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1. Introduction

In this note we want to sclve the so-celled inverse scetitering
problen of en abstract dissipotive scettering theory. Such a
scatiering theory was created in [6,7] and can be understood

as an extension of the well-known scattering theory of self-
edjoint operators [2] to maximal dissipative operators. The
necessity of this generalization arises from the fact that

in many scattering systems we have to do with dissipation of
energy. To include such dissipation effects maximal dissipative
operators are often used. An extensive reasoning concerning
this subject cen be found in (3].

In [6,7] it is assumed that both perturbed and free evo-
lutions are governed by maximal dissipative operators which in
general are defined on different separable Hilbert spaces, The
comparison of the different evolutions is established by bounded
identification operators. The notion of the wave and scattering
operators 1s introduced. Summarizing it can be said that in
[6,7] the so-called direct scattering problem of maximal dis-
sipative operators was posed and solved on an abstract operator-
theoreticel level.

But every direct scattering problem yields the so-called
inverse scattering problem, In general this means to restore
the perturbed or full evolution knowing the free evolutions and
the scattering operator. Bﬁt this setting of the inverse pro-
blem immediately implies three further problems.

(1 ) We must know the set of possible scattering operators for

a given scattering theory.

(i1 ) We have to indicate a certein algorithm allowing one to re-

store the full evolution.

(1i1) We have to describe all full evolutions which solve



the inverse problem or, if it is possible,to show that

the solution is unique in & certain class of admissible

full evoluiiovuns.

Problems of this kind can be posed in a concrete manner ,
for instance,for ordinary end partial differential operators,
or in a more abstract manner, for instance,formulating the pro-

blem in a certain operator-theoreticel language. The inverse
problems of the Lax-Phillips scattering theory with and without
dissipation Ej,4,1§] belong to the last claas! for example. We
call problems of that type abstract inverse scattering problems.

For the scattering theory of selfadjoint operators [2]
the abstract inverse scattering problem was solved by M.Wol-
lenberg [2,14,15] who answered all three problems (i) - (iii).
Naturally, the question arises to find a solution of the in-
verse problem in the scattering theory of maximal dissipative
operators. Such attempts were underteken in [8,9). In [9] con-
sidering unitary free evolutions it was shovm that every inter-
twining contraction of these unitary free groups obeying some
obvious properties can be regarded as a scattering operator of
a dissipative scattering theory. In such a way the problems
(i) and (ii) were solved.

In this paper we do a furhter step allowing that free
evolutions are contraction semigroups. In this setting we
solve (1) and (ii). The problem (iii) is not considered. In
order to use the definitions and notions of [13] we prefer con-
tractions instead of maximal dissipative operators. This means,
we replace the one-paremeter contraction semigroups used in
[8,9] by power semigroups of single contractions.

It is found that not every intertwining contraction of

two contractions can be regarded as a scattering operator of a
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dissipative scattering theory. To this end it is necessary

that the intertwining contraction fulfils some additionel
properties. Applying thig result to special free evolutions
we obtain that the class of contractive Hankel operators can
be viewed as scattering operators. lloreover, this implies the
possibility that the scattering operator can be compact, for
instance nuclear which was forbidden for unitary free evolu-
tions. At the end,we give an application to the so-called
Lax~Phillips scattering theory with losses restoring e re-
sult of B.S.Pavliov [12]) in a quite different way.

2, Preliminaries

Let T be a contraction on the separable Hilbert space ® . By
U we denote the minimal unitary dilation of T defined on the
dilation space ¥, ® =W , In accordance with [13,chapter II)
we can introduce the residusl and dual residual subspaces

R and Rw of U. Taking into account Proposition 3.1 of
[13,chapter II] we obtain that the orthogonal projections

Py, 8nd Py from ¥ onto R end R, admit the representation

(2.1) P = g-1lim U® p_ y™B
B pnoieo %
and
-1 n
(2.2 ) Py, = 5-lm UTR B U,

n—+co

where P, denotes the orthogonal projection from %% onto %,
The residual and dual residual subspaces reduce the uni-
tary operator U. We denote the reslidual and dual residual

parts of U by R and R,, i.e. R = U'R and R, = UIR,.
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Remark 2.1. It is quite possible that the residual or the
dual residual or both subapaces are zero. For instance,
R, = {0} if and only if T%->0 strongly as n->+%, i.e. TECy «

In accordance with Theorem 3.2 of [13,chapter I] every
contrection can be canonically decomposed into a unitary part
and a completely non-unitary part. In the following
the subspace performed by the orthogonal sum of tke absolutely
continuous subspace of the unitary part end the completely
non-unitary subspace is called the absolutely continuous one of
a contraction. Obviously, the absolutely continuous subspace
reduces a contraction. The corresponding part of a contraction
is called the absolutely continuous one. If the absolutely
continuous part of a contraction coincides with the contraction
itself we call the contraction an absolutely continuous one.
For instance, every completely non-unitary contraction is
absolutely continuous.

