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1. Introduction. The present paper continues the inveastigation
of gtatistical methods in analysis of multivariate distributions
which has been started in the paper /1/. where the problem of para-
meter estimation from a grouped sample for a hypothetical distribu-
tion of a random vector was congidered. The problem arised because of
the condition that only one-dimengional (marginal) observed frequen-
cies for each single variable (component of the vector) were available,
This precludes the application of the classical i,z-test for goodness-
of-fit testing parameter estimation. For lack of an appropriate theory
the above problem was usually being solved by a certain method based
on summing up‘i 2's constructed for every one-dimensional (marginal)
distribution. The incorrectness of the above heuristic method was
shown in 71/, The correct T, statistic that has an asymptotic Xﬁz-
distribution in the case of testing simple hypothesis as well as in
the case of parameter estimation was proposed in that paper too.

However, the conventional parameter estimators minimizing ]12
are asymptotically efficient among unbiased estimators from the grou-
ped sample because they are asymptotically equivalent to the maximum
likelihood estimators for multinomial distributions (see /2/, p. 426).
Our statistic Tm depends on incomplete grouped frequencies, so the
question of the efficiency of the estimator minimizing T among all
the unbiased estimators cannot be solved witnin the framework of the
common theory based on Rao~Cramer inequality. Nevertheless we succeded
in proving its asymptotical efficiency in the class of estimators mi-
nimizing statistics that quadratically depend on the marginal observed
frequencies. This statement is proved in the present paper. As an quan-
titative illugtration we compare the efficiency of the estimate mini-
mizing Tm with that of the estimate minimizing the marginal 7( 2'8 men-
tioned above using the numerical example from 1/, The first estimate
proves to be much more efficient. For the example we have chosen a
physical model - go called isobar model of pion-nucleon interactions

with the production of an additional pion. The model as well as
the setup of the whole problem was taken from experimental high-energy
physics.
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2. Formulation of the problem and necessary conventiong. Now we
give the exact formulation of our problem preserving =211 the motation
from the parer

Let F be the distribution of a ra.ndom vector (E By ) ingide
a rectangle TU defined by inequalities E1 B s E; a.nd Ezs E, € 32
The intervals (E1,E ) and (E2,E ) are subdivided into m, and m, sub-
intervals respectively creating a grid with myx m, cellg ingide J\ .
The distribution P induces the discrete digtribution pij (1sie m,
1e j=s m2) of the probabilities that an observed value of the random
vector belongs to the cells which we call the expected frequencies.
Having a sample of size N we obtain the numbers Nij of observations
belonging to the cells which we call the observed frequencies., The
values

=2 N,.; p;. =2_ P
3 ij i 3 iJ
R T

are called the marginal frequencies (the obgerved ones and the expec-
ted ones). Let us introduce so-called "through" numeration for the
marginal frequencies: Nk = Nk. s Py = Py, for 11r=1,...,1n1 and

N = N-k’ pk+m1 =Py for k=1,...,m2 and denote m = m, +m, .

Let us remind some results of the paper /n/ needed for the fur-
ther discussion. Denote by x the random colummn-vector

v (e N,-Np, N,-Np, K, -8p, ),

m , —Np2 1eees ?—
by u, and u, the column~vectors
ul = <ﬁ;,m,...,frn{> v Wy = (DLyPagseres VP m,)
and by vy and v, their m-dimensional "extensions"
= ({Pra s YPpuseees ﬁ‘m". 105 Oyeee, 0)
vy = (0,003 OV, Vg 5 ooy \/ﬁl )

(here and on T denotes transposition). The symmetric matrix V of
order mxm 1ig defined as follows: it consists of 4 blocks:

k+1n1

ve |Ja_ 1 Va2
" S
12, V2

where V1=Im1-u1u$ , 2=Im2-u2ug (here and later on I, is the

kxk unit matrix) and the block V12 consists of the elements

V.. = pij _pi‘ p.j
+d Vpi. P.j

(1sigm, 15 jsmy).

