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We shall consider the Schroedinger equation on the halfaxis 

-y'" + V(,,) y = k 2 y. ( I ) 

A potential Vex) is supposed to be locally intagrable functi­
on decreasing quite rapidly such that the condition 
00 

JxIV(lt)ldx<"" 

is held. The solution ¢(x.k) of Eq.(I) with the boundary con~ 
ditions ¢(O,k) = O. ¢'(O,k) '" 1 has an asymtotics for large 
x and real k, 

¢(x.k) A~k) sin(kx-17(k» + 0(1). 

The inverse scattering problem consists in the V(x)poten­
tial determining via the given scattering 17(k) phase. Lots 
of investigations have been devoted to the ISP formulated in 
such a way. For instance, the works containing the main re­

21sults and the history of the problem have to be noted /1 • • 

Our goal here is to obtain the ISP representation in a 
closed integral form, i.e., to give the expression for the 
V(x) potential by way of scattering data. 

In general case, the scattering data are not exhausted by 
the scattering phase and include ~he information on the bound 
states: 

SC(V)=I17(k),OSk <"'" Km,C m• m=1,2 ..... n\. (2) 

Here Km define the position of the bound states on the imagi­
nary axis km=iKm and cm are correspondingly normalizing 
constants 

... 
C-1 f ¢2(x. iK ) dx. 

In 0 m 

Function S(k) = exp(-2i17(k» is called "S-function", In the 
framework of scattering data S(k) may be used instead of 17(k). 

{:~ .­
i ~t} , -C;:ryr'l 
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Let us formulate the necessary and sufficient conditions 
of the ISP resolving in terms of the S-function /1 ! . 

Any 8(k) function for which the following conditions hold 

I) I8 (k ) I = S("") = S (0) = 1 

2) 8(-k) = 8(k) = 8-1 (k) 

"" 
3) S(k) = 1 + ( 

,~ 

F ( t ) e Ik ~ 4t, ( IF(t) Idt < 00 
-I'" -00 

0'1 

4) arg8(k) ( =-4i1Tn, n.? 0 
-0'1 

is the S-func tion of some operator ()f the type (I) that. has 
a continuous spectrum em the ha1faxis (0,00) and n negative 

"" 
eigenvalues. To fulfil condition J:x;IV(x) Idx <00 it is neces­

"" 
saryand sufficient that (xl F'(x) I dx < "" • If n > 0, the V(x) 
potential is not uniquely determined and there exists a set 
of the potentials depending on n-parameters. Conditions 1)-4) 
are supposed below to be held. From condition 4) it follows 
that the definition of the ~(k) function contains the informa­
tion whether the bound states, are available. 

The case, when the bound states are lacking and the scat­
tering data (2) only reduce to the ry(k) scattering phase, is 
the main one. The ISP generally formulated may be held to this 
case with the Cramm-Krein procedure. Thereby, it is sufficient 
to investigate the problem without bound states. 

There are some approaches to solvin~ the ISP by Marchen­
ko !3,4! , Gel' fand-Levitan!5,8! , and Krein 7!. All of them are 
related to each other. In each of them the solution of the 
integral equation to be defined on the basis of the initial 
data of the problem is required. Here we shall proceed from 
the Krein's line of the approaches. 

As the scattering data have been supposed to contain only 
the ry(k) phase, the V(x) potential depends only on ry(k). 

