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1. Introduction 

In this note we wp.nt to solve the ao-ca ll ed invers e s cp.tt " ring 

problec of E>.Jl abs t ract 11ssipotivc sca t t e riJ1 '::; th~ory. Such a 

scattering theory was created in [6,7J ~d cun be understood 

as an extension of the \'1ell-knOlffi sco.tt erlng theory of self

adjoint operators [2J to maximal diss i pative opero.tors . The 

necessity of thi s generalization ari s es from the fact that 

in many scattering systems we have to do with dissipati on of 

energy. To include such dissipo.tion effec t s maximal dis sipative 

operators are often used. An extensive reasonin~ c onc er ning 

this subject can be found in [3J. 

In [6,7J it is assumed that both perturbed and free evo

lutions are governed by maxi=l dissipative operators which in 

general are dofined on different sep a r able Hilb ert spaces. The 

comparison of the different evolutions is established by bounded 

identificati on operators. The notion of the wave and scatteri ng 

operators is introduced. Summarizing it can be said that in 

[6,7J the so-called direct scatterin~ problem of maximal dis

sipative operators was posed and solved on an abstract operator

theoreti cel level. 

But every direct s cattering probl em yields the s o-call ed 

inverse scattering problem. In general this means to restore 

the perturb ed or f ull evolution knowi ng th e fre e evol ution s and 

the s cat t ering operator. But t his se tting of the inverse pro

blem immediately implies three furt her problems. 

(i We mus t know the set of po ssible scatterl ng operators f or 

a given scattering theory. 

(i l ) We have to indicate a certain algorithm al l owing one to re 

store the full evolution. 

( i ll) We have to descri be all full evol utions which solve 
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the inverse problem or, if it is possible,to show that 

the solution is unique in a certain class of admissible 

full Gvolu '.; i un s . 

Problems of t h in kind can be posed in a concrete manner, 

for i n stunce,for ordinary nnd partial differential operators, 

or in a more abs tract munn er, for ins t ance , for!llulating the pro

blem in a certain operator-theoretical language. The inverse 

problems of the Lax-Phillips scattering theory with and without 

dissipation L1,4,16} belong to the last class, for example. We 

call problems of that t ype abstract i nverse scattering problems. 

For the scattering theory of selfadjoint operators [2J 

the abstract inverse scattering problem was solved by U.Wol

lenberg [ 2,14,151 whonns·.veredall three probl ems (i) - (11i). 

Naturally , the ques tion arises to find a solution of the in

verse problem i n the scattering theory of maximal dissipative 

operators . Such attempt s were undertak en in [8,9J . In [9J con

sidering unit ary free evolutions it ViaS shol'1Il t hat every inter

tViining contraction of these unitary free groups obeying some 

obvious properties can be regarded as a scattering operator of 

a dissipative scattering theory. In such a way the problems 

(i) and (ii) were solved. 

In this paper we do a furhter st ep allowing that free 

evolutions are contract i on sem1groups. In this setting Vie 

solve (i) and (ii). The problem (iii) is not considered. In 

order to use the def initions and notions of [13l we prefer con

tractions instead of maxim.al dissipative operators. This means, 

we replace the one-parameter contraction semigroups used in 

[8,91 by power semigroups of single contractions. 

It is found that not every intertwining contraction of 

two contractions can be regarded as a scatte r i ng operator of a 
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di ssipative s cattering t h eory . To t his end it is n eces sar y 

t hn t t h e i n t ert l'li;;. ing contrRct:t OD f ulf) J.s Ilo;ne f1ddi t i '.'nal 

properties. Applying this res ult to spe-ci al fre e evolutions 

we obt ain that the class of c ont rac t i ve Hankel operators can 

be viewed as s catter ing op erators . lloreover, t his implies t he 

possibility t hat the scattering operator c an be c ompa c t , f or 

instance)nuc l ear which wa s f orbidden for unitary free evol u

tions. At the end,we give an appli ca t i on to the so-ca lled 

Lax-Phi l lip s s ca t t er ing t heory wi th l os ses r est oring a r e 

s ult of B. b . Pavlov [12 J in a quit e d:!.f f erent way. 

2. Preliminari es 

Let T be a contraction on the s eparable Hilbert sp ace ~. By 

U we denote the mini mal unitary dilation of T def ined on t h e 

dilati on s pace :>(" ~ s ':X • In acc ordanc e with [13,chapter II J 

we can introduce the resi dual and dual resi dual subspaces 

"R, and ll0l1l of U. Taking into acc ount Pro pos ition 3.1 of 

[13,chapter IIJ we obtain that the orthogonal proj ections 

P~ and P",,, from ~ onto Ol., and l/,,,, admi t the representa t ion 

(2.1 ) Pll, s-lim Un P U-n 
atn ..... + <>0 

and 

(2.2 ) P~ ~ s-lim U-n P un 
.. n ....... + oo dt ' 


where Pee. denotes the ort hogonal projec ti on from '){, onto ue • 
The residual and dual residual subapacea r educe the uni

tary operator U. We den ot e t he residual and dual residual 

parts ot U by R and R•• i.e. R = ut~ and R .. '" U t lt_. 
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Remark 2.1. It io quite possible that the residual 	or the 

dual residual or 	bQt~ sClhapaces a:!:e zero. For instance, 

]G)l= to) if ond only if Tn-~O otrongly as n->+""", i.e. T E.C O.' 

In accordance with Theorem 3.2 of [13,chapter IJ every 

contrcction can be canonically decomposed into a unitary part 

and a completely non-unitary part. In the following 

the Rubspace performed by the orthogonal sum of the absolutely 

continuous subspace of the unitary part and the completely 

non-unitary subspace is called the absolutely continuous one of 

a contraction. Obviously, the absolutely continuous subspace 

reduces a contraction. The corresponding part of a contraction 

is called the absolutely continuous one. If the absolutely 

continuous part of a contraction coincides with the contraction 

itself we csll the contraction an absolutely continuous one. 

