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1. Introduction. The present paper continues the investigation 

Of etatietical methode in a ~ l y s i s  of multivariate distributions 

I 
I 

I 

i 

which ham been started in the paper /l/, where the problem of para- 

meter estimation from a grouped sample for a hypothetical distribu- 
tion of a random vector was coneidered. The problem arised because of 

the condition that only one-dimensional (marginal) observed frequen- 

cies for each single variable (component of the vector) were available. 

This precludes the application of the classical 3 '-test for goodness- 

of-fit testing parameter estimation. For lack of an appropriate theory 

the above problem was usually being solved by a certain method based 
on d n g  up 5 'Is constructed for every one-dimensional (marginal) 

distribution. The incorrectness of the above heuristic method was 

ahown in /I/. The correct Tm statimtic that has an asymptotic 2- 

distribution in the case of testing simple hypothesis as well as in 

the case of parameter estimation was proposed in that paper too. 

However, the conventional parameter estimators minimizing $ 2 
are asymptotically efficient among unbiased estimators from the grou- 

ped sample because they are asymptotically equivalent to the madmum 

likelihood estimators for multinomial distributions (see /2/, p. 426). 
Our statistic Tm depends on incomplete grouped frequencies, so the 
question of the efficiency of the estimator minimizing Tm among all 

the unbiased estimators cannot be solved within the framework of the 

common theory based on Rao-Cramer inequality. Nevertheless we succeded 

in proving its asymptotical efficiency in the class of estimators mi- 

nimizing statistics that quadratically depend on the marginal observed 

frequencies. This statement is proved in the present paper. As an quan- 
titative illustration we compare the efficiency of the estimate mimi- 
mizing Tm with that of the estimate minimizing the marginal 3 "8 men- 

tioned above using the numerical example from /'/. The first estimate 
proves to be much more efficient. For the example we have chosen a 

physical model - so called isobar model of pion-nucleon interactions 
13/ with the production of an additional pion. The model as well ae 
the setup Of the whole problem wes taken from experimental high-energy 
physics. 



2. Formulation of the problem and necessary conventions. Now we 
give  the exact  fo rnu la t ion  of our problem preserving all the  no ta t ion  
from the  pa re r  I1/. 

Let F be the  d i s t r i b u t i o n  of a random vector  (E1,E2) i n s i d e  

a rec tangle  defined by i n e q u a l i t i e s  E;& El Q E~~ and E;S E 2 j  B;. 
The i n t e r v a l s  (B; ,E;) and (E;,E;) a r e  subdivided i n t o  ml and m;, sub- 
i n t e r v a l s  respect ive ly  c rea t ing  a g r i d  w i t h  mix m2 c e l l s  i n s ide  . 
The d i s t r i b u t i o n  F induces the  d i s c r e t e  d i e t r i b u t i o n  p i j  (1 s is 7, 
1 s  j~ m2) of the  p r o b a b i l i t i e s  t h a t  an observed value of t he  random 
veotor belongs t o  the c e l l s  which we c a l l  the  expected frequenciee. 
Having a sample of s i z e  B we o b t a h  the  numbers Bij of observations 
belonging t o  the  c e l l s  which we c a l l  the  observed frequencies. The 
values 

pi. = x  p i j  3 

are ca l l ed  the  marginal f requencies  ( t h e  observed ones and the  expec- 
t ed  ones). Let us introduce so-called "throughtt numeration f o r  the 
marginal frequencies:  Nk = Nk. , pk = pk. f o r  k=l,...,m l a n d  
'k+ml = **ks Pk+ml = pak f o r  kzl,..., m2 and denote m = ml + m;! . 

Let us  remind some r e s u l t s  of the  paper needed f o r  the  f u r -  
t h e r  discussion. Denote by x the  random column-vector 

by u1 and u2 the  column-vectors 

u; = ( ~ . , ~ * . . . , f i q )  9 .; = ( ~ , . ~ 2 . - * * 9  Km;!) 
and by vl and v2 t h e i r  m-dimensional "erte&onsn 

V T  = (G , c2 .,... 9 6,. '0, 0 ,... , 0)  

(here  and on T denotes t ransposi t ion) .  !Che m e t r i c  matrix V of 
order  m x m  i s  defined a s  follows: i t  c o n s i s t s  of 4 blocks: 

T T w h e n  V1=17-ulul , V2=Im2-u2uZ (here and l a t e r  on Ik i e  the  

k x k  unit matrix) and the  block V12 c o n s i s t s  of the  elements 

(1% iaml,  1 s  js 
A s  ahom i n  m;,)'l/, the vector  x i s  asymptotically normal with 

the mean 0 and covariance matrix ir. The eigenvalues s j4 4 . . .s )i 
of V a r e  defined i n  such a way t h a t  l = X  2=0 but genera l ly  > 0 3 
( the  c a s e h  3=0 is  a degenerate one and corresponds t o  a s o r t  of de- 
terminate dependence between El and E2). 

