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In 1982 Araki and Jurzak have introduced certain class of 
* - algebras of unbounded operators. Among others, they formu­
lated conditions I, 1 

0 
, I~ for countably dominated * - algeb ­

ras and proved under these conditions useful properties of the 
commutant and double commutant. In their paper there are no 
examples. 

There we show that the algebra of canonical commutation re­
lations for infinite many degrees of freedom satisfies condi­
tion ~~. 

LIST OF NOTATIONS 

N = 10, I, 2, .. , I set of naturals 
n = (no' n1 , n 2 , ... ) sequence of naturals 
m • n , Pel emen t s 0 f N 00 

~,~ elements of Hilbert space 
annihilation operatora lat creption Qperator 
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h1 h 2 '" hr . . 
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#I hU #I h2 #I hr
Av a a 1 ... a i 
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Z a - algebra generated by cylindric sets 
11 measure on Z. 
Uf(n) f - nei ghbourhood of the element 
Zk compact subset of N°O . 

I. PRELIMINARIES 

In this section we recall basic defi n i tions and i ntr oduce 
notations.Let H be an infini te dimensional separable Hilbe r t 
space and D cH a dense linear submanifold. By L+ (D) we denote 
the * - algeb r a of l i near oper ators (possib l y unbounded) de­
fine d on D , leaving D invar iant and such t ha t the ad jo i nt ope­
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rator also leaves D invariant. A * - algebra on D is a * ­
subalgebra of U (D) containing the uni t. 

A * - algebra (1 C L+(D) is said to be countably dominated if 
in (1 exists a sequence of operators Ak such that Ak ;a 1 and 
for each A ~ (! there exists a natural k such that 

I < A c/>, c/> >! 5 i\ < Ak ¢, ¢ >, 

for some >"2 0 and all ¢ Eo D. For countably dominated * - algeb­
ras Araki and Jurzak /1 1 introduced the following additional 
conditions on the dominating sequence: 

Condition 1. A-! E(! for all k. 
Condition 10 , AkD 	~D for all k. 
Condition I~. A~ is essentially selfadjoint on D for all k. 

Now we repeat representations of canonical corrnnutat i on relati- \ 
ons. 'Fhat is a set of operators lak,a'k I ;=0 all defined on ),.4 

a common dense domain D C H being there essentially selfadjoint 
and satisfying corrnnutation relations on D for all i,j = 0, I ,2, .. . 

[al,a!] = 8 1j ' 

[al,aj]=[ai,ajl O. 

The G~rding - Il ightman theorem tells us that for given repre­
sentation the Hilbert space can be decomposed into a direct in­
tegral H ~ f H(n) d/1(n) and annihilation, respectively; creation 

NO<) 

operators act on it in the following fashion 

(a l c/>)(n) =Vnl + 1 C (n) ¢(n + 8 ) V ~/1(n+8IJ_ 
( I ) j j	 d/1(n) , 

d/1(n -81)
(a*¢)(n) =Vn . 	C I*(n-8 1)¢(n-8 .)V----­

1 1 1 djl(n) 	 ( I ' ) 

Here ¢(n) is a vector function in the direct integral and Cj(n) 
is an isometric operator mapping the space H(n) onto H(n + 8 )

1and making the following diagramm commutative 

C (n )
IH(n+8

1
) --------0 H(n) 

C (n+8) r 
j I 	 r C (n ) 