For instance, every completely non-unitary contraction is 

absolutely continuous. 

This concept of abSOlute continuity for contractions 

agrees very well vdth that for unitary operators. S6 it can 

be ShOIID that the minimal unitary dilation of an absolutely 

continuous contraction is absolutely continuous (Proposition 

6.3 of [13,chapter IIJ). Consequently, denoting by ~ac(U) the 

absolutely continuous subspace of the minimal unitary dilation 

U of T we obtain 

(2.3 ) de. aC(T) 'dtn1[ac(U)fo '}(,ac(U), 

where 'at aC(T:, is the absolutely continuous subspace of T. The 
acrelation (2.)) yields that the absolutely continuous part U

of U is a mi 'lilDal unitary dilation of the abnolutely conti 

nuous part Tac of T. 

~ 

Furthermore, we can introduce t he ab nolutely continuous 

r" nidual Dnd dual rEsidual subsjJs.::es and ports of a minimal 

unitary dilation. Ohvious ly , the sa s\',bspa ces con be rega.cue u 

os the residual and due,l residual sub npaces of the 	minimal 

Tacunitary dilation of the absolutely continuous part of T. 

In order to cOI),sider a scattering theory Vie introduce two 

further contractions T_ and T+ defined on the separable Hil

bert spaces '<Ie _ and 'at + which l'Ie call the past and future 

free evolutions, respectively. For simplicity we assume through

out this note that these contractions ore absolutely continuous. 

Further Vie assume the existence of two bounded linear 

operators J+: 'af.~ 'de. which we call the identification opera

tors. We define the wave operators W±: ':le ± -----'? CIt by 

(2.4 ) W_ c s-lim T~n J Tn 
n-+ + oo 

and 

(2.5 ) s-lim Tn J T"n1'1+ + + n --'> + t)O 

We introduce the minimal unitary dilations U± of T± defined on 

the dilati on spaces ~~+' Extending the identification opera

tors Jz. to operators ~ acting from ':k':± into ')(, by 

J+f = J+P~ f E: 'J( , f EO 'Jt+, we are able to consider the dilation 
- - ± 

wave operators st±, 

(2.6 	 ) hl± s-lim un J+U:n 
n~.± oo - 

It can be shO\m that if the d:lll.ation waye operator 9,+ ( 56_ ) 

exi s ts, then the operator ac tually acts only from the (dual) 
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residual subspace of U+ (U_) into the abs olutely continuous 

(dual) re~idual sr ece of U, Le. ker(Q,+):2 'at+ 8 R(U+), 

ima(,S(,+) .::; ~ac (L e. ker(51_) 2- 'M._ E) 'R,,,,(U_), ima(5!,,_) £ 

so ;?,..ac). 

Definition 2. 2. Th e wave operator W+ (W_) is called complete if 

(i ) the dilation wave operator 9.+ (.Q_) exists and 

(ii) 	~+ ($1_) is a partial isometry from the(dual) residual 

subspace of U+ (U_) into the absolutely continuous (dual) 

residual subspace of U, i.e kerLSi,+) = 'at+ 8 0{, (U+) and 

"R acima(SL+) (i.e. ker(S(,_) = 'Ot_ e "'R,~(U_) and 

ima( Sl_) It:c) . 

We note that the completeness of Wi does not mean in ge

neral the completeness of the dilation wave operators. This is 

the case only if all involed contrac tions are unitary operators. 

Furthermore, it is interesting to remark that the comple

teness of W+ (W_) yields that the (dual) residual part of U+ 

(U_) and the absolutely continuous (dual) residual part of U 

are unitarily equivalent. 

Now we say the 5-tuple $ ~ tT;T+,T_;J+,J_} forms a com

plete scattering system if the wave operators Wi eXist and are 

complete. 

With every complete scattering system ~ we associate a 

scattering operator S defined by 

(2.7 ) S W- I'I 
+ 

and 	a dilation scatteri ng operator 2: defined by 

• 
( 2.8. " L. &+ bl . 
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ObViously, the dilation s catterinG operat or int ertwi nes 

the min i ma l unitary dilat i ons U+ and U_, i.e . 

( 2 .9 ) U+ L. = L U_ • 

Tak i ng into a ccount Defini ti on 2.2 the dila t ion scattering 

operator is oontract i on whi ch actual l y act s from the du.al 

residual subspa ce of U int o the resi dual ub space of U+, i. e . 

(2 . 10) ker ( 2.. ) .2 ';}{,_ e O(; ¥(U_) 

and 

( 2 . 11) i ma(L ) ,; "R {U+ ) . 

Further it i s usefu l t o note t hat t he scat t eri ng ope r at or 

is the compr ession of t h e dila tion scattering operator, i.e . 

( 2.1 2) S preL l L I' 'ae_Pde+ 

Fro.m t his repres entation it immediately foll ows t ha t t he scatt~ring 

oper ator is also a con t raction. Taking into account (2.1) we 

obtai n that S is an intertwini ng cont ract ion of T+ and T_, i. e . 

(2.1) ST+ ,. T_S. 

Since we have two scat t ering operators we obtain two inverse 

s catt ering problems which can be formul ated as follows: Assume 

that the identIfication operators J± and the tree evolutions 

T± are given. 
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A) 	 Let s: 'Gt ~+ be an intertwining contraction of T+ and 

T • Does there exist a contraction T on 'at suc~ that 

.:it- = \'T;T.;. ,T_;J+,J_} forms a complete s(;attering system 

whose scattering operator coincides with S? 

