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1. INTRODUCTION

The gas of bosons interacting via the 2-body attractive
and 3-body repulsive 8~function potential is described quasi-
classically by the so-called % -¢® nonlinear Schridinger
equation’/l/:

iy, + AY —a1¢-+a3¢|¢12—a5¢l¢|4=0, ()

where ag, ag> 0, and A= 0%/3xf+ ... +0%/0x3. An equivalent
scaled form which we prefer to work with reads’?/

i, +Ad +(|$12-1)(2A +1 -3|41D¢ = 0. (2)

Apart from the physical systems that can be modelled by the Bo-
se gas with this type of interaction (such as superfluid heli-
um’3/) the ¢3-¢® NLS arises in a number of independent appli-
rations including aquantum crvstals’4/ . one-dimensional ferro-
magnetic’5%/ and molecular chains’®/, nonlinear optics’?’,
nuclear hydrodymanics’/8/ and many others. The physically in-
téresting dimension D varies from | to 3 while the appropriate
boundary conditions can be both of zero and "condensate" type,
i.e., both #(X,t) » 0 and

[¢(X,t)]| » 1 as E2.w. (3)

In ref./z/ the equation (2) was found to possess, under the
condition (3), a new type of soliton solutions that were cal-
led "bubbles'". These nontopological solitons exist at 0 <A <
and have the remarkable property to survive passing to arbit-
rary higher dimensions. (In the case of lumps this property is
not surprising but it becomes nontrivial for solitons with
non-vanishing boundary conditions. To compare, note that the
kinks and vortices of the repulsive sbsNLS do not have loca-
lized stationary analogues in D = 3). However, regardless of
the dimension, the quiescent "bubbles'" proved unstable 72,9/,

In the present study we address ourselves the question of
whether the travelling '"bubble" can be stable. Here our treat-
ment will be restricted to the one-dimensional situation since
in this case the corresponding solution of Eq.(2) is known
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explicitly’/®/ :

V2 cosh(£/2 ~ ip)

¢ (xrt) =¢ (’i) = .
’ ’ [2-a) (aZ+vd) " cosnél?

(4)

where ¥ = x =vt, £ = (c?~- v2)%x, c = 2(1—A)% stands
for the vel*lty of sound, and v is the velocity of the soli-
ton,~c < v ¥c. The "twisting angle" u is also defined thro-
ugh v :

sin2y = -é-v[(cz—vz)/(A2+v2)}”‘, -n/4 < p < /4.

In su.‘1bsequent publications we plan to analyse the 2 and 3 di-
mensional situations which we expect to have much in common
with the D = 1 case.

2. LINEARIZED STABILITY

Linearizing Eq.(2) in the vicinity of the '"bubble" (4)
and taking the infinitesimal perturbation in the form &d¢(x,t)=

=[f(X)+ ig('ii)}e)‘t with f, g, A real, we arrive at the eigen-—

value problem

Hyy = Ady(x), (5)
y(i“’):o,
(6)
where
Ho=- -1, vi -y (x)
v T T dx vo 7

I is the 2x2 identity matrix, J =( ? -é ) , and

2
F o+ 2F.‘pr 2F‘prj

U, (x) = (8)

2F 1} F +2F,

Next, in (5)-(8) r and j stand for the real and imaginary

part of Eq.(4): ¢u(E) = t(X) +ij(X), » = [yl = (%4 jB)%

Finally, F =F(p) =(p~1)(BA+1 - 3p), F, = 2(A + 2 - 3p)

y =({f,g)T, and the tilde over x ﬁas bé)en omitted in 55)’-(8).
The eigenvalue problem (5), (6) was analysed numerically

at 20 equally spaced values of A from the range (0,1). Having
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0.5 Fig.1.The instability
growth rate Ay versus
v/c, the velocity of
the soliton in units
of the sound velocity
({c = 2\/I - A),

0.4 - A=0.5

0.3 1
taken into account the
02 1 symmetry Hy(x) =H_yy(-x),
we confined ourselves
A=08 to positive velocities
v. For each A a single
positive eigenvalue A =
= Ay was found, depen-—
00 : ding continuously onv.
- T T J T The function A,(V)
00 -01 02 03 04 yhich looks similar for
. U/C each A, is depicted in
Fig.1. It is seen that
there is a certain critical velocity v, such that for v 2 v,
only zero eigenvalue Ag(v) =0 exists corresponding to the
translational symmetry. The soliton is therefore stable for
v > V,. To describe the stability domain it remains only to
c* __ Ll i meem m ik eV i AL .
FRFIS VIV LiuLc PLC\.LDC vaiue v Vc .

The difficulty in determining v, is related to the .fact
that for v » v, the eigenvalue A(V) immerses into the con-
tinuous spectrum of J‘IHv which occupies the imaginary axis
of . That is, as v- v, =0 and Ay{(v)»0 the functions f,
g become non-localized.

Indeed, asymptotically as x - f« we have (=) = cos u,
j(t =)=Fsing so that

01{ A=02

cos?p T sin pcos p

Uv(im) =02(

Tsinu cospy sin2p

and the charactgristic equation for Eq.(5) is readily calcu-
lated to be :

k4

-c2k2+()\1+vk)2=0, — (9)
It is not difficult to show that (at least in a finite vici-
nity of Ay = 0) Eq.(9) has 4 real roots, 2 of them being po-
sitive and 2 negative. Let k, be the two roots with the mi-



nimal moduli, k, >0 and k_< O, Then y =(f,g)T obeys

+
y(x) - y_ exp(-k;x) as X »too, (10)

Now it is straightforward to obtain from (9) that when Ay~ 0
we have k+-0 implying that the solution {A1,y}  of the
problem (5), (6) ceases to exist at V= V.. One cannot there-
fore determine v, simply as such V for which A (v) vanishes;
some sort of extrapolation procedure has to be applied in-
stead. Our extrapolation was based on a Taylor series expan-
sion

Al(v) =K1(V—'Vc)2 +K2(V"'Vc Y2 4 ... an

in the vicinity of v, (for v < v,). The validity of (11) was
verified numerically.