j j 
~~~8j ) 

j 

H( n +8 +8 ) H(n+8 )

j
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Moreover, the measure /1 in the direct integral decomposition 
is quasi-invariant. Lets describe in more detail this proper­
ty (see/ 2/ ). By NO<) we denote the space of occupation numbers, 
i.e. the set of 	all sequences 0 ~ (n .n 1 ,02'···) of non-negati ­o
ve integral numbers. By 5 I we denote the sequence such that 
n l = I and nj = 0 for all J f, i. Further, for fixed i and j z{ 
denotes the cylindric set of all sequences n such that n i = j 
The U-algebra generated by all cylindric sets is denoted by 
Z and /1 is a measure on this u-algebra. So (NO<> , Z, /1) beco­

mes a measure space. For each non-negative integral i we de­
fine a measure /11 on Z by setting 

/11(M) /1(M+ 51)' 

If for each i the measure /1 1 is absolutel y continuous with 
respect to /1 then the measure /1 is called quasi-·i nvariant, 

d/1 (n + 5 I) 
and --------- denotes the Radon - Nikodym derivative. This 

d/1(n) 
is a positive integrable function unique up to a subset of me­
asure zero. The natural domain of definition for operators 

and at is the set of such ¢EH thata l 

2 
r n 11¢(0)!! d/1(n) < +00. 

NO<) ! 

The intersection for all i = 0, I , 2 , ... of these domains we de­
note by Do. In space NO<> we have a partial order m:s 0, the 
meaning is componentwise. 

2. THE RESULT 

In the following we assume to be given a representation of 
canonical commutation relations and the Hilbert space assume 
to be decomposed into a direct integral as described in Sec. I. 
We construct in Sec. 3 a dense linear submanifold of the di­
rect integral such that annihilation and creation operators 
on it generate a *-algebra satisfy ing condition 1 0, 

Theorem.For each representation of canonical commutation 
relations of countable many degrees of freedom there exi sts a 
dense linear submanifold such that the *-algebra generated by 
annihilation and creation operators is countably dominated 
and satisfies condition 10, 

Remark. The t heorem hold s , of course, for fin i t e many de­
grees of freedom. By using .particle number operators the proo f 
becomes much more simple than in the infinite case. 
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n t if t of- 1 
Proof. He have mt=lnt-lift = l • The point m does not belong 

to Zk if a~d only if there exists e such that me > a(k . f). By 
the same argument there exis t s J such that n j > a(k + 1, j) • 
In case j~ i we have mJ=nj > a(k+1 . j) > a(k , j), c onsequently, 
m E Zk. I} t = i, then mJ = n j - 1 > a( k + 1, j ) - 1 ? a( k, j) and 
again m EZ. The lemma is proved. 

For ¢E D we put 1/1 = a r¢. It is sufficient to show that 
/lIn E N°O Zk+l : !l l/l(n) II of- 01 = 0 , where k is such that 

In E N"" Zk: lI ,p(n)l l of- 01=0. Since¢ED thek exists . In the 
first place \ve remark that both sets In E N°O Zk+l: III/I(n) II t-

OJ and Zf have empty intersection. This follows immediatly 
from the expression 

n	 C~(n-ol ) ¢(n-o )v dll(n-oi)1/1 (n) = l 	 I d/l( n ) 
Secondly we remark that 

In E NDO Zk + 1: II I/; (n ) 11 ~ 0 1 = \ n E N00 Z k+~ II ¢ (n - 0 I ) II I 0 l. 