B) Let 2. I ~_--) ~+ be an intertwining contraction of U+ 

and U_ obeying (2.10) and (2.11). Does there exist a contraction 

T on ~ such that J = lTiT+,T_iJ+,J_} forms a complete 

scattering system \'Ihose dilation scattering operator coin

cides wi th L. ? 

First of all Vie note that a solution of the proposed pro

blems can be expected only if the identification operators 

satisfy certain conditions. 


Definition 2.J~ We say the identification operators J+ and J 


are admissible with respect to T+ and T_ if there are two 


isometries F±: ~±-) 'Ct such that 


(i F:F_ = 0, 


(ii s-lim (F_ - J_)T~ 0, 

n-->+oO 

(iii) s-lim (F+ - J+)T:
n = O. 

n~+~ 

For further applications we make the following 

Remark 2.4. Let T+ = T_ =To' 'Ce + c 'a{ "' 'Of. and J = J - '" J
0 

•o + 

Then J and J are admissible with respect to To and To if and o o 

only if there is an i s ometry Fo: ~o~ ~ such that 


s-lim (Fo - Jo)T~ = 0 and s-lim (Fo - Jo)T~n ~ O. 
n~+ = 	 n~+ = 

It can be shown that J+ and J_ are admissible with respect 

2to 	T+ and T_ if ~ [TiT+,T_;J+,J_} is a complete scattering 

system. 

Immediately from Theorem 2.4 of [9J we obtain the following 

Theorem 2.5. Let T± be two absolutely continuous unitary opera

tors on ~± and let J + and J_ be t wo identification operators 
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which are ~drnis sible with respect to T+ and T_. If S is an 

i:ltertwining contrect1.on of T+ and T_, T+S = ST_, then there 

is a cOlltraction T such that ,+ '" t TiT+,f.L'_i J + ,J_J foros a com

plete scat tering system wh ose scattering operator coincides 

with S. 
2lf 

~ We apply Theorem 2.) of [9l t o L+ = ~ A dE+( A ) and F+, 
- 0 - 

where E 5') are the sp ec tral measure s of T±. Obviously , S
i 

int ertwines L+ and L_. Lloreover, F+ and F_ are admissible wi th 

respect to L+ and L_. Consequently, there is a maximal di s

sipative operator H on 'at such that .J\.' = lHiL+,L_iP+,F_} 

forms a complete scattering system whose scattering oper ator 
iH'"equals S. We set T = e • Now it is not hard to show that the 

5-tuple J\. = t TiT+ , T_i J+,J_} solves the pro111em •• 

Corolla ry 2 .6. If in addition S fulfils kereS) = ~o} and 

(ima(S))- = 'at+ , then T can be chos en from C11 • 1:oreover, if 

S is an i sometry from 1e_ onto 'at+, then T can be taken from 

the unitary operators on ~ • 

Corollary 2.6 is a consequence of the n emarks 2.5 and 2.6 

of [9l. \'Ie note that the additional conditions of Corolla.ry 2.6 

are ne;:essary i f we assume that the scatterinG op erator ari ses 

from a scattering system with a full evolution of the indicated 

classes. 

In the following the results will be essent i a lly based on 

Theorem 2.5 and Corollary 2.6. 

J . Inver se problem 

In this section we try to extend Theorem 2. 5 to the CBSS that 

T+ 	 and T_ are arbitrary absolutely continuou ~ contractions. 

To 	 this end we remark that in distinction fro~ Theorem 2.5 

C} 
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every intertwini ng contrac tion cannot be r egarded as a 

tering operator. 


£:xrunple 3.1 . We con sider the Hardy spaces 'Jt;t = H2 ( T , 


( 1), chapter V], wh el:e 11 is the unit cil'cl e , i.e. II ~ 


scat

~-t) 

= (z to 11:: \ z I = 1}, PJ1d ~ are s eparable Hilbert spaces. We 

'1J) - 2 

vi ew UL± a s subspac es of L ( II , X;t) ' On 'Ce;t we i nt r oduce the 

shift operators T;t defined by (T;tf)(Z) = zf ( z ), f E~, z E. l" . 

The minimal unitary dilations of T+ obviously coinci de with 

the shift op erators U;t on 'JZ.± = Li(T , J(t.) given by (U;tf )( Z) 

'" zf (z), f <=. 'X±, z (0 11 . Taki ng into account Lemma 3.2 of 

[1 3,chapter vJ the condition 

(3 . 1 ) T+S ST 

yields the existence of a contractive analytic fun ction 

[J(_, j(+; 8 (z)} such that the representation 

0.2 ) (St ) (z) 8( z )f (z), 

f €; 'at_, holds . Hence there are con.tra cti ons S ,. 0 obeying 0 . 1) 

However, this contrac t i on S f 0 cannot be the scatt ering 

operator of a com.pl ete scattering system wi th the free evo

lutions T+ and T_. To thi s end we r emark that t he r esidual sub

space of U+ i s zero. Consequent ly, t he di lat ion s ca ttering 

operator must be zero. Taki ng in~o account (2.11) the scattering 

opel'stor Wl.ls t be zero which cont radicts 5 " O. 

The condredi ction of f~le 3.1 was obtained by taki ng 

toto acc. ount t he condi t ion (2.12). In the fol l owing we want 

to clarify the meaning of this condition. 

We introduc e the limit s D+, 
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c0. 3 ) D 
+ 

and D_, .. 

0.4 ) D-
which exist. Let 

.D.5 ) G+D+f 

f EO 'ae+, and 

(J.6 ) G_DJ 

f t 'at_, we associate two isometries G+ and G_ with T+ and T_. 

We call G+ the associated CO-isometry of T+ and G_ the asso

ciated i sometry of T_. Further, by I(.,.) we denote the set 

of intertwining contractions of two bounded operators. 