As shown in /1/, the vector x is asymptotically normal with
the mean O and covariance matrix V. The eigenvalues X sApsesesX
of V are defined in such a way that A 1=)\ »=0 but generally A 3> 0
(the case A .,=0 is a degenerate one and corresponds to a sort of de-
terminate dependence between E, and E 2)e

The above heuristic method of the sum of the marginal 7(_2'3 uses
the statistic T-xTx. On the contrary, the statistic ‘1‘ proposed in
// has the form T =X Qx where the "weight" symmetric m.atrlx Q is the
golution of the matrix equation

T T T
A'QA =I_-c_c. =¢C_C_ 1)
m m, “m, m, m,

where Cy is the m-vector consisting of m-1 =zeroces and the only
one at the k-th position, In its turn, the matrix A 1is a low-irian-
gular one and satisfies the matrix equation

aul -y, (2)

The equation set (1-2) is always compatible but does not define
Q matrix uniquely. Precisely,if we coneider Q and V as linear opera-
tors in R™, Q is uniquely defined only in the (m-2)-dimensional vec-
tor subspace LclR B which is orthogonal to the vectors vy and vy
while the vectors Qv1 and Qv2 may take arbitrary values. If we rest-
rict the operators Q and V to the subspace L then Q=V'1 (L is an eig-
enspace for both operators). Since x€L our definition of Q matrix
defines the value of T =xTQx uniquely.

The distribution F and the expected frequencies p:L and Py de-
pend on parameters 0(1,0(2....,0( (s< m~1). The para.meter vector A =
=(ol 400050 ) 18 defined in a domain 1€R5, as in /1 we suppose
that

(i) the functions pij(d1"“’°"s) have the continuous second
derivatives;

(ii) the "true" value oL°=(oL:,...,oL:) of the parameter vector
o, is an inper point of I;

(111) py(et)> c® for some c¢>0 and for all k,a i

(iv) the matrix D=(®p,/de.), 1€ ksm, 1srgs 1s of rank &g
for all & ;

(v} A 3>c forall« (}\3 ig the eigenvalue of V, see above).

The latter condition is an extra one if comparing with the clas-
sic case of egtimating by minimum X2 method ( 2/, peP. 426-427).



The last notation from the paper // we need is the matrix B
of order mxs consisting of the elements (1/‘{?1)"(b py/x )
1<i<m, 1<r<s. The matrices V,Q,B and the vector x depend on the
parameters oc1.....<>cs but in the 'subsequent formulae they are conai-
dered only at the point o , for the "true" value of the parameter vec-
tor.

3. The main result. As shown in /1/ (gee the formula (15)) the
estimate o =(&1.....3cs) of the parameters o qsee.,ot ; by the mini-
mum Tm method satisfies the relation

2 1 Tar)~15T
A~olg =VT (B°QB) B Qx +V__. op(1) , (3)
where o_(1) denotes a random vector approaching O in probability.
As noted in /1/ the proof of (3) does not use the special form of Q
matrix, i.e. it is valid for any symmetric posiﬁive definite matrix
R smoothly depending on o, Thus, the egtimate ol minimizing Tp=
ax"Rx satisfieg the relation
- 1 Trony=1,T
Lp oco—ﬁ(BRB) BRx+ﬁo(1). (4
Relation (4) implies the following lemma:
Lemma 1. The vector VN (&R -%o) 1is asymptotically normal with
the mean O and covariance matrix

cg = 8TrB) "'8TRVRB(BTRE) ! . (5)

Since QaV™! in the subspace L we obtain QV = I_ - v1v$ -

m
- vzvg gimplifying (5) for R=Q:
cq = BTam)" . (6)

The main result of the present paper is the following theorem:

Theorem 1. The egtimator minimizing Tm-xTQx is asymptotically
efficient in the class of estimators minimizing TR=xTRx with a sym-
metric positive definite matrix R smoothly depending on &4 . In other
words the concentration ellipgoid defined by the covariance matrix CQ
lies wholly within the concentration ellipsoid defined by any covari-
ance matrix Cge

Proof. It is known (see 2/, p. 300) that the concentration el-
lipsoid of an estimste of a g-dimensional parameter with the covari-~
ance matrix C is defined by the equation yTC'1y = §+2, where y=(y1.
yz,...,ys) is the column-vector of independent variables. If ¢, and
C2 are two covariance matrices then the condition of the embedment of
the corresponding ellipsoids of concentration (the first one is inside

the second one) can be expressed in the form: 0;13 C;

matrix 0;1-051 is nonnegative definite).
Therefore the theorem 1 is equivalent to the matrix inequality

BT > BTRB(8TRVRB) ™ 'BTRB (1

(i.e. the

which must be valid for any symmetric pogitive definite matrix R (note
that the nonsingularity of the matrix BTRVRB needs a special proof,
gee below).

Let us proof the inequality (7). First we show that the matrix
BTRVRB is really nonsingular. Let y& RS , then (8TrRVRBy,y) =
= (VRBy,RBy) and the latter quantity is equal to O only if the vec-
tor RBy is orthogonal to L. But BR3c L (see /1/), so (RBy,By) =
= 0 in contradiction to the positive definiteness of R.

The inequality (7) means that for any vector yeMR®

(8%eBy,y) » (8TrB(BTRVERE) 'BTREY,y) .