This follows from expression of I/I(n) and from the fact that 
the Randon - Nikodym derivative is a positive function. Third­
ly we show the inclusion 

\n E NOO Zk+l:I I¢(n_o\ 111 ~ 01 e lm E N°O Zk : \I¢(m) II I OJ + OJ. 

h · 'd . -Zk+l h ITo do t is, we conSl er an arbitrary n E suc that I ¢ ( n­
-~I) I ! f- O. Put m = n -0 1 , By the previous lemma mEZ k since 
nE Z~. Thus, n=m+o l and il¢(m) 11 f- 0 . This shows the inclu­
sion. Finally, using quasi-invariance of the measure /l we get 

/llnEN°O Zk+l: II¢(n) 1 f- OI < Il (!mEN°O Zk: II ¢(m)I ' t- 01+01)=0. 

Proposition 3 is proved. 
Owing to this proposition we have right to restrict annihi­

lation and creati o n operators to the rlomain D and consider 
the * -algebra a generated by all these restricted operators. 
All what follows is a study of the pair (G.D). 

4. 	ACTION OF THE OPERATORS 
ON THE DOMAIN 

In this section we study how act operators of the * -algeb­
ra a on direct inte g ral. We obtain some formulas for this ac­
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tion and shall use them for estimations. Always we assume that 
¢ belongs to D constructed in the previous section. \~e have 
for an arbitrary natural i the formulas (I) and (I '). Applying 
these formulas successively we get for naturals e,k the follo­
\" ing formulas (3). Their structure says us that only the fac­
tor standing before depends on the order of and aj .a i 

e dll(n+ (f-k) 0 I)
(a~ ai~) (n ) = B1k (n) U I - k (n) ¢(n + (£ -k) 0\ hi d/l(n) (2) 

dll(n +(f-k) 0 \ ) 
(a~ka;¢)(n)=Akie(n)Ufl-k(n)¢(n+(f -k )Oihl dll(n) , (3) 

where 

C (n ) C (n + 0 ) .. . C (n + ce- k - 1) 0 I ) 
I I I 

for f > k 

£-k 
U\ (n) = 17 H(n) for f = k 

(4) 

C*(n-o )C*(n-20 ) ... C*(n-(k-O 0 .)
I I I I 1 

for £ < k 

and functions B;·k (n) are computed by the following series of 
formulas (here Evk denotes the ma x imum of numbers f and k ) 

e.k fvk 
HI (n ) n t1J(n). (5)

J = 1 

where 

v!10J for j = 1,2, ... ,P-k and £ > k 

n i + J for J = f- k+ 1.... , e and f ? k 

t1j(n) 
Vni +] for j = 1,2 .... , f and f < k 

(6) 

V ni + 1 + £ - j forJ=e+1,£+2, ... ,k ande < k. 

Analogously are computed the functions A~£ (n) 

Properties of function Bi(n). 

Be.
I 

k (n) ~ 0 forallf,k andnEN°O, (7) 

Bfl·k(n) > 0 if 	f ~ k, 0 3) 
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B£.k(O) if e < k and o. < k - e + 1 . (9 )
I = ° 1 ­

Bel.k(o) < Bft l .k(o). (10) 

Be.k(o) < B~' k+ 1 (0 ) . 
t ( 1 1 ) 

Be:k(o) Be+ l .k- l ( )< I o. (12 )1 

Be. k (0 ) « 0 +n£v k . 
. I (I 3)t 

Product formula 

el .k l e2.k 2 kl 01 + £l- k l + i etf2.ktk2 
B I (n ) B i ( n + ( e 1- k 1 ) 8 I ) = n . B (0 ) • 

j = 1 OJ + £1 + €2- k 1 + 1 ( 1 4 ) 

fl. k 1 e2.k 2 et e2· kt k2, 
B I (n ) B I (0 + ( £ 1 k 1) 8 I) < B i ~ 0 ) • ( 15) 

B ~ •k (n + to J ) =< Bel' k (0 ) for i -# j. tEN. ( 1 6 ) 

The proof of each property listed below follows from elementa­
ry computation ,inclusively , the proof of product formula is 
a straight forward calculation looking on separate all possib­
le combinations of c ases ~ k j or eJ< k j I j = 1, 2 , and consi­ej 