This concept of absolute continuity for contractions
agrees very well with that for unitary operators. Sé it can
be shown that the minimal unitary dilation of an absolutely
continuous contraction is absolutely continuous (Proposition
6.3 of [13,chapter II]). Consequently, denoting by XB®C¢(U) the
absolutely coatinuous subspace of the minimal unitary dilation

U of T we obtain
(2.3 ) REC(T) = R NUE(Y) & KEC(U),

where % 8%(T) is the absolutely continuous subspace of T. The
relation (2.3) ylelds that the absolutely continuous part UBC
of U is a miaimal unitary dilation of the absoclutely conti-

nuous part 8¢ of T.

Furthermore, we can introduce the absolutely continuous

residual and dual residual subspaces and parts of a minimal
unitary dilation. Ohviously, thes2 subspuces can be regarded
as the residual and duel residual subspaces of the minimal
unitary dilation of the absolutely continuous peart 8¢ of T.

In order to consider a scattering theory we introduce two
further contractions T_ and T, defined on the separable Hil-
bert spaces ?f_ and ?€+ which we call the past and future
free evolutions, respectively. For simplicity we assume through-
out this note that these contractions are absolutely continuous.

Further we assume the existence of two bounded linear
operators J_: ¥ '®  which we call the identification opera-

tors. We define the wave operators W+: ?E+ﬂ~v H# by

(2.4 ) W_ = s-lim T*% g_ 77
n'-‘>+°0
and
(2.5 ) W, = s-lim 7% J 77 .
+ >4 50 +7+

¥e introduce the minimal unitary dilations U+ of T+ defined on
the dilation spaces ?L+. Extendiﬁg the identification opera-
tors J, to operators J_ acting from TM+ into ¥ by

j;f =J P, £ cW, fe 3€+, we are able to consider the dilation
. R, e

wave operators Q,

TN
(2.6 ) S, = s-lim U? J U7 .

-— n— + oo -

It can be shown that if the d#lation wave operator SU (&)

exists, then the operator actually acts only from the (dual)
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residual subspace of U+ (U_) into the absolutely continuous
(dual) residual spece of U, i.e. ker(& ) 2 Tt+ C)ﬁﬂ(U+),
ima( Q) S RE (1.e. ker(R )2 ®_© R U), ima(Q) <
& 1%50)-

Definition 2.2. The wave operator W _ (W_ ) is called complete if

(1 ) the dilation wave operator SE+ (&) exists end

(11) @, () is a partial isometry from the(dual) residual
subspace of U_ (U_) into the absolutely continuous (dual)
residual subspace of U, i.e ker(Q ) = % C)?E(U+) and
ima(R,,) = R (l.e. ker(Q_) = ®_© R, (V) and
ima(SL_) Il:c)-

We note that the completeness of W+ does not mean in ge-

—

1]

neral the completeness of the dilation wave operators. This is

the case only 1if all involed contractions are unitaery operators.

Furthermore, it is interesting to remark that the comple-
teness of W+ (W_) yields that the (dual) residual part of U+
(U_) and the absolutely continuous (dual) residual part of U
are unitarily equivalent.

Now we say the S5-tuple g = {T;T+,T_;J+,J_} forms a com-
plete scattering system if the wave operators W, exist and are
complete. -

With every complete scattering system 4 we associate a

scattering operator S defined by
-
(2.7) 5 = WW_
and a dilation scattering operetor 2 defined by

(2.8 ) £-Q.0 . 3

6

Obviously, the dilation scattering operator intertwines
the minimal unitery dilations U, end U_, i.c.
(2.9 ) U,z =2 U_ .
Teking into account Definition 2.2 the dilation scattering

operator is contraction which actually acts from the dual

residual subspace of U_ into the residual subspace of U+, l.e.

(2.10) ker(2) 2 HU_© R, (U)
and
(2.11) ima(Z) € R(U,).

Purther it is useful to note that the scattering operator

1s the compression of the dilation scattering operator, i.e.

(2.12) 8=opr(Z) =Py, ZTY®_ .
+

From this representation it immediately follows that the scattering
operator 1s also a contraction. Taking into account (2.7) we

obtein that S is an intertwining contraction of T and T_, i.e.
(2.13) 5T, = T_S.

Since we have two scattering operators we obtain two inverse
scattering problems which can be formulated as follows: Agsume
that the identification operators J, end the free evolutions

T+ are given.



