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I . INTRODUCTION 

The gas of bosons interacting via the 2-body attractive 
and 3-body repulsive 8-function potential is described quasi­
classically by the so-called 1{! 3 -1{! 5 nonlinear Schrodinger 
equation111 : 

il{!t+11!{!-a1!{! + aal{!\1{!\2-asl{!\l{!\4= 0, (I) 

where a3 , as> 0, and 11 = a 2;axr+ ... +a 2;ax~. An equivalent 
scaled form which we prefer to work with reads 121 : 

i¢t+l1¢ +(\¢\ 2-1)(2A+l-3\¢\ 2)¢ = 0. (2) 

Apart from the physical systems that can be modelled by the Bo­
se gas with this type of interaction (such as superfluid heli­
um/3/) the 1{! 3- 1{! 5 NLS arises in a number of independent appli­
r.<~tinnl'l inrlndinl1' auantum crvstals 1"1 . one-dimensional ferro­
magnetic/51 and ~oiecular ch~ins 161 , nonlinear optics 171

, 

nuclear hydrodymanics/8/ and many others. The physically in­
t~resting dimension D varies from I to 3 while the appropriate 
boundary conditions can be both of zero and "condensate" type, 
i.e., both ¢(x,t)-> 0 and 

l¢<x.t>l _. 1 as -+2 
X -> ""'• (3) 

In ref. 121 the equation (2) was found to possess, under the 
condition (3), a new type of soliton solutions that were cal­
led "bubbles". These nontopological solitons exist at 0 <A< I 
and have the remarkable property to survive passing to arbit­
rary higher dimensions. (In the case of lumps this property is 
not surprising but it becomes nontrivial for solitons with 
non-vanishing boundary conditions. To compare, note that the 
kinks and vortices of the repulsive !{! 3 NLS do not have loca­
lized stationary analogues in D = 3). However, regardless of 
the dimension, the quiescent "bubbles" proved unstable /2,9/. 

In the present study we address ourselves the question of 
whether the travelling "bubble" can be stable. Here our treat­
ment will be restricted to the one-dimensional situation since 
in this case the corresponding solution of Eq.(2) is known 

~
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explicitly/2/: 

_ .J2 cosh(e-/2- ilL) 
¢b (x, t) = ¢b(x) = ------------------, 

[ (2 -A) (A 2 + V 
2)"'h +COS he-J'h 

(4) 

where i = x - vt, e- = (c2- v2) 'hi. c = 2(1 -A )'h stands 
for the vel~ity of sound, and v is the velocity of the soli­
ton,- c < v ~c. The "twisting angle" IL is also defined thro­
ugh v: 

sin21L = }v[(c2-v2)/{A2 +v2)}'h, -71/4 < IL < 71/4. 

In subsequent publications we plan to analyse the 2 and 3 di­
mensional situations which we expect to have much in common 
with the D = 1 case. 

2. LINEARIZED STABILITY 

Linearizing Eq.(2) in the vicinity of the "bubble" (4) 
and taking the infinitesimal perturbation in the form 5¢(x,t}= 
=[f(x)+ ig(x)}eAt withf, g,A real, we arrive at the eigen­
value problem 

iivy = A.iy(x j. 

y(± oo) = 0, 

where 

. d2 d H =---1 + V--J- U (x}, 
v dx 2 dx v 

I is the 2x2 identity matrix, J = ( ~ 

2F rj ) 
Uv(x) ( 

F + 2 Fp r2 

2Fprj F +p2Fpj 2 

(5) 

(6) 

{7) 

-1 ) 0 • and 

(8) 

Next, in (5)-(8) r and j stand for the real and imaginary 
part of Eq.(4): ¢b(x) = r(i) + ij(x), p = t¢b! = (r2+ j2 };-t 
Finally, F =F(p) =(p-1}(2A+1- 3p), Fp = 2(A + 2- 3p) 
y = (f, g) T, and the tilde over x has been omitted in {5)-(8). 

