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1, INTRODUCTION

The functional integration method is an imprescriptible means
of investigation in many branches of contemporary science [1,2]. One
of the main areas of its employment is quantum field theory [3]. This

method appeared to be the convenient tool as this enabled one for
the first time to perform the theoretical and numerical invegtigation
of nonperturbative characteristics in quantum gauge theory (e.g. [4]).
The idea of utilizing the functional integrals in Quantum Fhysics ex-
pressed by R.Feynman served as a basis for the contemporary constru-
ctive quantum field theory [5]. The successive realization of cons-
tructive progrem has led to the mathematically rigorous construction
of quantum fields in two-dimensional and some three-dimensional mo-
dels of FEuclidean field theory (s.g.[G]). Significant success has
been achieved recently in oconstructing the local relativistic inter-
acting fields in 4-dimensional space=time [7}. One of the most simple
ways of assligning a specified mathematlcal meaning to functional in-
tegrals in quantum field theory and providing the numerical calcula-
tions is the introduction of space-time lattice. The employment of
lattice regularization turns functlonal integrals into ordinary ones
of high dimensgion (‘%105). The Monte Carlo method ig usually applied
to evaluate these integrals, Many numerical results important to the
physical theory have been obtained in thig way [B]. When performing
the lattice computations one has to extrapoiate the results to the
continuum limit [8.4]. This non=-simple problem serves as an object of
investigation for many authors [9-14]. As it has been pointed out in
[9], the problem of removal of the finlte-size effects and the lattice
artifacts arlsing in Monte Carlo calculations were studied insuffiol-
ently. The attempts of reaching the continuum limlt numerloally by
computation on lattices with decreasing spacing usually falled [9.10].
Lven the computations with the record lattice mlzes (up to 20" points)
on the CHRAY computer do not allow to get rid of the dependence of re-
sults on the lattloce mpaocing [11]. Benldom that, the Aiffioulties of
employing the lattlice Maonte Carlo method inoreame with deoreasing the
lattioce mpaoing [1]]. fHome authors are engnged nowdays In searching
for the {improved modifications of the action functional [1}}, and al-
no in the investigations directly in the continuum limit [lb-lu]. Em=
ployment of the lattice regularization entmlilem mome other problemas
ap woll , among whioh im the loms of continuum topology on the lat-
tioe [10]. In this connection a number of authors successlvely deve-
Lop the method of nonperturbative regularization of quantum gauge fi-
0ld theory in the continuum [15.19~HH]. The ability of performing the




numerical calculations in continuum is connected with the development
of functional integrels computation method. Significant progress in
this area has been achieved last years [23]. The problems of measure

in functional integral [24]p1ay an important role both for the gtudy
of continuum limit in constructive gquantum field theory and for the
numerical calculations. llere and below we shall denote by the functi=-
onal integral (as distinct from a "path integral") just en integral
with respect to e given measure in the definite functional space.
The importent results of constructing the functional measure in the
quantum field theory have been obtained recently [18,25—29]. Parti-
cularly, the Buclidean measure for the electromagnetic field is ob-
tained [26], the functional measure in Lagrangian gauge theories is
defined [27]. the Gaussian measure on extended Crassmanian algebra
for fermion functional integrals is constructed [29]. One of the ar-
eas where the meagure theory is the most profoundly elaborated is a
two-dimensional quantum field theory with polynomial interactions of
bogon fields [30]. The mathematically rigorous construction of the
Gaussian measure in P(W% -model is given in [31]. This model en-

ables one to study, in particular, such processes as phase transitions,

critical phenomenn, interaction of particles, scattering and bound
states. The P(?% -theory is investigated by many authors. In paper
[32]s eegey the behaviour of the vacuum energy density in the infi-
nite volume is ptudied in the framework of this model.

