_{R_{1}} V R_{1} B\right)^{-1} B^{T} R_{1} w, w\right), ~}\right.\right. \tag{9}
\end{equation*}
$$

where $R_{1}=P R P$ is a symmetric matrix with two null eigenvectors v_{1} and v_{2} and the positive eigenspace L.

The further transformations are performed only in the subspace L where Q, R_{1} and $V\left(Q=V^{-1}\right)$ are symetric positive definite operators. Therefore (9) is equivalent to

$$
\begin{align*}
& \left(R_{1}^{-1} Q R_{1}^{-1} w, w\right) \geqslant\left(B\left(B^{T} R_{1} V R_{1} B\right)^{-1} B^{T} T_{w, w}\right) \\
& \left(\left(R_{1} R_{1}\right)^{-1} w, w\right) \geqslant\left(B\left(B^{T} R_{1} V R_{1} B\right)^{-1} B^{T} w, w\right) \tag{10}
\end{align*}
$$

The operator $G=\left(R_{1} V R_{1}\right)^{-1}$ is also symmetric and positive definite in L, thus (10) is equivalent to the following condition:

$$
\begin{equation*}
(G w, w) \geqslant\left(B\left(B^{T_{G}-1} B\right)^{-1} B^{T} w, w\right) \tag{11}
\end{equation*}
$$

for any symmetric positive definite operator G in L and for any vector $w \in I$.

The last notation from the paper $/ 1 /$ we need is the matrix B of order $m \times s$ consisting of the elements $\left(1 / \sqrt{p_{i}}\right) \times\left(\partial p_{i} / \partial \alpha_{r}\right)$, $1 \leqslant i \leqslant m, 1 \leqslant r \leqslant \theta$. The matrices V, Q, B and the vector x depend on the parameters $\alpha_{1}, \ldots, \alpha_{s}$ but in the subsequent formulae they are considered only at the point α 。for the "true" value of the parameter vector.
3. The main result. As shown in $/ 1 /$ (see the formula (15)) the estimate $\hat{\alpha}=\left(\hat{\alpha}_{1}, \ldots, \hat{\alpha}_{g}\right)$ of the parameters $\alpha_{1}, \ldots, \alpha_{g}$ by the minimum T_{m} method satisfies the relation

$$
\begin{equation*}
\hat{\alpha}-\alpha_{0}=\frac{1}{\sqrt{N}}\left(B^{T} Q B\right)^{-1} B^{T} Q X+\frac{1}{\sqrt{N}} o_{p}(1), \tag{3}
\end{equation*}
$$

where $o_{p}(1)$ denotes a random vector approaching O in probability. As noted in $/ 1 /$ the proof of (3) does not use the special form of Q matrix, i.e. it ia valid for any symuetric positive definite matrix R smoothly depending on α. Thus, the estimate $\hat{\alpha}_{R}$ minimizing $T_{R}=$ $=\mathrm{X}_{\mathrm{Rx}}$ satisfies the relation

$$
\begin{equation*}
\hat{\alpha}_{R}-\alpha_{0}=\frac{1}{\sqrt{N}}\left(B^{T} R B\right)^{-1} B^{T} R x+\frac{1}{\sqrt{N}} o_{p}(1) \tag{4}
\end{equation*}
$$

Relation (4) implies the following lemma:
Lemma 1. The vector $\sqrt{N}\left(\hat{\alpha}_{R}-\alpha_{0}\right)$ is asymptotically normal with the mean 0 and covariance matrix

$$
\begin{equation*}
C_{R}=\left(B^{T} T_{R B}\right)^{-1} B^{T} R V R B\left(B^{T} T_{R B}\right)^{-1} \tag{5}
\end{equation*}
$$

Since $Q_{=} V^{-1}$ in the subspace L we obtain $Q V=I_{m}-v_{1} V_{1}^{T}-$ - $\mathrm{v}_{2} \mathrm{v}_{2}^{\mathrm{T}}$ simplifying (5) for $\mathrm{R}=\mathrm{Q}$:

$$
\begin{equation*}
C_{Q}=\left(B^{T_{Q B}}\right)^{-1} . \tag{6}
\end{equation*}
$$

The main reault of the present paper is the following theorem:
Theorem 1. The eatimator minimizing $T_{m}=x^{T} Q_{x}$ is asymptotically efficient in the class of estimators minimizing $T_{R}=x^{T} R x$ with a aymmetric positive definite matrix R amoothly depending on α. In other words the concentration ellipsoid defined by the covariance matrix C_{Q} lies wholly within the concentration ellipsoid defined by any covariance matrix C_{R}.

Proof. It is known (see $/ 2 /$, p. 300) that the concentration ellipsoid of an estimate of a s-dimensional parameter with the covariance matrix C is defined by the equation $y^{T} C^{-1} y=s+2$, where $y=\left(y_{1}\right.$, y_{2}, \ldots, y_{s}) is the column-vector of independent variables. If C_{1} and C_{2} are two covariance matrices then the condition of the embedment of the corresponding ellipsoids of concentration (the first one is inside
the second one) can be expressed in the form: $c_{1}^{-1} \geqslant c_{2}^{-1}$ (i.e. the matrix $\quad C_{1}^{-1}-C_{2}^{-1}$ is nonnegative definite).

