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In the physical science the following Hamiltonian system 

d 2 n 
+ Y IUjl u. +E "jkUk = 0 , j=l. , .• n (1)i dt u j J k=l 

is now Widely recognized as III generic model of self-trapping in 

conqeneed matter physics. In the case n=2 tnis system is completely 

integrljlble in the Liouville sense, due to the existencle of 

the foilowing conserved quantities H=- E lu~1 EM. k u,u~ 
2 j= 1 J j, k J. J "

N=E IUjl which are in involution. In the case of n>:2 there is 
j=l 

conjecture that this system is nQt integrable. 

The system (1) is a very special case of the following 

general vector equations 

d (1) (2) (3)
icttu j 	 E Yjk Uk + E Yjkl uku l + E Yjklm ukulum+ ... (2) 

k k,l k.l.m 

which describe nonlinear interaction of n waves. These 

equations have a large number of applications in condensed matter 

physics, hydrodynamics. metereology. molecular dynamics, etc. 

The structure of constant tensors y(o), 0=1, ... ,8 is determined 

by the particular phYsics of the processes under investigation. 

After the pioneer work [2] many works of physical and mathe

matical character [3-7] have been devoted to the problems of classi 

fication of symmetries, reductions, and applications of the system 

(2). As special cases of the integrable equations of type (2) 

we may identify almost all finite dimensional integrable dynamical 

systems known at the present time. for example, one dimensional 

reductions of generalized'matrix nonlinear Schrodinger equations 

[5J. Toda lattice dynamical systems [6]. equations of motion 

of n-dimensional rigid body in the external gravitational and 

electromagnetic fields [6] and many others. 

The aim of the present article is the construction and 

analysis of reductions leading to two new integrable dynamical 

systems of the special type which belong to the class (2).One of 

these in the two-dimensional case is isomorphic to the 

nonperiodical Toda lattice; the other in the case 1'1= 2 is the 
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so called dymer system equations [1] In the later case we obtain 

the general solutions using the finite-gap integration method. 

These solutions have been obtained in [1] by direct methods. 

We start the analysis of the dymer equations (system (2) 

with n=2) with the Lax representation 

dCIt L = [L, A], (3) 

where the matrices L,A have the following form 

0 & 1 
&~ 0 oL u 0 1u 2 

o -&/~ 
[ iU~ 0 * 

o iU 2 
-& 0 

2 2 0 -&Ul/~-&U2-ilu 1 -& ~ 0 
1 

2 2 
0 -il u 2 1 -& ~ --.&ul~-&U2 0 

A = 0 * * iIUlI2+&2/~ 0-i&Ul-i&U2/~ 

* * 0 ilu212+&2/~-i&~U2-i&Ul. 0 

The central idea of the method of finite-gap integration [8] is the 

construot1.on of the aaker-Akhiezer. function (BA-function). By 

definition the BA-function is the solution of the following matrix 

linear equations: 

L(~). = ~., ~t. = A(~)•. (4) 

Generally, BA-function is explicitly written in terms of Riemann's 

theta functions which are associated with the affine part oif Bome 

algebraic curve. In our. case this curve is hyperelliptic of the 

genus a: 
2 -1 2 (fo)1: ~ & (~ + ~ ) + P2(~ ) = O. 


It is easy to see that 1 is equivalent to 


2 

w2 

1
 

1 : (~4_(u2+u-2)~2+1) (~4_(v2+v-2)~2+1), (6) 

where u,v are the rational functions of the first integrals of (2) 

when n=2,these integrals are the coefficients of the polynomial in (5). 

We point out that 1 is exactly the spectral curve of the two-particle 

Toda system associated with the lac-Hoody algebra D(~),see [ll].The 

spectral curve 11 possesses the dyhedral group of automorphysms and 

due to this fact the 3-dimensional theta functions, which naturally 

exist in finite-gap method [10} reduce to ORe dimensional ones i.e. 

reduce to elliptic functions. The simplest way to demonstrate this 

reduction is the following: all Abelian integrals of the first type 

associated with the curve 1 are easily related to fdx (x + ~~ ) 
-172

[x(x-l)(.-~)(x-v)(x-~v)] which after the rank 2 Jacobi reduc

tion goes into elliptic integrals. These results agree with the 

results of paper [1]. 