In pnpcrs[33,34]wv have derived for the functional integralp
with Gaussian measure some new approximation formulne exact on a claass
of the polynominl functionals of an arbitrary given degree. These
formulae provide the way of computation of physicel quantitien dire-
ctly in continuum limit. We used these formulae in particular case of
the conditional Wiener measure in our computations of Feynman path
integrals in Euclidean quantum mechanics [35-38]. As shown there, the
employment of our formulae leads to the evaluation of the ordinary
integrals of a low dimension, that allows one to use the determinis-
tic methods (quadrature formulaes) and gives the essential (by an or-
der) economy of computer time and memory versus the lattice Monte Ca-
rlo computationa. The use of the approach to the functional integrals
that does not need the space-time discretization, enabled to perform
the successful numerical study of fhc topological succeptibility and
the @ -vacua energy [36] i

The following characteristios of measure, such as the covariance
and the mean value, are of prinocipal signifiocance in studying the pro-
blema ooncerned the funotional measure inoluding the construotion of

approximation formulae for functional integrals. In this paper we de-
rive for the kernel of the covariance operator of the P(?% -functi-

onal measure the representation in the form of the expansion over the
eigenfunctions of some boundary problem for the heat equation. As an
example, the two cases of the integration domains with different con-
figurations are considered.

2. BASIC DEFINITIONS

The Lagrengian of the Pﬁ?& -model is written as follows [31]:
L(P0) = : 5 (vP)+ £ m? PP+ AP (o) )

Here Xxé€ R? ; ?(x)edl(l?’)- the space of the generalized functions
of moderate increase; P 1is a bounded from below polynomial. The
space of the basic functions is a Schwarz's space of rapidly decre-
asing functions .J(R)?.The velue of ¥ at the basic function

fe 4(R?) is given by

Pg) =< f>= 5 Yi) foe) dx.
Rz
The Wick's ordering ("Wick's colon") is defined as

[n/2] oot q ne2:
1) n. ! J
pows - 2 e e R @
. J-o . .

where

Fulx) = RI“ fry) é;,x(b" dy

~ impulse out-off of the field ¥

-the "Smeared" & -funotion ’

S x (9= 2 h(e(x-g))
he C:'(R’), /:(y)ao, flﬁ(})d’-!.
bat) = <6, K& ‘

-, X >.
Here K 1a a covariance operator of the measure [1.3], K{f,,)-(f'k',)
(a continuous nondegenerated bilinear form on the product of spaces

LRY) x 4(rRY)):
K(f.g) = JI<hE>-3(RI[<Pg> -3(q)] dp(?)

where  §(g) = I<’ﬂ F>dpm(P) - the mean value of measure olu(¥).
In the mequel we shall assume Y(F)x0 without mny limltations of
generallity. ]

The measure in the spaoe <f(w') Ilo defined as follows [31] 1




First the measure in finite volume A C R2 is introduced

dp = 2V Wy (3

where

Vi = Jip(eeo):, dx s Zexm=[eMag, .

A 4
The Wick's ordering is performed here with respect to the free cova-
riance operator Kg [31]. d‘PKBA is a Gaussian measure with the cova-
riance Ky, satisfying the Dirichlet boundary conditions on JA -the
boundary of the region A eand with the mean value ¥(£)=0 . The co-
variance operator and the mean value define the Gaussian measure in
the unique way [23], i.e., on the space 51(22) there exists the uni-
que Gaussian measure o ¥x with the covariance K and the mean
equals zero.

The important result obtained by Glimm end Jaffe [31] is the
proof of the existence of the measure in infinite volume. This meca-
sure is constructed as a limit of the considered above measures in
the finite volumecs. Namely, it has been proved that under certain
conditions on P and it £€ Co
ctionals

the sequence of characteristic fun-

S} = fet PP oy,
of finite volume measures has the limit
{fj ALf 9 A{ }

and the limiting functional S{F} satisfies the Eucllidean axioms of
analyticity, regularity, invariance with respect to shifts, rotations,
and reflections that 1s necessary to construct quantum field [31].

Thus, the operator observables defined as the averages over the
vacuun state of Interancting flelds AL can be obtained by the evalu-
ation of the functlonal Integral

jexp f P(#00)):y AX} F(9) d By,

<RIFPIA> « tm S0 —e -
AtR? jexp{ Af P((x)), d"}dvx“
A a
It 1o capential that under o «2 the renormalizations In P(\o)d ~mo =
del are reduced to the pubtraction connected with the Wiock's orde-
ring (2), 1.e., the divergensies In the presented expression for the

obworvables do not arise,

3. THE KERNEL OF THE COVARIANCE OPERATOR OF  P(¥), -MEASURE

In many cases including the constructing of the approximation
formulae for the functional integrals it is necegsary to have the ex-
plicit expression for the covariance operator K . Writing K(‘F,}) in
the form

K(hg)= | Hixy) foo gy dx dy
R2xR?

consider its integral kernel j((x,y) y XYE R? :
Kxy) = | ooty d¥e . (4)
L1(RY)