K) Let 5: R _—> Q£+ be an intertwining contraction of . and
T_. Does there exist a contraction T on ¥® such that
F = {T;T+,T_;J+,J_} forms a complete scattering system
whose scattering operator coincides with 857
B) Let £: U_~—>'K,_ be an intertwining contraction of U,
and U_ obeying (2.10) and (2.11). Does there exist a contraction
T on % such that 4 = {7;7,,7_;J,,J_] forms a complete
scattering system whose dilation scattering operator coin-
cides with 2 ?
First of all we note that a solution of the proposed pro-
blems can be expected only if the identification operators
satisfy certain conditions. '

Definition 2.3. We say the identification operators J+ and J_

are admissible with respect to T+ end T_ 1f there are two
isometries F : &, —> '® such that

(1 )FF_=0,

(11 ) s-lim (F_ - J)T2 = O,
n-»>+

(111) s-lim (F, - J)T}" = O.

n—s+ )

For further applications we make the following
Remark 2.4. Let T+ =T = To, ?€+ = %C_ H] '&O and J+ =J_= Jo,
Then J° and Jo are admissible with respect to To and To if and
only if there is en isometry F: 'KO”->'R such that

g=1im (P_ = J )T = 0 and s-lim (F_ - J T2 = O,
s ped @ o’"o Drgco © o’“o

It can be shown that J+ end J_ are admissible with respect
to T, end T_1f o = {?37,,7_359,,3_} is & complete scattering
system. .

Immediately from Theorem 2.4 of [9) we obtain the following
Theorem 2.5, Let T+ be two absolutely continuous unitary opera-.

tors on W; and let J_and J_ be two identification operators

8

which are admissible with respect to T and T_. If 5 is an

intertwining contrection of T and T_, T S = ST_, then there
is a contraction T such that % = {T;T+,T_;J+.J_3 forms a com=
plete scattering system whose scattering operator coincides

with S.

1]

Proof. We apply Theorem 2.3 of [9] to Lt ézi dEi(X ) and Fi'
where E+(.) are the spectral measures of T . Obviously, S
interthhes L, and L_. loreover, F, end F_—are admissible with
respect to L+ and L_. Consequently, there is a maximel dis-
sipative operator H on ® such that 4#4' = {H;L+,L_;F+,F_}
forms a complete scattering system whose scattering operator

*
18" Now 1t is not hard to show that the

equals S. Ve set T = e
5-tuple 4 = {T;T+.T_;J+,J_} solves the problem. M

Corollery 2.6. If in addition S fulfils ker(S) = {0} and
(ima(s))” = %

4 then T can be chosen from C11. Moreover, 1f
S is an isometry from '¥_ onto ?€+, then T can be taken from
the unitary operators on ®,

Corollary 2.6 is a consequence of the hremarks 2.5 and 2.6
of [9]. We note that the additional conditions of Corollary 2.6
are necessary if we assume that the scattering operator arises
from a scattering system with a full evolution of the indicated
classes.,

In the following the results will be essentially based on

Theorem 2.5 and Corollary é.G.

3. Inverse problem

In this section we try to extend Theorem 2.5 to the case that
T, and T_ are erbitrary absolutely continuous contractions.

To thie end we remark that in distinction from Theorem 2.5
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every intertwining contraction cannot be regarded as a scat-

tering operator.

Example 3.1. We consider the Hardy spaces R, = Hz('F, k&)
{13,chapter V)], where T is the unit circle,—i.e. T = -
={ze€: 121 = 1}, end .A; are separable Hilbert spaces. We
view 'M; as subspaces of EZ(TT,_M;). On %, we introduce the
shift o;erators T, defined by (T+;)(z) = z;(z), fesm%, zell .
The minimal unita;y dilations of_T+ obviously coincige with
the shift operators U_on ¥, _ = LZIT—,\X;) given by (U f)(z2) =
a zf(z), fe GQJ 2 eWF. Taki;é into accogﬁt Lemma 3,2 ;f
[13,chapter V] $he GoAaLtLoRH

(3.1) TS = ST_
ylelds the existence of a contractive analytic function

Lo Ky B (z)} such that the representation
(3.2) (s£)(z) = B(z)f(z),

f & ¥®_, holds. Hence there are contractions S # O obeying (3.1)
However, this contraction S # O cannot be the scattering
operator of a complete scattering system with the free evo-
lutions T end T_. To this end we remark that the residual sub-
space of U+ is zero. Consequently, the dilation scattering
operator must be zero. Teking into account (2.11) the scattering
operator must be zero which contradicts S 4 O.

The condradiction of Example 3.1 was obtained by taking
into account the condition (2.12). In the following we want
to clarify the meaning of this condition.