Lemma 3.2. Let T+ and T_ be two contractions on ~+ and ~_. 

respectively, and le t S be e. contrac t ion acting from 'at into 

~+' Then the following conditions are equivalent: 

(i )3L.tI(U+,U_) obeying ker(~)2 'dt_8 ~",,(U_) and 

!ma( L) !:" ~ (U+) such that S '" preL). 

(11 ) '3 r E: I(G+,G_) such that S = D+ I' D_. 

(111) S E.I(T+,T_) and 

0.7 ) 2RedI-D; ' t,Sg) + i Sg i 2 
4 IID+t U2 + UD_g~2 

for every f ~ 'ile and g Co 'at • 
+ 

1 I 

(a-li m Tn T* n ) ' /2
+ + ' n.-;. + oo 

(s-lim T~n T~ ) ' /2 
n~+oO 

J)t. = (D;t~j:)- k ~±' By 

.
= D+T+f, 

D_T_f. 
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- -

(iv ) S e I(T+,T_) and 	 tain S E. I(T+, T_). Further we e s tima te 

(J.8 2Re( s 'of,~I-D: 'e) ·c bS"f h2 ~ \\D+f\l2 + ~ D_g\\2 	 2RerJ I-D;' f,Sg) + iI Sg \\2 

0.9 ) 2Re(D+f,~I-D;'rD_g) + \I D+ r D_g \1 2 ~ 
Proof. We use the followi ng proof s cheme (i)~(11)~H;i~. 
(1)=' (11) I We consider the linear operators B±: 'dt± ~ '1C ± ~ ~ D+fU2 + III' D_g I12 ~ UD+f \l 2 + 1 D_g112, 

defined by B+ c PO(,(U l~ and B_ = Pl(, (U )P'Ot • Taking into 
+ + .. - 

for every f C:=. 'at+ and g ~ 'Cle._. 

f Eo 'ae.+, g E: 'at_.
account ( 2 .1) and (2.2) nod considering the polar decompo

(11i) 9 (11): Setting f=O we find \ISgU 2 ~ \\ D_gU 2 , g ede _.
sitions of B± we g et B± = V±D±, wh~re V+ and V_ are partial 

Hence there i s a contraction X: ~ ~ 1t such that S = XDisometries, ranges of which are subspaces of the residual ~ + 
(Corollary 7-2 of 1: 5, p.125]) holds . We get

and dual residua l subs paces of U+ and U_' re s pectively. Set

ting r = V·' L. V : dJ _~ .zJ+ we find a contraction r suc h 
(J.10) 2Re(-JI-D; 'f,Th) + II Xb \l 2 ... lI D+f \12 	 + !lh\l2, 

+ -
" " ..that S = D+ r D_. Because of U+B+ = B+'.l\ = V+G+D+ and U_B_ 

c B_T_ c V_G_D_ vIe i mmediately obtain r f::. I(G+,G_). 
h f::.~ . Let f = -II-D2 'f', f' E:'2e +. From 0.10) we obtain(ii)~ (i): By a: we denote the minimal unitary dilations of 	 - + 

G± defined on t h e dilation spaces ~±, J)± ~ J)±. Applying 
0.11) IID;f' - XbJl2 ~ IID+f' 112 _ 2Re(XN f',h) + Ilh \! 2Proposition 2.2 of [ 1J,chapter IIJ there is a contraction 

""F E:. I(G+,"G) such that r pre r). By Y+ 	 s-lim ~ V+PJ) G:n 

n -> +"" + which yields the estimate- -n-n
V_ = s-lim U_ V_P~ G_ we define isometrical 	extensions ofn __ + _ 

oO 

V±' V± 1 ::O± = V±' r anges of which are subs paccs of the residual 0.12) IIX"f' 1l 2 .;;, \ID+f' U2 + II X"f' _ h l\ 2, 

and dual residual subs paccs of U+ and U_, re s pectively. Ob
.- - --:4{ - -

viously , we have U+V+ = V+G+ and U_V_ = V_G_. Setting f' Eo'dt+, h f::. ;i}_. Choosing h = Xliif' we find II x"'f' !\ '" il D+f' II , 

L = V rv-: ';)(. -'> ':)(,+ we get a contraction belonging to+ - - f E.'at+. Using a gain Corollary 7-2 of [ S,p.12S] there is a 

I(U+,U_) and obeying ker( L. ) 2. ';)0_ 8 OG .. (U_) and ima( :L ) C;; unique contraction Y: ;;U ~ :iJ + such that X· • Y"'D+. Hence 

~ l\., (U+). The simple calculation S = D+ r D_ = D+rD_ = we obtain the representation S = D+YD_. It r emains to show ---,.. ,

D+V:V+rV_V_D_ P~ 2:. f 'dt_ = pr( L ) c ompletes this part of Y~ I(G+,G_). But this follows from ST_ = D+YG_D_ = T+S+ 	 I =the proof. D+G+YD_. 

(11) - ) (11i): Becaus e of r e I(G+,G_), O. S) and (J.6) we ob-	 (ii)~(iv): We establi s h this part of the proof applying the 

12 n 
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previ ous consider at i ons to S '" = D_ r*D+ •• 

Corollar y 3. 1. 

(v ) 	If i n addit ~ on kerCr·) = ~_ol . then (1 ) - (i v) ar e equi 

val ent to !I Sg l! ;:' II D_g U, g c.'<!e _ . 