Owing to the conjecture of nonintegrability of (2) the 

following problem naturally arises: Are there integrable cases of 

dynamical systems of the type (1) ? 

The structure of (1) gives us a possibility to find the Lax 

representation in the following form: 

11 q 1 A = [~1 :tl]
L = [ r -1 ' -:t2 ~2 

(7) 
2 

where 11,2'~l,2,q,r.':tl,2 are matriDes of the type n x n . The Lax 

representation is equivalent to the following matrix equatiolls: 

d _ 

Clt l l- [1 1 , ~1]- (4:t2 +:t1r) , CIt

d 
12 '= [ 12 , ~2] - (I':t1+:t2q) , (!I) 


d _ 

Cltq - q ~2 - ~1q+ (11:t1 + :t11:!) , 


d (9) 
r ~1 ~Zr + (12:t2 + :t21 1 )·Clt r 

Is it pc)ssible to specify the stl'ucture of (la' ~a ,:ta) in 

such a way that <In reduces to an equation of first order' with 

cubic nonlinearities and (8) reduces to identity? The answer to 

3 

http:construot1.on


this question is positive. The simplest construction arises after 
the following choice of the matrices entering in (6),(9): 

xl = -11'1 qlZ' 

~I ::: -qr - 111 1 , 

where [mI,lI) = [mZ,lZ] ::: 0, 11 

system of equations (9) for '1 

forlll 
d Zdtq=2q rq - (11+ml)q + 211<;11 2 

d 2_dtr--2rqr + [(lZ+m2 )r + ZlZrl l + r(ll+m )]·t 

U,,!ing phase transformation it is possible to cancel i~ (10) terms 

Of the following type rO~+I!lI} qo.;+m2 ) and so we shall 

%Z ::: lzr + r .11, 

I'lZ ::: rq - mZ' 

and lz are constant matrices. The 
and r- in this case has the 

2+ q(12+m2']' 
(10) 

2 

put in (10) mI:::-l~ 
d _ 
dtq 

d
dtr =

,m2=-1~. We get: 

2qrq - 2 11'1 12 , (11) 

Zrqr - 2 12r II' 
where the matrices 11 and 12 are arbitrary. By similarity 

transformation it is possible to reduce one of them to the Jordan 
normal form. It is easy to see that it is impossible to put (10) in 
the form of the self-trapping equation . Indeed, the sum with cubic 

terms is absent only when the matrices q and r are diagonal, i.e. 

qiJ 

From (10) 
diagonal 

condition 

( 11 ' 12 
equations, 

(A) ( 

( B) 

i,J=l, ... ,n ( lZ)Qi °ij r ij Ri 0ij' 

we obtain, that the matrices 1 1'11 2 , 12rl must be1 
too. Up to the phase and gauge ambiguities this 

is satisfied only for the two sets of matrices 

). Each choice corresponds to the irreducible system of 
i.e. this sys.tem does't split to independent subsystems: 

1 ) jk =u °j,k+l' (12) jk ~; OJ ,k+l ( 13) 

(ll)jk ~; (OJ+l,k+X OJ, nOk.l)· 
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(14) 

(lZ}jk ::: ~& 
-

(OJ,k+l+X-1 
°j+l,k °k,n)' 

I 
The corresponding systems (10) may be written in the following 

form 
d Z~1;Qj:'Z(Q;R j -&Qj+1) dtRj::>;-Z(QjRj-&RJ_t)' (15) 

In 'the case (A) we have Q +1:::0,RO:::0 C'nonperiQdic conditions") ,andn 
in the case (B) 'l\'e lmpose the cy(;lic conditions Qn+l=Ql' Ro = Rn . 
The La~ matrices in the case (B) contain an e~plicit dependence on 

a spectral parameter. 
The simplest reduction of the system (15) is obtained by impo

sing the following cyclic conditione R = i Q* 1 j ,&::: i 0, wherej n+ 
° is a real number. 

d Z * dtQj = i (Qj Qn+l-j -0 Qj+l) (16) 

The System (16) has a different structure of nonlinear term in 


comparison with non integrable self-trapping equations. Its 

physical applications (if any) are unknown. 