dering that e 1 + e 2 > k 1+ k2 or n ot. Property (15) follows imme­
diatl y from (14). e-k 

Properties of operator valued function U j (0). U I (0) is 
an isometric operator mapping the space 

H(o+(e-k)O t ) onto H(n). (17) 

e- Ik k - e
(U I (0)) * = U I (0 - ( k - £ ) 0 I ), ( 18) 

el -k l e 2- k2 . ete2-kl-~ 
U (o)U (o+U l -k l )oj ) =U j (n). ( 19) I I 

Next we introduce the following notation 

#h el * kl e2 * k2 er * k r 
=a j a j a j a j a I a I •a l 

where 

e 2: 0, e ,e • .... e ~ 1,
l 2 3 r 

k l .k 2..... k 2: 1, k r ? 0, ,r 

s = el + e 2 + ... + er • 

s"'=k l +k 2 + ... +k and h s + s * 
r 
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Us ing t h e structure of formulas (2) and (4) and property (19) 
we get 

o k j - 1 

#h l j' J * 


¢)(o)= . n B (n +(~ et-kt)oi ) U~-8(0) x (20)(a i j
J=1 t=l 

x ¢(o+(s-s"')O )_ 1 dlL(0+(S-s"')8 )
j .v -- I 

dlL(o) 

For a product of different operators of kind a~h we then ob ­
tain 

r * r • i- l 
#hI #h2 #h r USn B(8j .s J ) ( 0 ) n f8 j (0+ ~ (s ­(a j at ... a l ¢ )(n )

1 2 r J=l ] =1 lJ t =l (I J 

r 


d IL (0 + I. ( B - S "'. ) 8 I . ) 

j = 1 J J J (21 ) 


- s~ ) 8 1 ) ¢ (0 + I. (8 j - 8 j) 8 1 . ) V 

t j = 1 J dlL(n) 


In this formula we have used abbreviation 

* ) r l e k j _ 1(Sl,8 1 j' j 

B . (0) = n B i (0 + I. €t - ) 0 1 1 ) , (22)k t
1 1 j = 1 1 t= 1 

and have used the invariance property ( 16). In Sec. 5 we shall 
use the following estimation 

(s,s*) h,h 
Bl (n) < B j (0). h =8+ 8*. (23) 

Estimation ( 23) is a consequence of the property 

B\8 , S *~ 0) < B ~ ,s* (0 ) • (24) 

and ( 24) follows from (15). We remark also 

Bhih (0) = (n j + 1)(nl + 2) ... (nj + h). (25 ) 

5. PROOF OF THE THEOREM 

There we prove for the pair(a.D) the following statements: 
I. The "'-algebra is countably dominated. 

II. The *-algebra satisfies condition I~. 
1. Each A E (! can be wri t ten as a f in i te sum 

h1 hZ"h r #h l #h 2 #h r 
A I. A . a a .. , a . (26) 

. I ) 11 12'" Ir 11 12 1 r(11 .1 2 . " .• r 
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We put A equal to the maximum of the absolute values of each 
coefficient in the sum (26). For arbitrary but fixed A EC! as 
written in (26) we introduce the following notation which is 
slightly different from notation before. Let J be the set of 

r 

r -tupels i =(i1. i 2 ..... ir) l OJ . In the finite set J 


J = 1 J 

there exists the greatest element denoted by a. For each i E J 


r 
conside r the corresponding h =(h 1 .h 2..... h ) == l h . o .In thelr J=1J J 
finite set }{ = !h I there exists the greatest element denoted 
by {3. The statement I will be proved if we show for all ¢ ED 
the following estimation for each i E J and h E}{: 

#h1 #h2 #hr . h1 * h1 hr a* hr >
I < a I a I '" a I .¢. ¢ > I < <.. a I a I ... a j I ¢. ¢ (27)12 r - 11 r r 

h1 *h1 h2 *h2 hr *h r f3 1 *f31 f3 t *f3 t < at a a a .... a . a ¢.¢ > S < a aa ... a a ¢'¢ > (28)
II l 1 l 2 12 Ir l r a 1 1 at at 

Then follows the desired estimation 

I < A ¢. ¢ :> I ~ A < Av ¢. ¢ > ¢ ED. (29) 

where v is a multi-index 

{31 {32 f3 t1 
v = 

a 1 a 2 at 

and 


f3 1 f3 1 f3 2 {32 f3 t f3 t 