The eigenvalue problem (5), (6) was analysed numerically 
at 20 equally spaced values of A from the range (0,1). Having 
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Fig.l.The instability 
growth rate A1 versus 
v/c, the velocity of 
the soliton in units 
of the sound 'l)elocity 
(c = 2yr:A). 

taken into account the 
symmetry Hv(x) = }\.v)(-x), 
we confined ourselves 
to positive velocities 
v. For each A a single 
positive eigenvalue A = 
= At was found, depen­
ding continuously on v . 

The function A1(v) 
which looks similar for 
each A, is depicted in 
Fig.l. It is seen that 

there is a certain critical velocity vc such that for v ~ Vc 
only zero eigenvalue A0(v) =0 exists corresponding to the 
translational symmetry. The soliton is therefore stable for 
v ~ vc• To describe the stability domain it remains only to 
.J::! -- ..l L.. L - - --- _ ! - - --- 1 .. - - .t: •• • 
.L..LU,U LU.C:. J:-'LC\. • .L.O~ YCI..I..U.~ V.L. Y C • 

The difficulty in determining Vc is related to the fact 
that for v ~ Vc the eigenvalue A1(v) immerses into the con­
tinuous spectrum of J"1 H which occupies the imaginary axis 
of A. That is, as v -> vc ":.. 0 and A1( v) -> 0 the functions f , 

g become non-localized. 
Indeed, asymptotically as x .. ±co we have r(± oo) = cos IL , 

j(:!: ,.. ) =+ siniL so that 

\ 

cos 2 1L :;:: sin IL cos IL ) 
U (± co) = c2 

v :;::siniL cos IL sin 21L 

a~d the charact~ristic equation for Eq.(5) is readily calcu­
lated to be 

k4 -c2 k2 + (A 1 +Vk) 2 =0. (9) 

It is not difficult to show that (at least in a finite vici­
nity of A1 = 0) Eq.(9) has 4 real roots, 2 of them being po­
sitive and 2 negative. Let k± be the two roots with the mi-
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nimal moduli, k+ > 0 and k_ < 0. Then y = ( t, g) T obeys 

+ 
y ( x ) .... y ~ exp ( - k ± x ) as x ... ± oo • (I o) 

Now it is straightforward to obtain from (9) that when At-->0 
we have k±-+ 0 implying that the solution I A l• y} of the 
problem (5), (6) ceases to exist at V = vc· One cannot there­
fore determine v~ simply as such v for which A1(v) vanishes; 
some sort of extrapolation procedure has to be applied in­
stead. Our extrapolation was based on a Taylor series expan­
sion 

A
1
(v) = K

1
(v-vc)2 + K 2(v -vc )2+ ... (II) 

in the vicinity of vc (for v ~ vc). The validity of (II) was 
verified numerically. 

3. NUMERICAL COMPUTATION 

Suppose v approaches Vc - 0 and k± ... 0 • Then if we wanted 
the boundary conditions (6) to be satisfied to some reasonab­
le accuracy, we would have to extend the integration inter­
v~l to infinity. This computational difficulty can be circum­
vented hy invokin~ th<> :~c:ymrt,...!:i-2~ (!0) .:!~d p~.;.;:i.i-.5 tu L.i1t:: 

conditions of the form (dy/dx + k+Y) \ x=±oo = 0. Next, for At-+ 0 
Eq.(9) yields k+=±(c+v)-1 A1 + 0(.\1) so that in the vici­
nity of the critical velocity the latter conditions simplify 
to 

{dy/dx±(c + v)-1 .\y II 
x=±oo 

= 0. (12) 

Table 
The c~itical velocities (velocities of stabilization), 
vc, for> diffe~ent values of the par>ameter> A. Vc is gi-
ven in unUs of the sound velocity, c = 2y I -A. 