We introduce the limits D+.
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1/2

(3.3 ) D, = (e-1im T2 ™M) l/e,
* n—s+eo T *

eand D_,

(3.4 ) D_ = (s-lim T*% gilve,
- n->+0

N = w3y tp ;
which exist. Let Q: = (Di.\i) c R 4o By

- *
(3.5 ) G,D,f = DT %,
fe k+. and
(3.6 ) GD<f=DTL,

f€'®_, we associate two isometries G: and G_ with T _ end T_.
We call G+ the associated co-isometry of T+ end G_ the asso-
ciated isometry of T_. Further, by I(.,.) we denote the set

of intertwining contractions of two bounded operators.

-

Lemme 3.2. Let T and T_ be two contractions on 3@+ and ¥ _,
respectively, and let S be a contraction acting from iﬂ; into

?i+. Then the following conditions are equivalent:

B

(4 )33161(U+,U_) obeying ker(2)=2 %_© R, (U_) end

ima(Z) < ?b(u+) such that S = pr(Z).

(11 ) 37€I1(G,,G_) such that S = D, "D_.

(111) s eI(7,,T_) and

2 . ek 2 .\ 2
(3.7 ) 2Re(VI-D £,Sg) + 1sgl® & UD f£I° + ID_gl

for every f € ?; eand ge & ,



(iv ) seI1(T,,T_) and
(3.8 2Re(s'*f,V1-DE g) =+ 15%£12 & \lD+f\l2 + \‘.D_g\!z

for every f &‘3{+ and g €'%_.

Proof. We use the following proof scheme (1)<f->(11)€<\(§‘1,i§.
(1)=>(i1): We consider the linear operators B '3Q — r}(,

defined by B = PR(U ) .;{ and B_ = Py {U) .ac . 'l‘aking into

account (2.,1) end (2.2) and considering the polar decompo-
sltions of B+ we get B =V D+, where V and V_ are partial
isometries, ;anges of which are subspaces of the residual
end dual residual subspaces of U+ and U_, respectively. Set-
ting I’
that S

V:ZV_: D_—> O, we find & contraction " such

* " * _ _
D+FD_. Because of U+B+ = B+i‘+ = \I‘,_G+D+ and U B_ =

= B_T_ = V_G_D_ veinmediately obtain I & I(G_,C_).
(11)<=(1i): By F we denote the minimsl unitary dilations of

G defined on the dilation spaces 5+, J)+ (=4 5_._. Applying
Propositlon 2,2 of [13,chapter II) there is e contraction

— - =0
T eI(G+,G_) such that M = pr(T ). By v+ = s_ﬁiun V+P;o Gy

V_ = s-lin U:n V_Py G” we define isometricel extensions of
n-—>+>° -

v

o V+r$+ = V_, ranges of which are subspaces of the residual

and dual residual subspaces of U+ and U_, respectively. Ob-
viously, we have UV, = V.G *and UV_ = V_G_. Setting

> = VT""V‘ ’32,_—> '3(1+ we get a contraction belonging to
I(U+,U_) and obeying ker(Z) 2 A_© ®R,(U_) and ima(3) <
S R(U,). The simple calculation S = D,"D_=DTD_=

= D+v:7+?VfV_D_ = P.ee+5.f'9€_ = pr(Z) completes this part of
the proof.

(11)<3(111): Because of I & I(G+,G_), (3.5) and (3.6) we ob-
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tain SEI(T+,T_). Further we estimate

2Re(VI-DZ £,5g) + isgl? =
(3.9 ) = 2Re(D,£,VI-DZ 'D_g) + ID, T D_gl?<
< Ip, 212 + Irp_gi? ¢ Ip,212 + ID_gI?

re®, geR_.

(111)=3(11): Setting £=0 we find 1Sgl? <«

1D_gl?, ge%® _.
Hence there 1s a contraction X: 93_—> ?{+ such that § = XD_

(Corollary 7-2 of [5, p.125]) holds. We get

(3.10) 2Re(VI-D? f£,xm) + 1xul? < up £12 4 Vnl?,
hed_. Let f =VI- D £', £'e'® . From (3.10) we obtain
(3.11) ID2er - xn)? < D212 - 2Re(x*t',h) + IBHZ
which ylelds the estimate

(3.12) 1X"2'12 < yp 12 +ux*e - nl2,

f'e '3€+, h € O_, Choosing h = x*£' we £ind lx*er1 < | D+f'll,
f €¥® . Using again Corollary 7-2 of (5,p.125] there 1is a
unique contraction Y: &0 —> @+ such that X* = Y*D+. Hence
we obtaln the representation S = D+YD_. It remains to show
Ye 1(G,,G_). But this follows from ST_ = D,YGD_ =TS =

= D,G,YD_.

(11)é>(iv): We establish this part of the proof applying the

13



previous considerations to 5% = D_ P'D+. B

Corollery 3.3.

(v ) If in eddition ker(?*) = {0}, then (1) - (iv) are equi-
valent to ISgl ¢ ID gl, ge ¥ _.