(vi) 	If in addi t ion ker (T+) = {OJ, then (i ) - (iv ) are equi 

val en t t o ll S .. f 1\ ~ Ii D f ~ , f E. \It • . 	 + + 
~ (v)~( ii ): Si nce ker( T:) = tol we have ( ima(T_» - = ~_. 
Hence G_ is a wli tary operator on ~_. Using the representation 

S = XD_ we obtain X E: I(T+, G_ ) . Consequently , we find 

0 . 1) 'X· f U ~XT"' Dfl b \l T*nf l . I G~nX f' + + ' 

n '" 	 0 . 1 . 2 • • • • whi ch i mpl i es nx ~ f l .!, nD+f Q, f E:: ~+. Now we 

repeat the consi derati on s of (ii i ) ~( ii ). 


( ii )=? ( v) : This part of the proof is o.bvious. 


(vi ).t=!t( 11 ): \'Ie r epl ace S by S· . 


Remark ) .4. If S can be repr esen t ed i n accordance wi t h (i) of 


Lemma ) .2, then S possesses a contractive intertwining dil a


tion S [ 1)) such that i t s unique extension to an intertwining 


contracti on of t he minimal unitary di lat ions U+ and U_ coin


Ci des with :L . Consequent l y, condi tions (iil) - (vi) describe 


a certai n class of intertwining di l at ions with certain exten

sion properties . 


Remark ).5 . In general the r epresentat ion S = pr( :2: ) of (i) 


is not unique. Uniqueness can be obtained lf ker(T~) = {O} or 


ker (T+) = {oj. 

Considering the inverse problem we have to answer the 

question A and B assuming that the ldenti.fication operators 

J. and J_ are admissible with respect to T. and T_. Because 

of Example ).1 the answer to A is in general not affirmative. 

H 

On account of Lemma 3. 2 it is necessary to r es trict t he class 

of int ertwining contractions by the condition (3.7) or ( 3 . 8 ). 

The problem B hss in every case a solution. 

Theorem 3. 6. Let T± be t wo absolutely continuous cont r a ctions 

on ~± and let J+ and J_ be two ident i f i ca t i on operators whi ch 

a re admissible with r espect t o T+ and T_. 

A) I f S~ I( T+,T_) obeys either (3 .7) or (3. 8) , then there is 

a contr action T on ~ such that ~ = {TjT+, T_; J+,J_} i s a 

complete scattering system whose scattering op erator co1o

cides with S. 

B) 	 If L E: I(U+, U_) obeys ker ( :z:. ) :2 ~_ 8 O<,... ( U_) and 

ima( "2.. ) ~ 'O(, (U+ ), then there is a cont r ac t i on T on 'at 

such t hat J = -lTjT+,T_i J+, J_1iS a complete sca tt ering 

system, dilation scatteri ng operator of which coincides 

with 	L . 

~ To pr ove B we not e that i f J+ and J_ are admissibl e wit h 

respect to T+ and T_, then there are i sometries F±: ~±--7 ~ 

which in addi t i on to the conditi ons (i) - (i11 ) of Definition 3. 2 

f ulfil 

(3. 14) dime 'at 8 ( F +'ae.+ ® F_ 'ae_» + 00 . 

The proof of thi s r efinement fo l l ows f r om the fact t hat f or 

every absol utely oon t i nuous contraction To there is a pro-
njection Po with d1m(ima ( p » • + ~ such that s-l im PoTo = O.o 

n-» + "'" 
We leave the pr oof of thi s asae.rtion to the r eader . 

On account of 0. 14) the i s omet ri es F+ I' ;o+ can be extended 
o 	 _ 0 - 

to 	isometries F+: -:D+- " lJe. • 11+ 1' :1)+ = F+t;U+. r anges of which. -	 -o.~ - are orthogonal, i.e. F+¥__ O. Here and in the following we 

use the notation of Lemma 3.2. 
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1

Further we remark t hat t he ranges of '1+ and V_ are not 

only subspaces of t he r esi cunl and dual resi dual 3ubspace9 

of U+ and U.. ' re spec ti \-ely , but coincide wi t h t bose. To prove 

this 	for V_ let f C:. ~.. (U_ ) e V_:tJ_. We f i nd 

lim 1, l p~ . Unf U lim UD V·Unf U 
n ~+ o-o ~'-- - n -> + oO - - -Ufll 

(3. 15) 

lim II D V·Unf II lim 11 D "GnV"'f I ~ II V""f U o 
n-'>+o<> - - - n->+'"" - - - 

which i mplies f = O. 

We i n t roduce the identifi cation operators n_: ~ .. ( U_) -~ ~ 

n = FV·, which are isoand 	 n +: 10 (U+ ) ~e. defined by ±. ±. ± 
metries satisfying the condition n: n = O. Denoting by R+ 

and R_ t he resi dual and dual residual parts of U+ and U_, 

R+" U+ , "1\,( U+) and R_ U_I10.(U_), we can apply Theorem 2.5 

to R+, R_, n + and n Henc e there i s a contraction T on 'a{ 

s uch that J. ' = tT jR+,R_j 11+, n_1 fo rms a complete scattering 

sy stem, whose scattering operator coincides wi th ~ r egarded 

as a 	 contracti on act i ng from 10~(U_ ) into ~(U+) . 


Denoting by fl±.: ':l-'v ~':> 'Y., ext ensions of Il± given by 


Il +f 	= n+p~(U /. f E-. J0 +' and nJ = Il_PO(, (U )1', f Eo JI._. We 
+ 	 ~ 

show t hat the id entif ication operators 11+ and J+ are equiva
n

lent wi th resp ec t to U+' i.e. s-lim (11+ : J+) u: = O. To 

- n ~±oo - - 

verify thi s equiva lence it is enough to establ ish 
-	 - nUrn ( fl. - J +)U: f = 0 for every f Eo 'i!(+. 'li e get 


n -')± "'" - - - 

o 
lim (rt - JJ U~f lim ( F_D_ J_)~f 
n-'>+ oo n ...... +oo 

(J.16) 

= 	 11m IF_( D_-~ )T~ + (F_-J_ )T~l' } = 0, 

n-'> + <><> 

f c. 'at_. Analogous l y we find U rn ( n + - J+) u:
n 

= O. 

n ..-,, + oo 

Using this fact and the comp leteness of Ji.' = {,TiR+,R .. i 

n+, n_} we find that the dilation wave opex-ators 

o n - -nu~ = s-lim U J+U+ exist and are partial isometries from 
- n-'>±oo - 

the residual or dual residual subspaces of U+ and U_ into the 

absolutely continuous residual or dual residual subspaces of U. 