The above h e u r i e t i c  method of t he  sum of the  marginal X 2 ' s  uses 
T the  e t a t i s t i c  T=x x. On the  contrary,  the  s t a t i s t i c  Tm proposed i n  

T has the  form Tm=x Qx where the  "weight" symmetric matr ix  Q i s  the 
s o l u t i o n  of t he  matr ix  equation 

where ck i s  the  m-vector cons i s t ing  of m-1 zeroes and the  only 
one at the  k-th pos i t ion ,  I n  i t s  turn ,  the matrix A i s  a low-trian- 
gular  one and s a t i s f i e s  the matrix equation 

The equation s e t  (1-2) i s  always compatible but  does not  def ine  
O matr ix  uniquely. P rec i se ly , i f  we consider Q and V a s  l i n e a r  opera- 
t o r s  i n  Rm, Q is  uniquely defined only i n  =he (m-2)-dimemional vec- 
t o r  subspace LCR which i s  orthogonal t o  the  vectors  vl and v2 
while t he  vec to r s  Qvl and Qv2 may take  a r b i t r a r y  values. I f  we r e s t -  
r i c t  t he  opera tors  Q and V t o  the  subspace L then Q=v-' (L i s  an eig- 
empace f o r  both  operators) .  Since x E L  our d e f i n i t i o n  of Q matr ix  
def ines  the  value of Tm=xTQx uniquely. 

The d i s t r i b u t i o n  F and the expected f requencies  pij and pi de- 
pend on parameters oC 1,0(2,...,0(s ( a<  m-1). The parameter vector  Ci = 
=(d , . . . ,dB)  i s  defined i n  a domain 1cRS. Ae i n  we suppose 

t h a t  
( i )  the  funct ions  pi j(oc l , .  . . , a,) have the  continuous second 

de r iva t ives  ; 
( i i )  the  "true" value oC .=(o(;, . . . , o~:) of the  parameter vector  

& i s  a n  inne r  poin t  of I ;  
( i i i )  p k ( d ) > c 2  f o r  some c,O and f o r  a l l  k , d ;  

( i v )  the matr ix  D=( b pk/dorr), 1 s  ks, m, 1 g r* s is  of rank s 

f o r  a l l  d ; 
(v) 3> c f o r  a l l  oC ( h  i s  the eigenvalue of V, see  above). 
The l a t t e r  condit ion i s  an e x t r a  one i f  comparing with the  c las-  

s i c  case of es t imat ing  by minimum $ method (/'/, p . ~ .  426427) .  



The l a s t  nota t ion from the  paper we need i s  the  matrix B 
of order mx s consis t ing  of the elements ( l / E i ) x ( b  pi/bcc r )  , 
1 5  i s m ,  l s r s s .  The matrices V,Q,B and the vector  x depend on the 
parameters o( l , .  . . ,oC but i n  the 'subsequent formulae they a r e  conei- 
dered only a t  the  point  d o  f o r  the  " t ruen  value of the  parameter vec: 

tor.  

3. The main r e su l t .  A s  shown i n  (see the  formula (15))  the  
est imate 2 ... , of the parameters ot ,. .. ,d by the  mini- 
mum Tm method s a t i s f i e s  the r e l a t i o n  

where o (1 )  denote8 a random vector approaching 0 i n  probabil i ty.  
P 

A s  noted i n  the  proof of (3 )  does not use t h e  spec ia l  form of Q 
matrix, 1.e. i t  i s  va l id  f o r  any symmetric pos i i ive  d e f i n i t e  matrix 
R smoothly depending on cC. Thus, the est imate aLR minimizing TR= 
=xTRx s a t i s f i e s  the r e l a t i o n  

Relation (4)  implies the following lemma: 
Le- 1. The vector  fi ($ - d o )  is  asymptotically normal with 

the mean 0 and covariance matrix 

c, = ( B ~ R B ) - ~ B ~ R V R B ( B ~ R B ) - ~  . (5  

Since 0-v-l i n  the subspace L we ob ta in  QV = I, - vlvT - 
T - v2v2 simplifying (5 )  f o r  R=Q: 