Therefore the theorem 1 is equivalent to the matrix inequality $B^{T} \mathrm{TBB}^{2} \geqslant \mathrm{~B}^{T} \mathrm{RB}\left(\mathrm{B}^{T_{R V R B}}\right)^{-1} \mathrm{~B}^{T_{R B}}$
which must be valid for any aymmetric positive definite matrix R (note that the nonsingularity of the matrix $B^{T} R V R B$ needs a special proof, see below).

Let us proof the inequality (7). First we show that the matrix $B_{R V R B}$ is really nonsingular. Let $y \in \mathbb{R}^{s}$, then ($\mathrm{B}_{\text {RVRBy, }}$) $=$ $=$ (VRBy, RBy) and the latter quantity is equal to 0 only if the vector RBy is orthogonal to L. But $B \mathbb{R}^{3} \subset L$ (see $/ 1 /$), so (RBy, By) $=$ $=0$ in contradiction to the positive definiteness of R.

The inequality (7) means that for any vector $y \in \mathbb{R}^{s}$

$$
\left(B^{T} Q_{Q B y}, y\right) \geqslant\left(B^{T} R B\left(B^{T} R V R B\right)^{-1} B^{T} R B y, y\right)
$$

It is equivalent to the condition that for any vector $w \in B \mathbb{R}^{8}$

$$
\begin{equation*}
(Q W, W) \geqslant\left(R B\left(B^{T} R V R B\right)^{-1} B^{T} R W, w\right) . \tag{8}
\end{equation*}
$$

We shall prove a more atrong condition that (8) holds for any vector $w \in L$. Denote $P=I_{m}-v_{1} v_{1}^{T}-v_{2} v_{2}^{T}$ the orthogonal projective matrix of the m-dimensional vector space onto the subspace L. Then Pwaw , $\mathrm{PB}=\mathrm{B}, \mathrm{B}^{\mathrm{T}} \mathrm{P}=\mathrm{B}^{\mathrm{T}}$ and (8) can be rewritten in the form

$$
(Q w, w) \geqslant\left(P R P B\left(B^{T} F R P V P R P B\right)^{-1} B^{T} P R P W, w\right)
$$

or

$$
\begin{equation*}
(Q w, w) \geqslant\left(R_{1} B\left(B^{T} R_{1} V R_{1} B\right)^{-1} B^{T} R_{1} w, w\right), \tag{9}
\end{equation*}
$$

where $R_{1}=P R P$ is a symmetric matrix with two null eigenvectors v_{1} and v_{2} and the positive eigenspace L.

The further transformations are performed only in the subspace L where Q, R_{1} and $V\left(Q_{0} V^{-1}\right)$ are symetric positive definite operators. Therefore (9) is equivalent to

$$
\begin{align*}
& \left(R_{1}^{-1} Q R_{1}^{-1} w, w\right) \geqslant\left(B\left(B^{T} R_{1} V R_{1} B\right)^{-1} B^{T} T_{w} w\right) \\
& \left(\left(R_{1} \vee R_{1}\right)^{-1} w, w\right) \geqslant\left(B\left(B^{T} R_{1} V R_{1} B\right)^{-1} B^{T} w, w\right) \tag{10}
\end{align*}
$$

The operator $G=\left(R_{1} V R_{1}\right)^{-1}$ is also symetric and positive definite in L, thus (10) is equivalent to the following condition:

$$
\begin{equation*}
\left(G_{W}, w\right) \geqslant\left(B\left(B_{G} T_{G}^{-1} B\right)^{-1} B_{W} T_{W}, w\right) \tag{11}
\end{equation*}
$$

for any symmetric poaitive definite operator G in L and for any vector $w \in L$.

Let us prove (11). Consider the symmetric operator $K=G-$ $-B\left(B^{T} T^{-1} B\right)^{-1} B^{T}$ in L. Denote by L_{1} and L_{2} two linear subspaces in L : $L_{1}=G^{-1} B \quad s$ and L_{2} is the orthogonal complement to $B \mathbb{R}^{s}$. It is easy to show that the operator K equals 0 in L_{1} and equals G in L_{2}. Thus (11) is valid for $w \in L_{1}$ and for $w \in L_{2}$.