For the measure covariance operator Ky, with the Dirichlet boundary
conditions on dA - the boundary of arbitrary region AC R? there
exists the representation for the kernel through the integral with re-
spect to the oconditional Wiener measure [}1]

X, (0 = Idte""jx“(md .

e yto t]

The functional integration in (5) is performed over the set Cx, [ot] ot

continuous functions ®(t) , Te€[ot] , satisfying the condition
@)= X § @(t)=¢ . Here pplw) 1o the characteristic funotion of

the paths that do not have points of intersection with oA , L.e.,

(%)

0, it J T, €[ot]: Q(%)e A

Xoaw) =
1, otherwine .
Ao we are interested in f‘('lzt. , wo can apeume without the limitation
of generality that XY © ANOA in the case Xx & A and/or
}G?A it 1@ obvious that .J((x,}) =0 . If we denote

c:’(a,ej-{mr)oc'[o.ﬂ.- W)=, OfE)= g, ©(T)€A\DA Vté[O.éJ}‘ ' (6)
then
. -m't
‘Sd 0 = Mg t)e dé
ch [ot] '

M ¢A fos],
whore M ¥ t) = mes C [o,t] im the Wiener volume of the met oy
Thum, in order to obtain Hap(%y) 14 i suffioclent to determine the
funotional volume of the set of two-dimensional ocontinuous en the. apg-
ment funotions with fixed valuem at the ends of the segment whioh take

® o -m
Hypo4) =°[d£ e -




only the values of the interior of the given region A . The main re-
sult of this paper is formulated in the following

Theorem

For an arbitrary bounded connected region AC R4 with the piecewise -

smooth boundary oA the Wiener volume M=mesc,:§o.t] ig the solution of the
following boundary problem : '

oM 1 .
o EA}M) x,’eA\b/\,.tm
M(xy,0) = 8(y=x), (8)

M (x,y, 7t-)ly,eb/\ =0,
(%Y. gL (), 2
where X = (x;), y-(&:), Ay* -a#'z + 3}22
Proof.

As it is known [39], the conditional Wiener integral

+
- [Ulw(T)]dt ”
Z(xy.t) = S e-° d,w, X4€ R (9)
[o¢t]

CX#
is the solutlon of the problem
2 - Uy Z t>0
= " ZA,Z (;( ,
Z(x4.0) = Sty-x),
E(X,y.f) ‘,T:O

(10)

In order to reduce the integratlion domain in (9) to the smet of the
patha which are completely contained in the given region A C Rz ’
Lt 1o sufflolent to let U(y.) be equal to Infinity everywhere out-
side A and on its boundary A . Simultaneously, the zuro boun-
dary conditiors on A ghould be imposed to E(X,y.f) . Further-
more, if wo net U= 0 Inaide A wo shall evidently oblain
Z(X,’.'t) = MMmgt) for X,y €A . Indood, for all paths @(r) from
X to g 1f @ does not have polnts of intersection with AN the
value of the (ntegrand {n (9) is equnl to the unity. On the other
hand, if for some @y Lhere oxlats the point €y where Gt)€ OA, Lhen
U[wo(te)]= e . In order Lo complete the proof tt im suffiolent to

0

show that such the paths @, do not contribute to Z(X,},f) . Ge-
n%rally speeking, it does not follow from U[W,(T,)] = oo that
fU[Uo(t')]o(t'-: o0 , so the value of the functional under the integral
siogn in (9) may be different from zero for the path &) . However,
as shown in [40] , the trajectories that touch the boundary without
crogsing it form the set of measure zero with respect to the con-
ditional Wiener measure in the space of continuous functions. This
circumstance ig connected with the fact that the conditional Wiener
measure is concentrated on the set of the Hdlder continuous functions
with the index &« < 1/2 (i.e., on the nondifferentiable functions)
and .not on all the functions continuous on segment. These phenomena
themselves are of particular interest and should be studied elsewhere.
This result, as applied to the problem under consideration, means
that the trajectories &, touching dA in a countable number of
points do not contribute to integral (9), i.e., the equality
3(x,y.t)=M(¥,y,f) holds. Thus the proof of the theorem is complete.

Corollary

The kernel of the covariunce operator of P(‘P)2 -measure can be exp-
resged in tho form i

= 1
ﬂ'("-}) ; Tomi ) 9,04, XY EANOA, (11)

where En and 7, are the eigenvalues and eigenfunctions of the prob-
lem

-1 apw = Enew, X € A\ A
(12)
ni)=o, X€oA .