A 0.1 0.2 0.3 0.4 0.5 

vc/c 0.1301 0.1943 0.246I 0.2911 0.3317 

A 0.6 0.7 0.8 o. 9 

v /c 0.3692 c 0.4044 0.4377 0.4695 
--
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Fig.2.The cr>itical 
velocity vc ver>sus A. 

Our computational 
policy was to solve 
the inver>se spectral 
problem, i.e., for 
several sufficiently 
small values of A we 
solved the problem 
(5), (12) to deter­
mine the correspon­
ding v. We have found 
that the expansion 
(II) is indeed cor-

1 0 rect, and that K 11 0. 
· The critical veloci-

A ty was obtained then 
by the linear extrapolation of the resulting curve A1{v) to 
.\ 1 = 0. The values of vc pertaining to different A are collec­
ted in the Table;the dependence Vc(A) is illustrated by Fig.2. 

I. l"\Tt"r"lTt"'' t" Tn"-T 
-L~.a..-UVUrJ\..J.J..Vi.. 

So we have shown that the one-dimensional bubble-like soli­
tons stabilize when moving sufficiently fast. It would be inte­
sting to find out whether analogous critical velocities exist 
for 2 and )-dimensional "bubbles" which are also known to be 
unstable at rest. In this connection it is worthwhile to re­
cal1121 that propagation of t~ansonic "bubbles" is governed 
approximately by the Korteweg- de Vries equation at D =I, 
and by the two and three-dimensional Kadomtsev - Petviashvtli 
equations at D = 2 and 3. On the other hand, the KdV soliton 
as well as the 2-dimensional KP lump is known to be stable 
while the )-dimensional lump unstable 1101 • This suggests that 
the critical velo,city vc such that the .p3 -t/15 NLS "bubble" 
is unstable for V < V c and stable at V (!. Vc , exists only for 
D = I and 2. The 3-dimensional "bubble", conversely, is expec­
ted to be unstable for any velocity. 

Finally, let us remark that when we analyse NLS equations, 
the dependence of soliton's stability on its velocity is inhe­
rent only for solitons with non-vanishing boundary conditions, 
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i.e.·, 

¢(x, t) .... e+l.f.L as x .... ±oo, (13) 

Really, consider the case of the vanishing conditions 
¢(x,t) 

1
_..

1 
Oand suppose we have a lump ¢e(x, t) moving with 

X -+ oo 

velocity v. The Galilean transformation 

¢ ( x , t ) -+ ¢ (x , t) = exp I - ..1. i v ( x + 1.. v t ) l ¢ ( x + v t , t ) , 
2 2 

.(14) 

takes then the soliton ¢e to the rest frame. Furthermore, 
this transformation can be applied to any nearby soliton, the 
stability problem being reduced to the one for v = 0. On the 
contrary, in the case of the boundary conditions (13) the 
transformation (14) does not take the travelling soliton to 
the static one; the dependence on the velocity is more compli­
cated her~, see e.g. Eq.(4). 
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PaccMaTpHBaeTCH ~ 3-~ 5 uerruueAuoe ypaBHeHue llipeAHHre­
pa, onHChlB~ee 6oge-ra3 c AByx- H TpexqacTHqHhlM B3aH­
MOAeHCTBHeM H o6naAaro~ee pemeHHHMH B BHAe COHHTOHOllOAOO­
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CKaH CKOPOCTh V c TaKaH, qTo 11 llY3hlpeK 11 YCTOHqHB npH V ~ V c 
H HeyCTOHqHB npH V < Vc • 
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The static bubble-like soliton of the t/1 3 - ~ 5 nonli­
near Schrodinger equation describing the boson gas with 
2- and 3-body interactions, is known to be unstable. 
Here we study stability of the moving "buebles". Our con­
clusion is that certain.critical velocity exists, v~ 

such that the nbubble" 1s stable for v > v and unstable - ~ 

otherwise. 
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