It is equivalent to the condition that for any -vector weEBRS
(@w,w) > (RB(B"RVRB) B Rw,w) . (8)

We shall prove a more gtrong condition that (8) holds for any vector
w€ L, Denote P = Im - v1v$ - Vz"g the orthogonal projective matrix
of the m-dimensional vector space onto the subspace L. Then Pwaw,
PB=B, BTP=BT and (8) can be rewritten in the form

(Qw,w) > (PRPB(BTFRPVFRPB)™ 'BTPRPW,w)
or
(Qw,w) > (R,B(B'R,VR,B)™'BTRw,w) , 9)

where R1=PH.P is a symmetric matrix with two null eigenvectors vy
and Vo and the positive eigensgpace L.

The further trensformations are performed only in the subspace
L where Q,R, and V (Q=V'1) are gymmetric positive definite operators.
Therefore (9) is equivalent to

(R1 QR1 w,w) (B(B R, VR B) g w,w)
or -1 T -1,T
((R1VR1) w,w) > (B(B R1VR1B) B'w,w) . (10)

The operator G--(R1VR1)"1 is also symmetric and positive defimite
in L, thus (10) is equivalent to the following condition:

(Gw,w) > (B(BT6~1B) " '8Tw,w) (11)

for any symmetric positive definite operator G in L and for any vec=-
tor wE€ L.



The last notation from the paper "/ we need is the matrix B
of order mxs consisting of the elements (1/‘{?1-_)"‘(3 P/ )
1< i<m, 1<r<s. The matrices V,Q,B and the vector x depend on the
parameters °"1""’°‘s but in the 'aubsequent formulge they are consi-
dered only at the point o(, for the "true" value of the parameter vec-
tor.

3. The main result. As shown in n/ (see the formula (15)) the
estimate o =(&1,...,3cs) of the parameters o jj-e.,ol by the mini-
mum Tm method satisfies the relation

K=oty = v—;_— (8Tq8)"'8Tqx +V_N_ o (1), (3)
where o_(1) denotes & random vector approaching O in probability.

As noted in "/ the proof of (3) does not use the special form of Q
matrix, i1.e. it ig valid for any symmetric posi’t\ive definite matrix

R ;moothly depending on . Thus, the estimate oLR minimizing Tp=

=X Rx patigfies the relation

o - = 1 (8Tgrg)~ 18T 2
olp oco-Y_N_(BRB) BRx+Wop(1). (4)

Relation (4) implies the following lemma:
Lemma 1. The vector VN (ap -ot,) 1is asymptotically normal with
the mean O and covariance matrix

¢y = 87B) "B RvRB (BTRB) T . (5)

Since Q=V™' in the subspace L we obtain QV = I - v,v] -

m
- v,v5 elmplifying (5) for R=Q:
cq = BTam) ™ . 6)

The main result of the present paper ia the following theorem:

Theorem 1. The estimator minimizing T =X Qx is asymptotically
efficient in the class of estimators minimizing TR=x Rx with a sym-
metric positive definite matrix R smoothly depending on o, In other
words the concentration ellipsoid defined by the covariance matrix CQ
lies wholly within the concentration ellipsoid defined by any covari-
ance matrix CR'

Proof. It is known (see /2/. p. 300) that the concentration el-
lipgoid of an egtimate of a s-dimensional parameter with the covari-
ance matrix C ig defined by the equation ch"1y = 8+2, where y=(y1,
yz.....ys) is the column-vector of independent variables. If C, and
02 are two covarience matrices then the condition of the embedment of
the corresponding ellipscids of concentration (the first one is inside

the second one) can be expregsed in the form: c;’; C;

matrix C;'-C;' 1s nommegative definmite).
Therefore the theorem 1 is equivalent to the matrix inequality

BTqB > BTRB(BTRVRB)~'BTRB (M

(i.e. the

which must be valid for any symmetric positive definite matrix R (note
that the nonsingularity of the matrix BTRVRB needg & special proof,
see below).

Let us proof the inequality (7). Pirst we show that the matrix
BTRVRB 1is really nonsingular. Let y& R® , then (BTrRvRBy,y) =
= (VRBy,RBy) and the latter quantity is equal to O only if the vec-
tor RBy is orthogonal to L. But BRSc L (see /1/), so (RBy,By) =
= 0 in contradiction to the positive definitenegs of R.

The inequality (7) means that for any vector ye®R?

8%ay,v) » (3TRB(8TRVRB)'8TREY,y) .