Suppose that (11) is not valid everywhere in L, i.e. the operator K has a negative eigenvector: $K_{w}=\lambda_{w, ~} \lambda<0$. Evidently, the vector w should be orthogonal to L_{1} because L_{1} is the subspace of the null eigenspace of the K operator. It is easy to ghow that $L_{1} \cap L_{2}$ (0) and $\operatorname{dim} L_{1}+\operatorname{dim} L_{2}=\operatorname{dim} L$, thus the w vector could be decomposed as $w=w_{1}+w_{2}$, where $w_{1} \in L_{1}$ and $w_{2} \in L_{2}$. Then
$\left(K w_{2}, w_{2}\right)=\left(K\left(w-w_{1}\right), w_{2}\right)=\left(\lambda w, w_{2}\right)=\lambda\left(w, w-w_{1}\right)=\lambda\|w\|^{2}<0$, but on the other hand $\left(\mathrm{Kw}_{2}, \mathrm{w}_{2}\right)=\left(\mathrm{Gw}_{2}, \mathrm{w}_{2}\right) \geqslant 0$. The obtained contradiction proves the inequality (11) and, as a consequence, the theorem.
4. A numerical experiment. For experimentators it is of great interest to do a certain numerical comparison of the estimate minimizing T_{m} with the one minimizing the sum of the marginal $X^{{ }^{2}{ }^{\prime} s}$ conventionally used in practice. To obtain numerical valuea of their statistical characteristics we have made a numerical experiment uaing the example cited in $/ 1 /$: so-called isobar model of pion-nucleon interactions near Δ_{33} production threshold, namely the reaction $\pi^{-} p \rightarrow \pi^{-} \pi^{+} n$. This reaction is the major one at the energies lower $1 / 1 /$ Gev. We have taken a simplified version of this model deacribed in $1 / 1 /$. The joint probability density for energiea E_{1}, E_{2} of the secondery pions is $/ 3 /$

$$
\begin{equation*}
\frac{\partial 2_{F}}{\partial E_{1} \partial E_{2}} \cong\left|a R_{1}\right|^{2}+\left|b R_{2}\right|^{2}+2 \mu_{0}^{\prime} \circ \operatorname{Re}\left[a R_{1} b^{*} R_{2}^{*}\right] \tag{12}
\end{equation*}
$$

where $a=-\sqrt{2 / 15} a_{3}-1 / \sqrt{3} a_{1} e^{i \varphi}, b=\sqrt{8 / 135} a_{3}-1 / \sqrt{27} a_{1} e^{i \varphi}$
For other quantities we have used the same conventions as in $/ 1 /:$

$$
R_{1}=\left(\frac{\Gamma_{1}}{2 \pi \bar{p}_{1}^{\prime}}\right)^{1 / 2} \frac{1}{\omega_{0}-\omega_{13}-\frac{1}{2} i \Gamma_{1}}, R_{2}=\left(\frac{\Gamma_{1}}{2 \pi p_{2}^{\prime}}\right)^{1 / 2} \frac{1}{\omega_{0}-\omega_{23}-\frac{1}{2} i \Gamma_{1}},
$$

Γ_{1} is a Δ_{33} width, ω_{0} is its mass, ω_{13} and ω_{23} are the effective masses of $\pi{ }^{-} n$ and $\pi^{+} n$ systems at the final state respectively, $p_{1}^{\prime}, p_{2}^{\prime}$ are the Δ_{33} momenta in the center-of-mass reaction.

In expression (12) the parameters a_{1}, a_{3}, φ are unknown and are to be estimated. But any one of them can be calculated from two others via the normalization condition

$$
\iint \frac{\partial^{2} F}{\partial E_{1} \partial E_{2}} d E_{1} d E_{2}=1
$$

In fact there are only two independent parameters, let them be a_{0} and a_{3}. We have chosen the "true" values of parameters $a_{1}^{\circ}=8$, $a_{3}^{\circ}=1, \varphi^{\circ} \approx 4.23$

The accuracy of a joint estimator of the paranetera a_{1}, a_{3} is described by its ellipse of concentration centered at the point $\left(a_{1}^{\circ}, a_{3}^{\circ}\right)$. The equations of the concentration ellipses for our two estimators have been calculated by a computer uaing the formulae obtained in Sect.3.The figure represents the ellipse of concentration of the eatimate minimizing the sum of the marginal $\chi^{2 / s}$ (the solid curve) and that of the eatimate minimizing T_{m} (the dotted curve). The equations of these ellipses are

$$
4.8\left(a_{1}-a_{1}^{0}\right)^{2}+7.2\left(a_{3}-a_{3}^{0}\right)^{2}+1.9\left(a_{1}-a_{1}^{0}\right)\left(a_{3}-a_{3}^{0}\right)=4000
$$

and

$$
17.3\left(a_{1}-a_{1}^{0}\right)^{2}+13.5\left(a_{3}-a_{3}^{0}\right)^{2}-9.5\left(a_{1}-a_{1}^{0}\right)\left(a_{3}-a_{3}^{0}\right)=4000
$$

respectively. It is clearly seen that the proposed eatimate is at least twice more accurate than the previously used one.

$$
a_{1}
$$

REFERENCE s :

1. Ghernov N.I., Osoakov G.A., Kurbatov V.S., JINR, 55-87-698, Dubna, 1987.
2. Cramer H. Mathematical methods of statistica. Princeton Univ. Press, Princeton, 1946.
3. Olsson M. G., Yodh G.B. Phys. Rev., 1966, 145, p. 1309.

Received by Publishing Department

on February 5, 1988.

[^0]: *IHEP TSU, Tbilisi