(vi) If in addition ker(T,) = {0}, then (1) - (iv) are equi-
valent to ls¥gl < kD fl, fe W

Proof. (v)=3(ii): Since ker(T*) = {0} we have (ima(T_))~ = "¥_.

Hence G_ is a unitary operator on *®_. Using the representation

S = XD_ we obtain XE:I(T+,G_). Consequently, we find
(3.13) - 1x*rl =16tz 21 = 0xTie) 4 WTiPe,

n = 0,1,2,... which implies I1X*f1 & ID 21, £ €R . Now we
repeat the considerations of (1ii)->(ii).
(1i)=»(v): This part of the proof is obvious.
(vi)=(11): Ve replace S by s*. m .
Remark 3.4. If S can be represented in accordance with (i) of
Lemme 3.2, then S possesses a contractive intertwining dila-
tion S5 [13] such that its unique extension to an intertwining
contraction of the minimal unitary dilations U_ and U_ coin-
cides with 2., Consequently, conditions (iii) - (vi) describe
a certain class of intertwining dilations with certain exten-
sion properties.
Remark 3.5. In general the representation S = pr(Z) of (1)
i8 not unique. Uniqueness can be obtained if ker(Tt) = {0} or
ker(1,) = {0}.

Considering the inverse problem we have to answer the
question A and B assuming that the identification operators
J, and J_ are admissible with respect to T, end T_. Because

of Example 3.1 the answer to A is in genersl not affirmative.
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On account of Lemma 3.2 it is necessary to restrict the class

of intertwining contractions by the condition (3.7) or (3.8).
The problem B has in every case a solution.
Theorem 3.6. Let ‘1‘+ be two absolutely continuous contractions
on ?€+ end let J+ sid J_ be two identification operators which
are aaﬁissible with respect to T and T_.
Ay I? SE;I(T+,T_) obeys either (3.7) or (3.8), then there iz
& contraction T on % such that o= {T;7,T ;J,,J_ }isa
complete scattering system whose scattering operator coin-
cides with S.
B) If ¥ € I(U,,U_) obeys ker(Z) 2 %_@& R,(U_) end
ima(Z) & R(U,), then there is & contraction T on
such that * = {T;T+,T_;J+,J_} is a complete scattering
system, dilation scattering operator of which coincides
with 2,
Proof. To prove B we note that if J, and J_ are admissible with
respect to T, and T_, then there are isometries Fos ?{+~f> "3
which in eddition to the conditions (i) - (4ii) o; Defzﬁition 3.2
fulfil

(3.14) dim(?ﬁ@(f‘+‘a€+@p_'ae_)) - 400,

The proof of this refinement follows from the fact that for
every absolutely continuous contraction To there is a pro-
Jection P, with dim(ima(Po)) = + °° guch that :tgifwPOTg = 0,
We leave the proof of this assertion to the reader.

On account of (3.14) the isometries P+t‘@+ can be extended
to isometries fi: -5_*._-) YR, lg.'!‘.mi = Fi?i!-i, ;anges of which
are orthogonal, i.e. §:§_ » 0., Here and in the following we

use the notation of Lemma 3.2.



Purther we remark that the ranges of _\7+ and V_ are not
only subspaces of the residuasl and dual residual subspaces
of U and U_, respectively, but coincide with those. To prove
this for V_ let £ €W, (U ) ©V_D_. We find

12 = 1im IR, UPf) = 1im UD_ViUZfl =
n-s+e0 = T n—+ o
(3.13)

= 1im WD VeUR£l = 1im 1 D_GVIEl &£ Vel = 0
n>+ee n-—>+ce

which implies £ = O.

We introduce the identification operators [_: ®y(U_)-—> ¥

o
and ﬂ+: "!-"U(U+)f> 2 defined by \'1+ = Fivg, which are iso-

metries satisfying the condition ﬂ:n_ 0. Denoting by R+

and R_ the residuel and dusl residual parts of U+ and U_,

R, = U+FR(U+) and R_ = U_I'R,(U_), we can epply Theorem 2.5

to R, R_, N end N _. Hence there is a contraction T on il

such that J' = {T;H+,R_; 1 ﬂ_} forms a complete scattering

system, whose scattering operator coincides with 2. regarded
as a contraction acting from Ry (U_) into R (U.).