The main r e s u l t  of the present paper i e  the  following theorem: 
Theorem 1. The e a t b a t o r  minimizing T,-xT@ is aeymptotically 

e f f i c i e n t  i n  the  c l a s s  of es t imstore  minimizing TR=xTRx with a 8ym- 

metric pos i t ive  d e f i n i t e  matrix R amoothly depending on d. I n  o the r  
words the  concentration e l l i p s o i d  defined by t h e  covariance matrix CQ 

l i e s  wholly wi th in  the  concentration e l l i p s o i d  defined by any covari- 
ance matrix CR. 

Proof. It is  known (see  12', p. 300) that the  concentration e l -  - 
l i peo id  of an e s t a t e  of a s-dimensional parameter with the  covari- 
ance matrix C i e  defined by the  equation j T ~ - l y  = s+2, where yu(y1, 

y2,... ,ys) i s  the  column-vector of independent variables.  If C1 and 
C2 a r e  two covariance matrices then t h e  condit ion of the  embedment of 
the  corresponding e l l i p s o i d s  of concentration ( the  f i r s t  one i s  ins ide  

the  second one) can be expressed i n  the  form: c c (i.e. the  
matrix c;'-c;' i s  nonnegative de f in i t e ) .  

Therefore the  theorem 1 i s  equivalent t o  the  matrix inequa l i ty  

B ~ O B  3 B ~ R B ( B ~ R V R B ) - ~ B ~ R B  (7 

which m u s t  be v a l i d  f o r  any symmetric pos i t ive  d e f i n i t e  matrix R (note 
t h a t  the  nonsingulari ty of t h e  matrix B~RVRB needs a spec ia l  proof, 
see below). 

Let us proof the  inequa l i ty  (7). F i r s t  we show that the  matrix 
B~RVRB i s  r e a l l y  nonsingular. Let y E RS , then (BTRVRBy, y 1 = 

= (VRBy,BBy) and the l a t t e r  quanti ty i s  equal t o  0 only i f  the  vec- 
t o r  RBy i s  orthogonal t o  L. But BR'C L (see  / l / ) ,  so (RBy,By) = 
= 0 i n  contradic t ion t o  the pos i t ive  de f in i t eness  of R. 

The inequal i ty  (7)  means t h a t  f o r  any vector RS 

( B ~ Q B ~ , ~ )  2 ( B ~ R B ( B ~ R V R B ) - ~ B ~ R B ~ , ~ )  . 

It i s  equivalent to  the  condit ion t h a t  f o r  any,vector  wEBlks 

( Q ~ T , w )  ( R B ( B ~ R V R B ) - ~ B ~ R W , W )  . (8)  

We shall prove a mare  s t rong condit ion tha t  (8) holds  f o r  any vector 
WE L. Denote P = I, - vlvT - v2v: the orthogonal projec t ive  matrix 
of the  m-dimensional vector space onto the subspace L. Then h a w ,  
PB=B, BTp=BT and (8)  can be r ewr i t t en  i n  the  form 

( ~ r u , ~ )  3 (PRPB(B~PRWPRPB)-~B~PRP~,~) 

where R1=PBP i s  a symmetric matrix with two n u l l  eigenvectors vl 
and v2 and the  poei t ive  eigenepace L. 

The f u r t h e r  transformations a r e  performed only i n  the mbspace 
L where Q,R1 and V (0-v") a r e  symmetric pos i t ive  d e f i n i t e  operators. 
Therefore (9) i s  equivalent t o  

(~;lw;lW,W) 3 ( B ( B ~ R ~ V R ~ B ) - ~ B ~ ~ , ~ )  

The opera tor  G P ( R ~ V R ~ ) - ~  i s  a l s o  symmetric and pos i t ive  d e f i n i t e  
i n  L, thus  (10) i s  equivalent t o  the following condition: 

(Gw,w) 2, ( B ( B ~ G ' ~ B ) ' ~ B ~ w , w )  (11) 

I f o r  any s y m e t r i c  pos i t ive  d e f i n i t e  opera tor  C i n  L and f o r  any vec- 
t o r  w 6 L. 