Av a a a ~ a a a~ ... a a a *a 


1 1 2 2 t t 

Thus, the countable subse t of all operators of the kind Av 
does the job of dominating property for the *- a lgebra a. 

Proof of estimation (27). We have 
#h 1 #h 2 #h #h 1 #h 2 #h r 

< a a ... a r. cP. ¢ > = r < ( a I a I '" a I ¢)(n) • ¢Cn) > d 11 (n ) . 

11 12 1 r N"" 1 2 r 


Using formula (21) we get for the last integral the expression 
( Bj'S!) r 

r n B t ( n ) < U ¢ (n + 2 (8. - 8 *J 1°1 l. ¢ ( n) > V d 11 (n ) • 
N"" J = 1 J J = 1 J J 

U/ 
where U is the isometric operatur 


s· -sj j - 1 

u= n (n+ l (St-stlOj l , 


J=1 J t= 1 t 

10 

and under the square root stands Randon - Nikodym derivative 
r 


d Jl (n + l (8J - SJ* 1°1 ) 

J = 1 J - ------------- . 

dJl(n) (s.s'!') 
If we apply to the product n Bl j J (n) estimation (23) and 


j = 1 j 

to the scalar product under the last integral apply Schwarz' 

inequality then we obtain the following 


Ith1 Ith2 Ithr 

I < a 11 a 12 air ¢. ¢ > I s 

r rhJ •hJr n B 1j (n) 11¢(n +j: 1 (s J -ar ) ° 1 j III II ¢(n) II ';---dJl(n). 
N"" j = 1 

Applying again Schwarz' inequality we get 
r 

( 11¢(n+ l (SJ-sjlol) II II¢(n)1 1 V dJl(n)::; 
N"" J=1 J ____------- ­

r 2 2 
vr ll¢(n+.l (SJ-ajlOll ll dtL(n+l(sJ-Sjlol lv r 11¢(n)11 dJl(n) ~ 

NO<) J = 1 J J N"" 

v ( II ¢ (n ' 111 2 d Jl (n 'l V ( II ¢ (n ) II 2 d Jl (n ) II¢ 112. 
NO<)N"" 

Therefore we have 
r h.h r 

( n B/ J(n) II¢(n+l (8j-8*J)01 . 11 11¢(n) 11 V dJl(n) 
N°Oj=1 J j=1 J 

r 


= l n (m +l)(m +2) ...(mt hJ) ( II¢Cn + l (8 -s j*)0. )11 

r 

x 
j j j = 1 J 1J

rn1 ... ·~ J=1 ~m2'" mr 
ZI 1 1 2 · .. lr 

r 2 
x II ¢(n) II VdJl (n) s.. l .n (m J+ l)(m . + 2) ...(mj +hj ) f II ¢en) II dtr(n). 

J= 1 J m m m 
ml'm2 ••••m1 Z 1. 2'" r 

11 1 2 .. · 1r 
r h . • h. 

J J=( n B 1 . (n)I I ¢(n)11 2 dJl(n) 

N°O J = 1 J 


h1 *lili h2 "*h2 hr *h r 
= < a a a. a ... ¢,¢>.a 1 rt 1 11 12 12 r 

a l 

There we remark that the last summation is finite since ¢ ED. 
Estimation (27) is proved. When ° is the maximum of the finite 
set}{ then estimation (28) follows from the formula (25). 
Thus, statement I is proved. 

11 



II. For 	each mu l ti-index 

h 1 h 2 .. ·h r 

J,i ( . . . 


' .. ·11 1	 1 2 r 

we 	 consider t he operator 

h h 	 h h h r h
A 	 = a la ~ la .2 a * 2 a* r a I rv I 1 1 1 12 12 I r 

We show 	 that the ope rator At is essentially selfadjoint on 
D . To do th is , we consider Nelsons criterion and prove that 

D is a set of analytic vectors for A~. Let 


r 

0v( n) = 	 . 0 (n 1'+ 1) (n I .+ 2) ... (n j + hi) . 

) = 1 J J J 


Then (Av¢)(n) =Ov(n) ¢(n). It follows Av ~ 1, and Av, A~ are 
symmetric operators. Further, we denote by 

r 
C (k)= 0 (a(k.i.) +1)(a(k,i ,)+2) ... (a(k.i J )+hj)' 


v j = 1 J 
 J

Hence n v(n)5o Cv(k)for all n E Zk. Let ¢ED then exists k such 
that 11 ¢(n) II = 0 for w-almost every n E Z k. Therefore, we have 

I 2 f 2f
,I Av ¢ II < (k) II ¢I I , e = 0.1.2 ....C v 

Consequently, 

2 
00 te (k) . 


f

II A2: ¢ II 	 v 

L t < e il ¢ 11 . 
E = 0 eI 

Thus, each vector of D is an analytic vector for A ~ . The proof 
of the theorem is complete. 
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