Denoting by ﬂ+: o P 'K, extensions of ﬂ+ given by
T H+PMU+)1‘, fel,, and TLf = NPy f, £EU_. e

show that the identification operators Tl

+ end J.t are equiva-

lent with respect to U, i.e. s-lim (T, - TPu;* =o0.7To
=7 n>tce - i 4
verify this equivalence it is enough to esteblish

= sshlolioc s
Um (T, - J UL = 0 for every re'® . Ve get

= =" 2 n
lim (N_ = J_)uf = 1lim (FPD_ - J_ )T f =
n-» 40 n—>+o°
(3.16)
[ n. e
= 1im {F_(D_-I, )T f + (F_-J_)T_f] =20,
RS>+ T 5
ey *
f & R®_, Analogously we find x]}im‘rm( ']Jr - J+)U+ = 10
16

*

Using this fact and the completeness of &' = {,T;R‘.’,R__;
My n_} we find that the dilation wave operators

S, = s-lin oS -3_+U:n exigt and are partial isometries from
- n—+ o0 -
the residusl or duel residual subspaces of U, and U_ into the

absolutely continuous residual or dual residual subspaces of U.
But the existence of the dilation wave operators yields the
existence of the wave operators '.V+. Hence we find that

S = {T;T+,T_;J+,J_} is a complet: scattering system whose
dilation scattering operator coincides with 2.,

To prove A we teke into consideration Lemma 3.2 and B. B
Corollary 3.7. If in addition 2. satisfies the conditions
ker(Z) = "W_ @ Ryu(U)) and (ima(Z))” = R(U,), then T cen
be chosen from C11'

If T is e partial isometry from R,(U_) onto R(U,), then
T can be chosen from the unitary operators on ¥,

Corollary 3.7 follows from Corollary 2.6. Unfortunately,
1t seems to be impossible to find a simple characterization
of those scattering operators which arise from scattering
systems full evolution of which belongs to the class 011 or
to the class of unitary operators. The obvlous conditions
ker(S) = ®_© D_ and (ima(s))” = :D+ seem to be neither
necessary nor sufficient for the solution of this problem.
Ezemple 3.8. We consider the Hardy spaces '¥®_ = w2 (T, J)
and %, = 12(T, ) @E3(T, 0,). On W, = 12(7, x,) we
introduce the multiplication operators U+ given by
(U,£)(2) = 2£(2), 2R, zeT . We set T_ = UM H_end T, =
= ;+U+F?€.+. Obviously, :he minimel unitery dilations of T,
coincide with U . Taking into account (2.1) and (2.2) we ;ee

that the residual and dual residual subspaces of U+ and U_
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coincide with 3L+ and 'N,_. Consequently, choosing some in-
finite dimensional Iilbert space and some lsometries

B "€ - » "™ obeying F;F_ = 0 end using Theorem 3.6 we find
t;at e;ery intertwining contraction Z of U+ and U_ can be re~-
garded as a dilation scattering operator of some complete
scattering system., But Z € I(U+,U~) implies the existence of
a measureble contraction~valued function {\f;,~1;; e(z)} such

that 7. can be represented by
(3.17) (Z£)(z) = 6(z)f(z),

zeT, £e¥_. The scattering operator is now the compression
of the dilation scattering operator. Denoting by € the multi-
plication operator induced by {VV;,~X;; G(Z)} we get that

every operator S of the form

(3.18) S = P.&Jrer?e_

can be viewed as a scattering operator. But opefators of the
form (3.18) are usuelly called generalized Hankel operators
[11]. Since every generalized Henkel operator with norm less
than one admits the representation (3.18) we have found that
every contractive generalized Hankel operator is a scattering
operator of some natural associated scattering system.

The generalized Henkel operators reduce to the usual
Henkel operators setting \ﬂ; = J_ = C. Hence,every contractive
Hankel operator is a scattering operator. But a Hankel operator
can be compact. Therefore,it is quite possible that a scat-
tering operator is compact or even nuclear or finite dimen-
sional. This effect is new and cannot occur in the case of

unitary free evolutions.
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Furthermore, we remark that in general the representation

(3.18) is not unique. This means, if there is a contractive
analytic function {gﬂd JQ; eo(.)} such that {JCJ A G(o) +
+ 60(.)} ig a contractive~valued function too, then we have

S =Py (B + 0 )TH_ =Py Or¥_. Hence,we obtain different
+ +

dilation srattering operators for one and the same scattering
operator. Since the inverse scattering problem has been solved by
using the dilation scattering operator we naturally get dif-

ferent solutions of the inverse problem. But this is only one of

the sources of nonuniqueness of the inverse problem.

4, Lox-Phillips scattering theory with losses

Considering a Lax-Phillips scattering theory, which does not
fulfil the so~called completeness condition, we ere confronted
with the fact that the time evolution of certain scattering
states cannot be described by the free evolution. We call these
scattering states the lost states. The problem now is to find
an orthogonal extension of the free evolution by a unitary
operator such that the extended free evolution describes the
time evolution of all scattering states including the lost
states.
Under certain assumptions concerning the Lax=Phillips

scattering theory this extension was constructed in [12].
An essential tool in order to solve this problem was a certain
symmetrized variant of the Folias-Sz.Nagy functional model of

contraction. It was assumed that the associeted contraction
has no unitary end isometrical parts and that the spectrum of
this contraction consists only of isolated eigenvalues in the
interior of the unit circle. Furthermore, it was assumed that
every triangulation of the assoclated coutraction does not con-

tain any 001 or C10 parts.
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In the following we glve a new proof of this result omit-

ting all the additionsal conditions made in [12]. The proof
will be bazged on the solution of the inverse scattering pro-
blem aend therefore different from [12]. Moreover, we glve the
enswer in a necessary and sufficient manner.