The l a s t  notation from the paper we need i s  the matrix B 

of order mx s consis t ing of the elements ( l / F i ) x  (b pi/boc r )  , 
1~ i s m ,  1 r< a. The matrices V,Q,B and the vector x depend on the 
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tor. 
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estimate 2 .. . ,z of the  parameters cx l , .  .. ,a( by the m i n i -  
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A s  noted i n  the proof of (3) does not use the  specia l  form of Q 
matrix, i.e. i t  i s  val id  f o r  any symmetric poei i ive  d e f i n i t e  matrix 
R smoothly depending on oC . Thus, the estimate d minimizing TR= 
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Relation (4) implies the following lemma: 
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T Since QEV" i n  the subspace L we obtain  QV = 1, - vlvl - 
T - v2v2 simplifying (5) f o r  REQ: 

The main reeu l t  of the present paper l a  the  following theorem: 
Theorem 1. The estimator minimizing Tm-xTQx is  asymptotically 

e f f i c i e n t  i n  the  c l a s s  of estimntore minimizing TR=xT~x with a aym- 
metric posi t ive  d e f i n i t e  matrix R m o t h l y  depending o n d .  I n  other  
words the  concentration e l l ipso id  defined by the  covariance matrix CQ 

l i e s  wholly within the concentration e l l ipso id  defined by any covari- 
ance matrix CR. 

Proof. It i s  known (see 12/, p. 300) that the concentration e l -  - 
l ipeoid of an estimate of a s-dimensional parameter with the covari- 
ance nu t r ix  C i s  defined by the equation yTc-ly = s+2, where yn(yl, 

y2, ..., y,) i s  the column-vector of independent variables. If C1 and 
C2 a r e  two covariance matrices then the condition of the embedment of 
the corresponding e l l ipso ids  of concentration ( the  f i r s t  one is ins ide  

the second one) can be expressed i n  the form: c c (i.e. the  
matrix c;~-c;' i s  nonnegative de f in i t e ) .  

Therefore the theorem 1 i s  equivalent t o  the matrix inequal i ty  

B ~ Q B  3 B ~ R B ( B ~ R V R B ) - ~ B ~ R B  (7)  

which muat be val id  f o r  any symmetric posi t ive  de f in i t e  matrix R (note 
T tha t  the  nomingular i ty  of the matrix B RVRB needs a specia l  proof, 

I see below). 
Let us proof the inequal i ty  (7). F i r s t  we show that the matrix 

B~RVRB i s  r e a l l y  nonsingular. L e t  y 6 RS , then ( B ~ R V R B ~ , ~ )  = 

= (VRBy,BBy) and the l a t t e r  quantity i s  equal t o  0 only i f  the vec- 
t o r  RBy i s  orthogonal t o  L. But BR'C L (see " / ) ,  so (RBy,By) = 
= 0 i n  contradiction t o  the posi t ive  def ini teness  of R. 

The inequal i ty  (7) means that f o r  any vector 

(B~QBY,Y)  > ( B ~ R B ( B ~ R V R B ) - ~ B ~ R B Y , ~ )  . 

It i s  equivalent to  the condition tha t  f o r  any vector  W E B T R '  

( ~ l r , ~ )  ( R B ( B ~ R V R B ) - ~ B ~ R ~ , ~ )  . (8) 

We shall prove a more strong condition that  (8) holds f o r  any vector 
T T w e  L. Denote P = 1, - vlvl - v2v2 the orthogonal projective matrix 

of the m-dimensional vector space onto the mbspace L. Then h a w ,  
W=B, BTp=BT and (8) can be r e m i t t e n  i n  the form 

(&,w) 3 (PRPB(B~PRWPRPBI-~B~PR~~,~) 

where R1=PBP i s  a symmetric matrix with two n u l l  eigenvectors vl 
and v2 and the  poeitive eigenapace L. 

The fu r the r  transformations a re  performed only i n  the subapace 
L where Q,R1 and V (QPV-'1 a r e  m e t r i c  posi t ive  d e f i n i t e  operators. 
Therefore (9)  i s  equivalent to  

(R;~QR;~W,W) 3 ( B ( B ~ R ~ V R ~ B ) - ~ B ~ ~ , ~ )  

The operator G-(RIVRl 1-l is a l s o  symmetric and posi t ive  d e f i n i t e  
i n  L, thus (10) i s  equivalent t o  the following condition: 

(GW,W) 3 ( B ( B ~ G - ~ B ) - ~ B ~ W , W )  (11) 

1 f o r  an). eynunetric pos i t ive  d e f i n i t e  operator O i n  L and f o r  an). vec- 

t o r  w t L. 