Indeed, 1f expanding the solution M(X.},f) of the problem (8) over
the eigenfunctions of the boundary problem (12) [41], we obtaln

~Ent
o t) = "
M(xy.t) ?; e T 0,00 Paly).

Performing the Iintegration over ¢ In expr.(%), we directly obtain
(1.

The concrete expression for X(x,y) depends on the shape of the
reglon A . In the next seotlon we oonaslder the two exwnplen of A
of the slmple whape when the problem (12) can be wmolved explioltly.

4. LXAMPLESD

Uonplder Lthe region A  of the reotangular shapey As[-a.a]x[-t,l}.




Applying the method of separation of variables we get [41]

2= -Epp t
Mg t) = > e Mm A n,_(x) l?nn(y),
4 171y

Ny h,=1
where
2
E = _‘7'._2 (ﬁz + ﬂ.)
Ny Ny, 2 a2 82
_ T
7% () = = sin -y, Sin _9,2 .

After integrating over t we obtain for .7{()(,})

2 J(‘ n« 7("1‘, har

iY(aA(X,g)-as Z (m*+ 55 + or T ) sn—x,snn-g—x s.n-f—#, Sm— Y%y
he,ng=1

Let us consider now the case when A is & circle, 7T € 7, . Introdu-

cing the polar coordinates and supposing ¥= ¥ (%, ¢) , we have

2¥ *
——-= {[ z(zﬁ) ;l ?;mt] 5 2 € [0,72)
V(o0 0) =S4, ztfe[a,zn]
>0

¥ (%,0t)=o0.

The employment of the method of separation of variables

Vlz,0,t) = R(2) P©) T(¢)

gives 1n thie case [4!] 1
St (”_g)) t
M ey, gml Z (Zee, [ (pMP) e 2V,

h=o Ke

(h) (n) (n)

x [J (P" fxl) Cos noy, COS'“?, ¥ 7}1(%"" Sinniy Sin no, ] j PK l:f')

where

0 X
p {4| neo O;: atctgﬁu
"“l2, nao’ O, = aect
A

:,"(P) is the Besmsel funotion of n -th order; -P“(") im the K ~th
root of equation Ihwip)=o

After integrating over + we find
(n) -1
X2 ) P 2
% k
Kolog) = 2 % { € [3 (™))" [m (=) 15

{m (n)
x J ( Xl J %Q#Q.(cosm);wsn%+smmz, SCnnDy)_

The derived expressions for J(M(x,y) are the basis for the const-

ruction of epproximetion formulae for the functional integration in
the space 4n)

5. CONCLUDING REMARKS

In particuler, it follows from the brief review of the litera-
ture given in Introduction that among the trends of employing the
functional integration method in quantum field theory the following
two approaches take an important part. On the one hand, there 1s a
development of the methods whlch use the lattice regularization
gcheme inocluding the search for the new modifications of the action
funotional with improved continuum properties; the perfecting of the
lattice computation algorithms which employ the Monte Carlo method
[42], especimlly with the application of paranllel computations [43],
is alpo in progress. On the other hand, the approach based on thecon-
tinuum nonperturbative regularization is being successively developed.
As 1t has been poilnted out in [19,15], this approach appeuars to be atl-
tractive as this enables one to study the Interesting problemo, ouch
an continuum confinement and the general nonperturbative properties
of quantum fleld theory. We consider thls approach to be perspective
for the numerical caloulations because the problems of the finite-
pize effects and the continuum 1imit do not appenr in 1t due to the
absence of ppace-time disoretization. The favourable possibility of
the numerical studying of singularities like phase transitions in the
framework of thim approach is in one's dipposal. The development of
this approach Is olosely connected with the development of an ifden of
the functional Integrals am the mathematicanl objeots on the bame of

the rigorous definitions of meapure in funotional spaces. The inoroe-

aping attention to that im being pald nowdaym [!] The investigation
of the vovarlnnoe operator of the P(‘l’)‘,l funotionnl menpure that hawp
boen performed in the present paper, is n ntep towards the conmbruo-

tion of the meothods for compubtntlion of Lhe physloal oharnotertistion
in continuum In the framework of the model under consideration. The
oreation of pultable approxtmation formulas for the funotional Integ-

rals will beocome the subject of our forthooming works.
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