In order to fecilitate the comparison with [12] we use
the notation of [12] so far as possible. Let Un}nem end
{Vg}new be two unitary groups acting on the separable Hilbert
spaces % end 'Jﬁo, '&Eo & ¥, , respectively. It is assumed that
¥ can bé decomposed into two subspaces o'D_ and oD+,

o]

R, = D_® .:’)+, such thet the following conditions are fulfil-

led:
7 * o ;
(1 )V, D, & D, VO & D_
(11 ) V1D, = VY D_, VETD_ = VIt D_
ity V v, =V VD -
nem © Y onem ©0 T °
-~ 1
Av) N vD, = N v ={o
new © " pew 07- TV
(v ) V viw, =,
neiN
The completeness condition Voyn l)+ =V Vn@_ = ¢, is not
s new né&N
assumed. By JO: g ¥, we denote the natural embedding opera-

tor of ?’;o into ¥ . It can be shown that the conditions (i) -

- (vi) imply the existence of the wave operators W+(V,Vo),

" o e e ~-n
(4.1) W, (V,V) = s-lim V* J V7,

- n—+ oo
where the projection onto the absolutely continuous subspace
of V, can be om.tted because V  is absolutely continuous
((1),(441),(iv)). Teking into account (ii) and (v) the szame
holds for V. Consequently, we can identify the subspace of

scattering states of V with the whole space L. Now it is not hard to
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gsee that the ranges of the wave operators ‘.‘.’+(V,V°) coincide

with the subspaces V V®JD < ¥ . Since V V" ¢D+ £ ¥ or
né&nN + néenN

% Vn;i)_ + Y at least one of the residual subspaces W= &£ O
neN

® V V'D_end ¥, = LoV VDED+, elements of which we
néW nem

have called the lost states, is different from zero.
The problem now is to find & unitary operator V1 on
'R = 1O ‘2€o such that the wave operators W+(V,V0 ®Vy) =

= s-1lim Vn(V;n@ V;n)Pac(Vo ®V,) exist and are complete, i.e.
n—+<x

1ma(w.t(v,vo ®v)) = L.

To solve this problem we introduce the associated con-
traction T on ' defined by T = éivr?ﬁ. It is easily seen
that V is a unitary dilation of T but in general not a minimal
unitary dilation. A minimal unitary dilation U can be obtained by
introducing the subspace &, = V y V2% end setting U = VIX.
Nevertheless it cen be shown tﬁ:g the residual subspaces R,
and W, coincide with the residual and dual residual subspaces
of U. Taking into account this fact the following-lemma can
be proved.

Lemma 4.7. The wave operators '.‘Q_(V,V0 ® V1) exist end are com-

plete if and only if the wave operators W _ = s-lim TnV;nPac(V1)
n—>+°°

and W_ = s-lim T*DV?PQC(V‘I) exist and are complete.
n—->+o0

Proof. Denoting by J, the embedding operator of ® into W we
see that the existence of W+(V,V° ®V1) yields the existence

of 9.:+ = s-1lim U“J1v;n1>a°(v1) = s-lim Vi, VI7PEC(V)) =
- n—+oo n—+0

= W (V,V, ®Vy)'® . But the existence of Sl, implies the
existence of W+. Hence 9.:+ is the dilation vizve operator of
Wi. Since W_t(V,VoG) V,) are complete, the dilation wave opera-

tors 9u+ and &l are partial isometries from the absolutely

2]


http:subopo.ce

continuous subspace of V1onto the residual end duel residual

subspaces of U.

Conversely, if the wave operators Vi, exist and are complete,
then the dilaticn weve operators \94 and-Eﬂa exist and are par-
tial isometries from the absolutely continuous subspace of V1
onto the residual and dual residual subspaées R and R, of U.
Using this it is an easy exercise to cénclude the existence
and completeness of w+(V,V°(Z)V1). n

Theorem 4.2. Let '\Vn}neN and {Vg] be unitary groups defined

neN
on the separable Hilbert spaces % and ?Qo, respectively, such
that the conditions (i) - (v) are fulfilled. There is a uni-
tary operator Vv, on 9 = i»C)'a% such that the wave operators
W+(V,Vo C)V1) exist and are complete if and only if the unitary
ogérators R = VIR and Ry = VPR, are uniterily equivalent.
Proof. The necessity of Theorem 4.2 follows from Lemma 4.1. To
prove the converse we note that R and R, coincide with the re-
sidual and dual residual parts of the minimal unitary dilation
U of the associated contraction T. The associated contraction