But the existence of the dilation wave operators yields the 

existence of the wave operators W+' Hence we find that 

~ . = {TjT+ ,T_ jJ+,J_Jl is a complet; scattering system whose 

dilation scattering operator coincides with L.. 

To prove A we take into consideration Lemma ).2 and B. III 

Corollary ).7. If in addition ~ satisfies the conditions 

ker( '2.) = '10_ e o<'.(U_) and (ima( ~»- = ~(U+), then T can 

be chosen from C11 • 

If L is a partial isometry from 1(,..(U_) onto 'R.,(U+) , then 

T can be chosen from the unitary operators on~. 

Corollary ).7 follows from Corollary 2.6. Unfortunately, 

it seems to be impossible to find a simple characterization 

of those scattering operators which arise from scattering 

systems full evolution of which belongs to the class C11 or 

to the class of unitary operators. The obvious conditions 

kereS) ~_ e J:J and (ima(S»- :i) + seem to be neither 

necessary nor suffiCient for the solution of this problem. 
2 	 - 1..Exe.mple 3.8. We consider the Hardy spaces ~ = H ( II , JI_) 

and 'dt+,. L2(U,,x+) 8H2(l1, J'+). On 'j(,± = L2(TI, X±) we 

introduce the multiplication opera tors U±. given by 

(Ui')(z) = zf(z), fE:.~±, ze.lf. We set T_ = u_t<K_ and T+ 

a P+U+~Qt+. Obviously, the minimal unitary dilations of T± 

coincide vdth U±. Taking into account (2.1) and (2.2) we see 

that the residual and dual residual subspaces of U+ and U_ 

HI 17 



c oi ncide with ':}(,+ and ~_. Consequ ent l y, ch oosing s ome in

finit e di men sionsl Hi l bert space and some i s ometries 

F : '?I'. --, "t obeyine P+'"F = 0 end using Theorem 3.6 we find 
1. 1. 

tha t every int er twirJinr; cont raction L:: of U+ and U_ can be re

garded as a di l ation sca t ter i ng operator of some complete 

sca tter i ng sys t em . But 2:. E. I ( U+, U_ ) i mpli es t h e existence of 

a measurable cont r aot ion-valued function L-r_ , X+; e ( z ) } such 

that L can be r epresented by 

(J .17 ) ( "2.. f) ( z ) 8 (z)f ( z ), 

z elf • f Eo'de_. The s cattering operator is noVi the compression 

of the di lati on scattering operator. Denoting by 8 the multi 

plication op erator induced by L"I'"_, X +; 8 ( z )} we get that 

every operator S of t he form 

(J. 18) S " P~ ei de _ 
+ 

can be viewed a s a scattering operator. But operators of the 

form (3.1 8 ) are usually called generalized Hankel operators 

[11J. Since every generalized Hankel oper ator with norm les s 

than one admit s the repre s entat i on C3.1 8) we have found that 

every contract i ve generalized Hankel operator is a scattering 

operator of some natur a l associated scattering system. 

The generali z ed Hankel operators r educe to the usual 

Hank el oper a t or s s e t t ing X+ '" Jr_ '" C. Hence,every oont rac t i ve 

Hankel operat or is a sca ttering oper a t or . But a Hanke l operat or 

can be comp act. Therefore , i t i s qui te pos si bl e that a sca t

t ering operator i s compac t or even nucle6r or finit e dimen

sional. This effect is new and cannot occur in the case of 

unitary free evolutions. 

]8 

Furthermore, we remark that in general the representati on 

(3.18) is not uni que. This means, if t h ere is a c ontractive 

analytic funr:tion t X:", -X.;.i e (')} lJuch that {.Jr.:., J.i~; 8 C.) +o
+ e (')} is a cont r a c t ive-valued functi on t oo, then we haveo
S '" Poe ( 6 + e o) i-a€_ = Pdf 8 r<le_. Hence, we .obtain differ ent 

+ + 
dilat ion s "Fttt er i ng operators f or one and the same scattering 

op erator. Since the inverse scattering problem has been so l ved by 

using the dilat ion scattering operator Vie naturally ge t dif

ferent solutions of the inverse probl em. But t his i s only one of 

the sources of nonuniqueness of t he inverse problem. 

4. Lax-Phi lli ps scattering theory rlith losses 

Considering a Lax- Phi l lips scattering theory , which does not 

fulfil the so-ca lled completeness condi t ion, we are c onfr ont ed 

with the fact that the time evolution of certain s ca tt er i ng 

states cannot be described by t he f ree evolut i on . We call t hese 

scattering s tates the lost s t a tes. The probl em now is t o f i nd 

an orthogonal extension of the free evoluti on by a uni t ary 

operator such that t he exfended free evoluti on describes the 

t ime evolution of al l s cattering stat es incl uding the lost 

states. 