The Krein's method lies in the following steps. If for the 
phase ry(k) = (il2)ln8(k) then ry(O) = ry(",,) = ° and, thereby, there 
exists a function y(t) such that 

"""" 
~( k) = - ( y( t) sin ktdt . ( I y( t ) Idt < "". (3) 

o o 

The kernel H(t) is determined from the equation 

"" Ikt "" 
1+ (H(t)e dt = exp(-2 (y(t)cosktdt). (4) 


-"" 0 


The H(t) function is determined via the inverse Fourier trans­
form. The function is even and integrable allover the axis 

"" ( I H (t ) Idt < 00 • 
-00 

Th~.! Krein's equ;:ttion has the form 

2x 


r2x (t) + J H (t - s) r2x (s ) ds '" l-l (t ), 0:5 t :5 2x. (5) 

o 

Here X is a para1neter of the (0, "") interval. Th(! V( k ) pote11­
tia1 is determined by the solution f 2x (t) of Eq.(I) 

d
V(x) = 2 crx[ r 2x (0) -f2x (2x)] • 	 (6) 

The solution ¢(x ,k) is 	also represented by way of [2x(t) 

2x 
1 ikx 	 -ikt 

¢(x,k) =-Im[e (1-Jf (t)e dt)1.

k 0 2x 


As it follows from the expression the potential of Eq.(I) as 
well as the solution of Eq,(I) are found out irrespective of 
one another via Eq.(5). It shows that the Krein's equation 
is of great importance to the ISP theory. 

Further investigation is concerned with the study of 
Eq.(5). A special feature of this type is that the kernel de­
pends on the difference of the arguments. A number of works 
deals with the equations of this type. The Krein's paper!S! 
is of particular importance. 

In the study we use the 	Fourier transform as the main one 

oa

F(k ) r F ( t ) e Ik t dt. 
-00 

Let R+ be the ring of functions 

A "" ~t 
F (k) = c + J F (t ) e dt • 


o 
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where F ELl(0, ... ) • If FER + and t( z) is an analytic func­
ti~n in the domain containing all the values of Felt), then 
t( F (It » E R+ name1 y , 

"" 
t( F(1t » d 	 J O(t)eilr.tdt. a E L 1(0,00), (7) 

o 

... o 
P_ (0 + J F(t) e1kt dt) '" c + J F ( t ) e III. t dt • 

-00 	 -00 

The P+ (P_) operator is identical on the functions from R+(R_). 
Before to result the solution of Eq.(5) it should be noted 

thatAin the frames of ISP the inequality 

~md d is a number. The similar proposi tion is true for the 
ring of functions R_ \ 

o 
~ 	 Ikta (It ) c + J a (t ) edt. 

-C>\I 

This proposition is of great significance and is called the 
Wiener-Levi Theorem!S! . 

Now let us adduce the functions factorizati,on result on the 
_xis!a! • 

Demma. Let the OCt) " 0 function be represented as 

'" O(t) : 1 + F(k.) 

then 

a(It) = 0+(t ) 0_( It ) , 

where (4 (It ) E R+, G_ (It) E R_. 
Proof follows from the chain of equalities based on the 

Hiener-Levi Theorem. Let in z be the t{ z) func tion 

'" 00 ~t 
Q (It ) 1 + F(It) : exp ( J F ( t ) e dt) .. 

_00 

o 00 


"" exp (J F(t) elktdt) exp (J F{t) elkt dt) _ 

-00 	 0 

o ikt "" l
",(l+JF (t)e dt)(l+T F (t)e lr.1 dt ),.. a (t) a (t). 


-00 + ­o 

Now introduce the integral operators P+ and P_ in a following 
manner: 

00 	 ... IP+(o + r F(t)elkt dt) = 0 + r F(t)e ikt dt, 
-00 	 0 

1 + n(t) > 0, 

holds for all real t!?! • That means positiveness of the integ­
ral operator defined by the left side 0': Eq. (5) and tends to 
the unique solvability of the equation. The same inequality 
leads to solving Eq.(5) by means of f.ctorization of the left 
side. 