In the case n=Z another reduction of the system (15) is possible 


Rl = i Ql'* HZ = i QZ* . This reduction immediately gives 
the completely integrable system (16) in the so called "periodic" 
case. When - m < j < m we lIlay consider the system (15) as a 

differential-difference equations of the first order. We shall 
present the cnoidal-type solutions of this system elsewhere. 

How we want to investigate only the finite dimensional case. 

It is easy to see that the systems (15),(16) are Hamiltonian and 
the Hamiltonians have the form H= 1/4 tr (L4 ), The later 

integrals are the part of more general integrals of motion Ik 
(l!2k)tr(LZk ) . 

-, k kThe leading terms of these integrals have the form k E Qj Hj
j:::l 

i.e. they are polynomials of k-th order of the variables {Qj' }Rj 
which proves that the integrals in the set {Ik } are functionally 
independent. USing the standard method (see for example [9]) it is 
easy to prove that these integrals are in involution with each 

5 



other. This completes the proof of the integrability of the system 

(15) 	 in the Liouville sense. 
For the dynamical systems of type (B) we may write the spect

ral 	curve det( L(~) ~E) = 0 in the more suitable form 

0, where we introduce the notation:IWij 

2Wij (Q1RiteQi/Qi-1-~ l6i,j-6i.jtlQi/Qi_1~iG + 

tp6i 1 jiG - iG ~/~ 6. 16 j Q1/Q +iG ~~ 6 1 16 j+ J 1, ,n n "n. 

It is easy to express the explicit dependence of the spectral curve 
on the spectral parameter ~ 

K : 	 ~n ",n/2 (~ + ~,-1) t P ( ~2 ) = 0 
n 

where P is the polynomial of degree n in ~2 . Its coefficients n 
constitute the full set of involutive integrals of motion. The 

genus of the curve equals 2n-1 , the number of involutions on 

K are different for odd and even n 

~.. ~n = 2 k • T1 : T2 : ~ .. - ~ 


n 2k-l. T: ~ .. -x , ,., .. -~ 


When n=2 besides Tl' T 2 ' an additional involution exists 
( see the previous text).The system (15) is similar (in the sence 

of linearization of these systems on the hyperelliptic algebraic 

curves) to the Adler-van Moerbeke generalized Toda system 

(11) associated with the Kac-Koody algebra D~1l. The linearization 

of these dynamical systems occurs on the PrYIII varieties of the 
Jaoobeans ( PrYIII(KO) C Jac(K) ). The structure of the Prym(Ko ) 
will presumably allow us to express the explicit solutions of (15) 

in terms of the Prym theta functions. 

An open problem is the relation of the systems (15), (16) with 

the periodic and nonperiodic Toda systems (11,12). In the simpleet 

case n=2 we are able to find the following isomorphism between the 

system of the type (A) and the usual nonperiodic Toda lattice with 

the canonical variables (Pl,x1 ,P2'x2 ): 

x 	 x· -x -xQl=Ple 1/2, Q2=e 2, R1=e 1, R2=P2e 2/2. 

6 

In our opinion. it is of great interest to find the Lie algebra 


interpretation of the Lax matrix representation in the caee (Al 

and the Kac-Moody algebra interpretation in the case (Bl. The 


investigation of the quasiperiodic dynallice of the system (Bl. 


including the construction of the BA-function on the Prym 

var.ieties of the spectral curve will be given in a eeparate paper. 


We also expect that these dynamical syetems are a subclaes of a 

IIOre complicated family of integrable equations of the nonlinear 


wave interaction type. Their classification is far from being 


complete. 
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