Under cer t ain assumptions concerning the Lax~Phillip s 

s cat teri ng t heory this extension was cons t ructed in b2J . 
An essential t ool i n or der to solve t hi s pr oblem was a cer t ain 

symmetrized variant · ot the Foins-5z.Nagy func t i ona l model of 

cont r a ction . It was a s sumed that t he ass oci ated contraction 

bas no unitary and isometri cal parts and that the spectrum of 

this contraction consists only of isola ted eigenvalues in the 

interior of the uni t circle . Furthermore, it was assumed that 

every triangulation of the associated co~traction does not con

tain any or C,O parts.C01 
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In the f ollol'li ng W'1 e i v e a n ew p roof of thj a r esul t omit

t jng a ll i;he e d<iii.ional coa di ttoEiJ ma de in [ 12l. Th ~ p r oof 

wi ll b e lJesed on t he sol u t i on of t h e i n verse soatteri ne pro

b l em and the r ef ore di ff e r en t fro;n [1 2] . 1~ore over. we give the 

answer i n a n ec e soary and 3uffi ci ent mann er. 

In ord er t o f aci l ita t e t h e compari s on with [' 2J we use 

t he n otati on of [12J so fa r a s po ssibl e . Le t l yD}n E. ~J and 

tV~ JnE:1)J b e t wo uni tar y Groups ac tinG on th e s epar able Hilb ert 

sp a ce s 'J, e.nd "<Ito ' 'Oe ~ ~ , re spective l y . It is assumed that o 

'd'~ c an be dec omo osed 	i n t o two subspac e s :iJ and JJ , 
o ' - + 


'Ceo J)_ ® 2)+, such t h at the f o llo..-ling condition s are fulfil 

led: 


( i V 1\ c ;;U v.Jt. ,/, c.. ';\

o >J+ - +' 0 ""'_ -	 00_ 

(11 	 H;Q+ = Vo t J) _, VCiJ) _ = V~ I ;,u_ 
Vn(iii) V Vn 'J) V d:J = '2e 

n OI 0 + n U) 0 0 

(i v ) n Vn J) n 	Vn 'JJ = to 1 
n E. o.J 0 + n t.. ~l 0 

(v V vn 'C( Be. . 
nE.1\.I 0 

VnThe compl e t aness conditi on V ~+ V Vn J) = 't, is not 
n E-il-J n E.o.J 

asaumed. By J 0: ' ~ z.~ 't., wa d enot e t h e n a tural emb edding opera-

t o r of '¥~o i n t o ';j" • It c an be s h ovm that tha c onditi on s (i) 

-	 ( vi ) i mp ly the exi s t en c e of t h e wave op e r ato rs IV (V,V ) , ± 0 

(4., ) W±( V, VO) 	 s-lim vn J V-n , 
n->± = o 0 

where the pro j ec t i on ont o the a b nolut e ly c on tinuous s ubopo.ce 

of Va can be om:.t t e d becauze Vo is ab zo h ;. tely c ontinuou s 

« i ) , ( i ii ) . ( iv». Taking i n to o.c c oun t ( i i) and ( v) t he eame 

h o l ds f or V. Consequent l y, we c an iden ti fy t he sub spa c e of 

s cat terin g s t utes of V with the who l e ap ac e '?C . Now i t i s n o t hard t o 

2U 

see that the ranBe.s of the wave opera tors W+(V, Yo) coincide 

with the subspace s V yO n ~ t . Since V vn ~+ * 'i 
nE.~ + n E. 1\J 

or 

V yD J_ *i at least one of the residual 3ubDpaces ~ = ?1.,e 
n E. lIJ 

E) y yD JJ and "66 . = t 8 V yD lJ , elements of which we 
n E.W li' ne: N + 

have called the lost states, is different from zero. 

The probl em now is to find a un i tary operator V on1 

'de = "';t8 tae such that t he wave op e rat ors W±(V,V (±) V )o 	 O 1 

>= 	 B-lim yD(V~n (8 v,n)pac(Vo (f) V1) exist and are complete, i.e. 
n~± """ 

ima( W±(V,V (f) V )) = 'f, . o 1

To Bolve this problem we introduce the associated con

traction T on rae defined by T P~V i'<f. . It is easily s een 

that V is a u nitary dilation of T but in general not a minimal 

unit a ry dilati on. A minimal uni tary dilation U can be obtain ed by 

introducing the subspace 'J.~ = V Vn 'at and setting U = V ~:x, . 
n OI 

Nevertheless it can be shown that the residua l subspaces ~ 


and "0* coin cide vlith the residual and dual residual subspaces 


of U. Taking into account this fact the following lemma can 


be proved. 


Lemma 4. i. The wave operat ors ',V±(V, V0 8 V1) ex ist and are com


plete if and only if the wave operat or s W+ = s-lim Tn V,npac(V )

1 

n ~+oo 

*n..n acand \7_ >= s-lim T v,P (V,) exist and are c omp lete. 
n ..., + 0<> 

~ Denoting by J 1 the embedding op era tor of '£ i n to ~ we 

see t hat the exist ence of W±(V,V G) V ) yield s the exist ence o 1

n 1 n -n ac ( ) n -n ac ( )
of ww+ = s- im U J 1V, P V 1 = a-lim V J,V, P V 1 - n -->± co n ->± "'O 

c W+(V, Vo <±l V,) ~~ . But. the existence of SL+ implies the 

exi;t ence of W+. Henca SG is the di lation ; :l.Ve operator of 
- ± 

W±' Since W±(V, Vo (fJ V,) are complete , the dil u ti on wave opera

tors Slu+ and &(J_ are partial isometri e s froJ!< the . absolutely 
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continuous subspa ce of V1 onto the residual ~d dual residual 

subspa ce s of U. 

Convers ely. if the wave operators I'l;!;. exist and are complet e , 

then the di1aticn l7(:l e oper a t ors SL+ and hl_ exist and are par

tial isom8tries from the absolutely continuous subspace of V1 
onto the residual uud dual res i dual subspaces "R, and Q<; . of U. 