3. NUMERICAL COMPUTATION

Suppose v approaches v, — 0 and k+ - 0. Then if we wanted
the boundary conditions (6) to be satisfied to some reasonab-
le accuracy, we would have to extend the integration inter-
val to infinity. This computational difficulty can be circum-
vented by invokine the asvmntarice (10) 2nd fassing
conditions of the form (dykk +k+y)|x—ta;= 0. Next, for A1»0
Eq.(9) yields ky=*(cFv)~ Lag+ O(A ) so that in the vici-
nity of the critical velocity the 1atter conditions simplify
to
fdy/dx+ (c T v) lay}

x=%

i

0. (12)

Table
The critical velocities (velocities of stabilization),
Vo, for different values of the parameter A. V. s gi-
ven in units of the sound velocity, c =2y 1 ~A.

A 0.1 0.2 0.3 0.4 0.5

v /e 0.1301  0.1943  0.2461  0.2911  0.3317
A 0.6 0.7 0.8 0.9

v, /¢ 0.3692  0.4044 0.4377  0.4695

0.5 Fig.2.The critical
veloeity v, versus A.

0.4 -
Our computational
policy was to solve
0.3 - the fnverse spectral
© problem, i.e., for
\:’ several sufficiently
D 024 small values of A we

solved the problem
(5), (12) to deter-

0.1 - mine the correspon-
' ding v. We have found

that the expansion

0.0 . (11) is indeed cor-

00 02 04 06 08 10zect, and thac 57 0.
’ ' The critical veloci-
A ty was obtained then
by the linear extrapolation of the resulting curve A,(v) to
Ay = O. The values of Vv, pertaining to different A are collec-
ted in the Table;the dependence v.(A) is illustrated by Fig.2.

So we have shown that the one—dimensional bubble-like soli-
tons stabilize when moving sufficiently fast. It would be inte-
sting to find out whether analogous critical velocities exist
for 2 and 3-dimensional '"bubbles" which are also known to be
unstable at rest. In this connection it is worthwhile to re-
call’2’ that propagation of transonic 'bubbles” is governed
approximately by the Korteweg - de Vries equation at D =1,
and by the two and three-dimensional Kadomtsev - Petviashvili
equations at D = 2 and 3. On the other hand, the KdV soliton
as well as the 2-dimensional KP lump is known to be stable
while the 3-dimensional lump unstable "1%, This suggests that
the critical velogity v, such that the ¢3-y5 NLS "bubble”
is unstable for v < Ve and stable at v v, , exists on1y for
D =1 and 2. The 3-dimensional "bubble", conversely, is expec-~
ted to be unstable for any velocity. .

Finally, let us remark that when we analyse NLS equations,
the dependence of soliton's stability on its velocity is inhe-
rent only for solitons with non-vanishing boundary conditions,



i.e.,
$(x,t) - eFH a8 X » & o, (13)

Really, consider the case of the vanishing conditions
¢(x,t)rT———+Oand suppose we have a lump ¢Q(X.t) moving with
. x| >

velocity v. The Galilean transformation
$(x,t) » $(x,t) =expl - -é.iv(x+-;-vt)}¢(x L L), (14)

takes then the soliton ¢g to the rest frame. Furthermore,

this transformation can be applied to any nearby soliton, the
stability problem being reduced to the one for v = 0. On the
contrary, in the case of the boundary conditions (13) the
transformation (14) does not take the travelling soliton to
the static one; the dependence on the velocity is more compli-
cated here, see e.g. Eg.(4). '
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YCTONYHMBOCTDL OBMXYHHUXCH NY3HPBKOB
B CHCTeMe B3aHMOOeHCTBYNHUX GO30HOB

PaccMmaTpuBaercs wa-ws HejlHHeHHoe ypaBHeHHe lllpepgunre-
pa, onHuchBawmee Go3e-ra3 ¢ OBYX— H Tpex4yaCTHYHEIM B3ad-—
MopeiicTBHEM H obNamammee pemeHHsAMH B BHOE COJIHTOHONMOXZOG-—
HBIX NMy3bHpPhKOB. H3BecTHo, uTO cTaTHYeckHe ''mys3nipbKH'" He-—
yCTOHYHBE; B HacToamel paboTe HcclenyeTcs yCTOHYHBOCTD
OBHXYMWAXCS COJMUTOHOB. [lokasaHo, YTO CymecTByeT KpHTHUYe-—
CKasa CKopocTb YV, Takas, UTO “nyseipex" yCTOHUMB npH V2V,
H HEeYyCTOHUYHMB IpH V < Vo .

PaGora BumonHeHa B JlaGopaTOPHMH BLIYHCIHTEJIBHOH TEeXHHKH
H aBToMatrusanuH OHfH.

Tpenpmmt O63eaHHEHHOro HHCTHTYTA ANEPHBIX Hccenenosanuii. JlyGua 1988

Barashenkov I.V. et al. E5-88~547
Stability of the Moving Bubbles
in the System of Interacting Bosons

The static bubble-like soliton of the ¥3-¢® nonli-
near Schrddinger equation describing the boson gas with
2- and 3-body interactions, is known to be unstable.

Here we study stability of the moving "bubbles'". Our con-
clusion is that certain critical velocity exists, v,
such that the "bubble" is stable for v>v and unstable
otherwise.

The investigation has been performed at the Laboratory
of Computing Techniques and Automation, JINR.
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