Let us prove ( 1 1 ) . Consider the  symmetric operator K = G - 
- B ( B ~ G - ~ B ) - ~ B ~  i n  L. Denote by L1 and L2 two l i n e a r  subspaces i n  L: 
L1 = G"B and Lp is the  orthogonal complement t o  BRa. It is  
easy t o  ahow t h a t  the  operator K equals 0 i n  L1 and equals  G i n  L2. 
Thus (1 1) i s  va l id  f o r  we L1 and f o r  w €  L2. 

Suppose t h a t  (11) i s  not va l id  everywhere i n  L, i.e. t he  opera- 
t o r  K has a negative eigenvector: I(rr = h w. ) < 0. Evidently, the  vec- 
t o r  w should be orthogonal t o  L1 because L1 i s  the subspace of the  
n u l l  eigenspace of the  K operator. It i s  easy t o  show t h a t  Lln L~=(O]  
and dim L1 + dim L2 = dim L , thus the  w vector  could be decomposed 
a s  w = w  + w2 , where wl€ Ll and w2( L2 . Then 

but on the  o the r  hand (Kw2,w2) = (Gw2,w2) 2 0. The obtained contra- 
d i c t i o n  proves t h e  inequa l i ty  (11) and, as a cowequence, the  theorem. 

4. A numerical experiment. For experimentators 11; i s  of g rea t  
i n t e r e s t  t o  do a c e r t a i n  numerical comparison of the  est imate mini- 
mizing Tm with the  one minimizing t h e  sum of the marginal ; ~ ~ ~ s  
conventionally used i n  practice.  To ob ta in  numerical values of t h e i r  
S t a t i s t i c a l  c h a r a c t e r i s t i c s  we have made a numerical e x p e r w n t  using 
the  example c i t e d  i n  /I / :  so-cal led  i soba r  model of pion-nucleon in-  

t e rac t ions  near A 33 production threshold,  namely the  r eac t ion  
f l ' ~  + x-fl+n . This react ion is  the  major one a t  the energies lower 

1 Gev. We have taken a s impl i f ied  vers ion of t h i s  model described i n  . The jo in t  p robab i l i ty  denaity f o r  energies El ,  E2 of the secon- 
dary pions i s  /3/ 

where a = -m a 3  - 1 1 6  a l e i v  , b = $8/1)5 a 3  - 1 / f i  aleiq . 
For o ther  q u a n t i t i e s  we have used the  same conventions a s  i n  11/: 

rl i s  a A - , p d t h ,  W i s  i t s  mass, W13 and h) 23 are t he  e f f e c t i v e  
masees of 7c n and f l  +n systems a t  the  f i n a l  s t a t e  reepect ively ,  

P;, p; a r e  the  A 33 momenta i n  the  center-of-mass react ion.  

I n  expression (12) the  parameters a l ,  a3, CQ are unknown and eze 
t o  be estimated. But any one of them can be ca lcula ted  from two o the r s  
v i a  the  normalization condit ion 

I n  f a c t  there  a r e  only two independent parameters, l e t  them o be a l  

5 a3. Vie have chosen the  Irtruerr values of parameters a l  = 8, 

a, = 1,  yo, 4-23. 
The accuracy of a jo in t  est imator of the  parameters a l ,  a3 i s  

described by i ts  e l l i p s e  of concentration centered a t  t he  point  
0 0 

(al ,a3).  The equations of the  concentration e l l i p s e s  f o r  ou r  two es- 
t imators have been ca lcula ted  by a computer using the  formulae ob- 
tained i n  Sect.3.The f igu;'e represents  the  e l l i p s e  of concentration 
of the  est imate minimizing the  sum of the  marginal X 2 l s  ( t h e  so l id  
curve) and t h a t  of the eetimate minimizing Tpl ( the  dot ted  curve). 

The equations of these e l l i p s e s  are 

4.8 (al-a7)2 + 7.2 (aj-a;12 + 1.9 (al-a;) (a3-a;) = 4000 

and 
17.3 ( ~ ~ - a ? ) ~  + 13.5 (a3-a;12 - 9.5 (al-a:) ( a  3 -a0) 3 = 4 0 0  

respectively.  It i s  c l e a r l y  seen twt thq proposed es t imate  i s  
a t  l e a s t  twice more accura te  than the  previously used one. 
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