Usin~ this it is an easy exercise to conclude the exi stence 

and comp1et eness of \'/+(V . V 0 G V1)' • 

Theor em 4.2 . Let l vn} - " and l vn) "- " be unitary groups defined 
n~ "" 0 n c. 'N 

on the separable Hilbert spaces ~ and ~o' respectively, such 

that the conditions (i) - ( v) are fulfilled. There is a uni 

tary operator V1 on 'Of : 'J, e 'Ceo such that the wave operatora 

W;i(V , VO ED V1) exist and are complete if and only if the unitary 

operators R '" V I'~ and R .. = V f' 1(,,.. are unitarily equivalent. 

Proof . The necessity of Theorem 4.2 follows from Lemma 4.1. To 

prove the converse we note that R and R ... coincide with the re

sidual and dual residual parts ot the cinimal unitary dilation 

U of the associated contraction T. The associated contraction 

T ia absolutely continuous. Let ~ be a partial isometry acting 

from ~ .. onto 1i<., and establishing the unitary equivalence of 

R* and R. Owing to Corollary J.7 and Remark 2.4 there is a 

unitary operator V1 on 'de. such that J.. = {V1iT,TiI~.,IatJ forms 

a complete scattering system the dilation scattering operator of 

which coincides with Z . Now transfOrming the considerations 

ot [6 J to our discrete case the wave operators W+ .. 
~ s-li m V,nTn and W_ a-lim ~T~n are complete if and only if 
n~+~ 	 n ~+ ~ 

the wave operatora W+ '" a-lim T·n~ac (Vl ) and W_ .. 
n-') + ou 

c a-11m Tn ¥1npac (V1) exi st and are complete. Using Lemma 4.1 
n -'> + """ 

we complete t h e proof. 
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Corollary 4 .3. Let l yll j n€. tN and t~ }n 'S tN be a s before and let 
T be the ass ociated contraction of V. If there are no subspcces 

...'3t 01 and ~10 different from zero and inv9.ri'9Jlt for T and T , 

respective1y, such that T I <e01 (: and T I 0i'.1 0 c. C01' thenC01 
there ia a unitary operator V1 on ~ = ':L 8 de CJ auch that the 

wave opere.tors W;i(V, Vo ® V1) eT.i s t and are complete. 

Proof. Using Theorem 4.1 of [ 1J,chapter II J we find that a tri 

angulation of type (b) of T reduces . to the form 

COO 	 .. ,.. 

(4.2 	 ) o C
ll 

~ 

[ o 0 COO 

Let be the minimal unitary dilation of the C11 part of theU11 
triang~lation (4.2). Taking into account the special form of 

(4.2) it is not hard to see that the residual and dual resi 

dual parts of U and U11 coincide. Owing to Proposition J.5 

(c) of [1J,chapter IIJ the residual and dual residual parts 

of U11 are unitarily equivalent. Applying Theorem 4.2 we com

plete the proof•• 
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Ha"AxapA X. 	 ES-88-]26 
06 06paTHo" JaAa4e A~ cc~naT~BHo" Teop~~ pacce~H~~. III 

np~ paccMoTpeH~~ Teop~ ~ pacceAH~~ 8 Knacce c~~Ma~~~x onepaToPoB Ha r~nb-

6epToB~x npocTpaHcTBax pewaeTcA 06paTHaA JaAa4a 8 oneDaTopHo-TeopeT~4ecKoM 
cM~cne. PeweH~e HaxoA~H np~ 04eHb 06~~x npeAnono~eH~AX . AonYCKaA, 4T O CBO
6oAH~e 3Bon~~~~ paJn~4H~ AnA paJn~4H~ X HanpaBneH~" BpeMeH~ ~ 4TO He Tonb
KO BOJMy~eHHaA ~n~ nonHaA 3Bon04~~, HO TaK~e ~ cB060AH~e 380n~~~~ JaAaH~ 
np~ 	c*~Ma~~~ x onepaTopax. AOK aJaHO, 4TO Knacc c~~Ma~~~x onepaTop08 raHKe-

I 	 nA MO* HO paccMaTp~BaTb KaK MHo~ecT80 onepaTopoB pacceAH~~. OTc~Aa nOABnA
eTCA B03MO~HOC Tb Toro, 4TO onepaTop pacceAH~A 6YAeT KOMnaKTeH. Aanee , pe
3ynbTaT np~MeHAnCA K TaK Ha3~BaeMo" Teop~~ pacceAH~A naKca - ~~nn~oca c 
nOTep~M~ np~ BoccTaHoBneH~~ cOBepweHHo APyr~M nYTeM peJynbTaTa 6.C.naBnoBa 
o nononHeH~~ 3TO~ Teop~~. 

Pa60Ta B~nonHeHa B na60paToP~~ TeopeT~4ecKoH ~H3~K~ OHIlH. 

npen~ 051oe/J;iDleHHOrO imC'nlTyn lUl;epHhIX Hccneil.OBB.HlolH . .lly5H8 1988 

Neidhart H. 	 E5-88-726 
On the In~rse Problem of a Dissipative Scattering Theory. III 

Considering a scatter ing theory in the class of c ontraction~ on Hilbert 
spaces one solves the inverse problem in an operator-theoretical manner. 
The solution is obtained under the very general assumptions that the free 
evolutions are different for different time directions ~d that no t only 
the perturbed or ful I evolutions but also the free evolutions are g iven 
by contractions. It is sho>:Jn that the class of contractive Hankel opera
tors can be viewed as a set of scattering operators. This impl ies the pos
sibilit-y- that the scattering operator can be compact. Moreover, the result 
is appl ied to the so-called Lax-Phill ip s scatter ing theory with losses 
restoring a result of 8.S . Pavlov on the completion of this theory in a 
quite different manner. 

The investigation has been per f ormed at the Laboratory of Theoretical 

Physics, JINR. 
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