On tbe base of Lemma tbere exist expansion.: 

1 + IHk) = 'o+(It)'o_(t). 	 (8) 

2Iln
'o+(t) e- : 	 "" g 2s+(t) 'ealt) . (9) 

Here the functions, 0+ and 121:+ E R+. and 1 o~ '2:&- E R_. 
Theorem. Solution of the Eq.(S) has the form 

fh (It) ... g2~ (t) P_ (e-li lU\li~+( t) P+( Bo1_(1t ) it (It») . (to) 

Proof. Let us introduce a function 
2:1 

JH(t-S)r (8)d8 for t ~ [0, 2xl,
ax

B(t).. 0 
{ o for t E [ 0, 2s 1. 

and let r 2x (t) ... H(t) .. 0 be for t f. [0, 2x]. Then the Krein's 
equation can be written in the form 

00 

r2x(t) + r H ( t - 8) rh (8 ) d8 "* H ( t) + B(t ). - "" < t <... . 
-00 

Here the integral is a convolution of H(t) and r2x (t). Now 
let us apply the Fourier transform to both the sides of the 
equality. Taking into consideration that the Fourier trans~ 
form of convolution of two functions equals their Fourier 
transform product we obtain 

f 2x (It )(1 + Ii (It » = Ii(It) + B(It ) • 	 (I t) 

-I 	 5 



Now 	 we eliminate the term depending on B • Substituting (7) 
in 	(II) gives 

gO+(k)r :t(k) IOl_(k)H(k) + loljk)B(k).2

Then let us apply the P+ operator to both the sides of the 
equality obtained 

A 	 ~ 1 A 

go ... (k ) r 2J: (k ) P+ (g~:(I~ ) H (k » + P+ (g;"( k ) B (k » . (12) 

Now 	 substitute (9) into (12): 

g2x/k)r2x (k) = e-
2ikS 

g2J:+(k)P+ ~gO:(k)H(k» + 

+ e-2iks g_l P (g-l (k ) fH k » . 
2:1:+ 	 + 0­

Now 	 we apply the P _ operator to th~~ equality obtained. The 
last term belongs to R+ a,nd disappears, and, thus, we obtain 
the 	equaUty 

(e-2ikXg ( k ) f (k) = P ,-1 (k) P (,-1 ( k )11 (k ) n , 

2x- 2x - h+ + 0­

Which is equivalint to (10). The available factor e-2ikx here 
is associated with the necessity to fit the semiinfinite in­
terval(-~, 2x) to the P_ operator. Now the proof is complete. 

By means of the theorem mentioned above one can give the 
explicit ISP sol~tion in the case of lack of the bound states. 
It has to be noted that the sine and cosine Fourier transform, 

co 	 "" 
f y( t ) sin ktdt and f y( t) COl k.tdt, 
o 	 0 

are 	harmonic conjugate functions on the real axis,i.e., the 
functions equal to the values of the real and imaginary parts 
of 	the analytic fun~ion on the upper halfplane. They are re­
lated to each other by means of the Hilbert integral 

CC> ) ik t 2 "" .,,( k ') ,
1 + f H ( t e dt = exp (- - f dk ). (13) 


-00 " _"" k-


Insert (13) into (10) 

r 	(k)=(g:lOt)p (e-21kxg-l(k)P (gl(k)(l_exp 2 r~k')dk'»»).
2:t 2x - 2x+ + 0- rr'-- k-k' 

6 

The Vex) potential is determined by means of differentiation 
(6). 

The representation obtained may be used, for example, to 
study the problem qualitatively. For instance, when having 
information on the properties of ~(k) and the bound states as 
well one can analyse the behaviour of V(k).· 
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0 perneHHH o6paTHOH gagaqH pacceHHHH 
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PaccMaTpHBaeTCH o6paTHaH gagaqa pacceHHHH KBaHTOBOH 
MexaHHKH Ha rronyocn. IToTeH~HaJI rrpegcTaBneH qepeg gaHHbie 
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Pa6oTa BhliiOJIHeHa B lla6opaTopuu BhlqHCJIHTeJihHOH TexHHKH 
H aBToMaTH3a~HH OHRH. 
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The inverse scattering problem (ISP) of Quantum Me­
chanics on the halfaxis is investigated. The presentation 
of potential via scattering data in the closed integral 
form is given. A fundamental tool of the study is the 
Fourier transform. 
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