T is absolutely continuous. Let Z be a partial isometry acfing
from W, onto R end establishing the unitary equivalence of

R4 and R. Owing to  Corollary 3.7 end Remark 2,4 there is a
unitary operator V, on % guch that +4 = {V1;T;T;IK}Ia} forms

a complete scattering system the dilation scattering operator of
which coincides with 2 . Now transforming the considerations

of [6] to our discrete case the wave operators W; =

= g-lim v;nTn and W_ = s-lim v’;T"n are complete if and only if

n—-+o n-s+ o

the wave operators W = s-lim T‘“v?yac(v1) and W_ =
0> + oo

= g-lim TnV?nPac(V1) exist and are complete. Using Lemma 4.1
o

we complete the proof. ®

Corollery 4.3. Let {Vn}nexN and {Vﬁ}nihq be as before and let

T be the associated contraction of V. If there are no subspaces
"Roq and ¥, different from zero end inverient for T and ¥,
respectively, such that T VW01 € Coq end T F3ﬁ1o €. Coq» then
there is & unitary operator V1 on ®= T €>2€o such that the
wave operetors W+(V,Vo GDV1) exist and ere complete.

Proof. Using The;rem 4.1 of [13,chapter II] we find that a tri-

angulation of type (b) of T reduces to the form

o0 * *
(4.2 ) o] 011 *

0 0 Cuyl - ‘
Let Uqyq be the minimel unitary dilation of the 011 pexrt of the
triengulation (4.2), Taking into account the special form of
(4.2) it is not hard to see that the residual and dual resi-
duel parts of U and U11 coincide. Owing to Proposition 3.5
€c) of [13,chapter II] the residual and dual residual parts
of U11 are unitarily equivalent. Applying Theorem 4.2 we com-

plete the proof. ®
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Hamaxapa X. E5-88-726
06 ofpaTHOM 3apave AUCCUNATHMBHOM Teopum paccesHums, 111
Mp pacCcMOTPEHUM TEopun PACCERHMA B KNACCE CHMManWMX ONepaTopPOB Ha Munb-
EepToBHX MPOCTpaHCTBAx pewaevcs obpaTHas 3apada B onepaToOPHO-TEOPETUUECKOM
cMpicne. PeweHne Haxoaum Npu O4eHb obWMXx NPeAnONOKEeHMAX, AONYCKasA, 4TO CBO-
BopHble 3BONOLMM PA3NUUHB ANA Pa3NMuHbIX HanpasBNeHWh BPEeMeHu M UTO He Tonb=
KO BO3MYUEHHas WNKU NONHaA 3BOMOUMA, HO Takke M CBoBOAHWE 3BOMOUMAM 3aAaHm
npu CxuMavwmx onepatopax. [loka3zaHo, UTO knacc cxumawowmx onepaTopoB [aHke-
NA MOXHO paccMaTpuBaTh KakK MHOKECTBO onepaTopoB pacceaHusa. 0TcoAa NOABNA-
eTCA BO3MOXHOCTb TOrO, YTO Oonepavtop paccesHua BypeT komnakTeH. llanee, pe-
3yNbTaT NPUMEHANCA K Tak Ha3biBaeMonm Teopuu paccesHuna flakca - ®unnumpca ¢

NOTEePRAMM NPU BOCCTAHOBNEHWMM COBEPWEHHO APYruM nyTem peaynbTaTta b.C.MaBnoea
O NONONHEHWKU ITOM TEOPpUM.

PaBoTa BwmnonHeHa B [labopaTopuu TeopeTnyeckon dpuamku OHUAN.

[Ipenpunt O6BEaHHEHHOro HHCTHTYTA ANePHLIX HecheaoBaHHH. [ly6Ha 1988

Neidhart H. E5-88-726

On the Inverse Problem of a Dissipative Scattering Theory. I1I

Considering a scattering theory in the class of contractions on Hilbert
spaces one solves the inverse problem in an operator-theoretical manner.
The so!utxon is obtained under the very general assumptions that the free
evolutions are different for different time directions and that not only
the perturbed or full evolutions but also the free evolutions are given
by contractions. It is shown that the class of contractive Hankel opera-
tors can be viewed as a set of scattering operators. This implies the pos-
sibility that the scattering operator can be compact. Moreover, the result
is applied to the so-called Lax-Phillips scattering theory with losses

restoring a result of B.S.Pavlov on the completion of this theory in a
quite different manner.

The investigation has been performed at the Laboratory of Theoretical
Physics, JINR.
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