It is equivalent to the condition that for any vector weBRS
(aw,w) » (RB(BTRVRB) '8 Rw,w) . (8)

We shall prove a more strong condition that (8) holds for any vector
w€ L. Denote P = Im - v1v$ - v2vg the orthogonal projective matrix
of the m-dimensional vector space onto the subspace L. Then Pwaw,

PB=B, BTP=BT and (8) can be rewritten in the form

(Qw,w) > (PRPB(BTPRPVFRPB) ™ 'BTPRPW,w)
or
(Qw,w) > (R,B(BTR,VR,B)"'8TR w,w) , (9)

where R1=PBP is a symmetric matrix with two null eigenvectors vy
and vy and the positive eigenspace L.
The further trensformations are performed only in the gubgpace

L where Q,R; and V (Q=v"") are gymmetric positive definite operators.
Therefore (9) is equivalent to

(R7'@Rr'w,m 2 (B(8TR,VR,B)""BTw,m)
or

(R, VR,)"'w,w) » (B(BTR, VR B)7'BTw,m) . (10)
The operator Ch-(R1VR1)"1 is algo symmetric and positive definite
in L, thus (10) is equivalent to the following condition:

(ew,w) > B(BTe"1B)"'8Tw,w) (11)

for any symmetric positive definite operator G in L and for any vec-
tor wé€l.



Let ug prove (11). Congsider the symmetric operator K = G -

- B(BTG—1B)'1BT in L. Denote by L; and L, two linear gubspaces in L:
Ly = ¢™'B ® and L, 1is the orthogonal complement to BRY. It is
eagy to show that the operator K equals O in Ly and equals G in L2.
Thus (11) is valid for wée¢ L, and for wé€L,.

Suppose that (11) is not valid everywhere in L, i.e. the opera-
tor K has a negative eigenvector: XKw =Aw, A< O. Evidently, the vec-
tor w should be orthogonal to L1 because L1 is the subspace of the
null eigenspace of the K operator. It is easy to show that L1n L2=[0i
and dim.L1 + dim L2 = dim L , thus the w vector could be decomposed
88 W = W, + Wy , where w1€L1 and w2€ L2 » Then

Kwyawy) = (KGw-wy)uwy) = (Awawy) = X (wyowmwry) = Afwii? < 0,

but on the other hand (Kw,,w,) = (Gw,,w,) » O. The obtained contra-
diction proves the inequality (11) and, eas a consequence, the theorem.

4, A numerical experiment. For experimentators it is of great
interest to do a certain numerical comparison of the estimate mini-
mizing T, with the one minimizing the sum of the marginal X2'g
conventionally used in practice. To obtain numerical values of their
statistical characteristics we have made a numerical experiment using
the example cited in 1/: so-called isobar model of pion-nucleon in-
teractions near A 33 production threshold, namely the reaction
MTp — 7" ¥n , This reaction is the major one at the energies lower
1 Gev., We have teken a éimplified version of this model described in

1 « The joint probability density for energies E1, E2 of the gecon-
dary pions is
_°%
2 E.'b E2

where & = -\2/15 a5 - 1/¥3 a,el? , b =y8/135 8y = 1/N2T a,el? |

For other quantities we have used the pame conventions as in 1 :

R1=( K )1/2 1 . =( Ty )1/2 1

~ 2 2 *x_ %
= |aR}“ + |bRy|” + 2N Re [aR,D R,]) (12)

’ L
2/ p, We-W, 3-51!‘1 2 2% pj,

M ised 33_Width, W, is its mass, W, and W ,, are the effective
magses of T n and 7 *n systems at the final state respectively,
p;. p; are the A 33 Domenta in the center-of-mass reaction.

In expression (12) the parameters Bys By, are unknown and are
to be estimated. But any one of them can be calculated from two others
via the normalization condition

6

1 ’
Wo=Wp =511,

2
g 2F 4 E,dE, = 1.
bE1}>32

In fact there are ohly two independent parameters, let theg be a,
agd as. Wg have chogen the "true" values of parameters a4 = 8,
6.3=1, (f ~ 4.23. .
The accuracy of a joint estimator of the parameters a,, a; is
described by its ellipse of concentration centered at the point
(a:,a;). The equations of the concentration ellipses for our two es-
timators have been calculated by a computer using the formulae ob-
tained in Sect.3.The figu}a repregents the ellipse of concentration
of the estimate mimimizing the sum of the marginal 7(2'3 (the solid
curve) and that of the estimate minimizing T (the dotted curve).
The equations of these ellipses are
4,8 (a1-a?)2 + T2 (33—33)2 + 1.9 (31-3?) (33-33) = 4000
and 2 [} o
17.3 (a1-a?)2 + 13.5 (33—33) - 9.5 (8y-8y) (a3-a3) = 4000

regpectively. It 1s clearly seen that the proposed estimate is
at least twice more accurate than the previously used one.
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