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There are two reasons to investigate the three-identical-par-
ticle problem with S -wave potentials

Vix) = o x-3 )

where ol 1is an arbitrary parameter and X is interparticle dis-
tance. The first reason is that the existence theorem of regular so-
lutions to Paddeev differential equations in the case of potentials
with singularity ~ x2 1g not proved 1 « The other reason is that
the modern nucleon~-nucleon potentials constructed within field-
-theoretical models, for example, the Bonn one/2/, contain the short-
-range singular term ~ X2

Some exact solutions of the three-identical-particle problem
with votential (1) were first obtained by Avishai/3/. Using the
separation of variables into the radial and angular one he reduced
the problem to two one-dimensional equations. The radial equation
was Bessel equation, while the angular equation was an integro-
differential one. Avishai has found only some numerical solutions
to the latter equation.

In the present work we show that the angular equation with a
' certain parameter ol of potential (1) has analytic solutions.

To describe the positions of three identical particles, we
uge the hyperradius ¥ and two different sets of hyperspherical ang-
les ¢ and R' « Our hyperspherical coordinates are associated with
two different sets of usual reduced Jacobi vectors "/ ( X N g )
and (X’ g’) by

1/2 A A ‘ A, A
t=(x2+g®)™  Q=(p.X,§) , R =(¢’. X\ 4,
where
tang = g/x , tane’=y7x’
A
and @ stands for two spherical angles of the vector a .

The wave function of the three-particle state with total energy
E and quantum numbers €=([,'7Q where /4 is the total angular momen-
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tum and m is its third component, reads in hyperspherical coordi-
netea/4/

A £ A .
‘-Ye:z(tplStIUl(z,ﬁP’)) y(x,g)/zzsmch, (2)
Here, the operator S* 18 the symmetrization operator in brackets of

bispherical harmonics '

y(x y)- Y,,,,(x) Y_( ). )

The operator S acts on the variables and q) as, the sum of
the identity operator and double_ geometrical operator h + The map-

ping of the Paddeev component L}e by this operator may be written
as the integral 4

C, ()
(0,0)
<tPIh|U (z, Lp)) = (2/V3) Sd(p p ) Ut(z,«p’), )
(a,® cup)/G/
where P is the Jacobli polynomial of variable

W=cos(§§)=(cos2p +cos2¢’-1/2)/2siny sing’
and the integral limits are the break-lines

c,pr=min (1ot /31, 25%/3-¢).
The Faddeev equetion/1/ has the form/4/

(32 +113, —z-z/ii +E)U(l‘z,ip)=le) <yl §£IU£(z,q>')> , ©)

where the operator
A

/\55-3; + L(8+1)/ sin¢ (6)

is the grand angular momentum operator in brackets of the functions
(3) and the variables T and (P belong to the first quadrant Fl
of the two~dimensional plane.

We denote by'i) the class of functions defined in the region
F‘+ having continuous second-order derivatives with respect to the
angular variable and vanishing on the rays¢=0,6%/2, The orthogonal
angulef basis in this class is formed > by the regular eigenfunc-
tions of the operator (6). These functions read

+4/2,1/2
N! (sing)! L eose P(l(cosmp)) m

with Nx being the normalization constant, K= 2n+l ana n= 0.1,...

At first we try to simplify the problem (5) assuming for some
its solutions belonging to the‘) -class the factorized form

ut- ZP(VEI) gz‘('p) (8a)
with the angular function represented by & finite linear combination
(449
9’ 2: Bl ur (p) (8b)

of the basis function (7) end numerical coefficients BE. We substi-
tute ansatz (8a) into eq.(5) and perform the Avishai 3 separation
of variables. As a result we obtain the Bemsel equation with index

p for the radial function ZP and the integrodifferential equa-
tion

(cosp)? (p2- /\ )9,’,,(«?)—¢<\9IS lgm (¢H> (9)

for the angular function gv'n .
Consider how all the operators of e% (9) act on the function55
of our anguler basis (7). Any function W, satisfies the equality

/\f, wl = e 2)? wl (10)
as well as the equality/4/
ol 1. 5? £
S wK - K wK - (11)
—_ 4 ”n l\( - - h] Dawrad
wnere ‘)K Tiva "‘K anuu u.K io viie u.uev—-y-u. viclid .m;,'r...... Petei'sopd
coerficient /7/, The equality .
2 ¢ _ i
(cos9) W, (P -g;’ ot sz W, as (P (12a)
with coefficients
4
dyz5,,s = 5 [1- Ll DI D072 + (120)

[rn@2rnet)(nele) (ke lea)/k(k+2) ]“2/2(“1)
follows from recurrence relations for Jacobi polynomiale/G/

Now we substitute ansatz (8b) into eq.(9) and with the help of
eqsa.(10~-12) we obtain the equation pz-(".+z)z for the separation

congtant and a matrix equetion for the columm

_(Bt,g 2,.,.,8 )

of unknown coefficients. The latter equation may be written in the
two equivalent forms

abargl-o, (132)



Aoyt - oLSch (13b)
with the diagonal matrix‘
diag $t= (S} 50y, .ns 82

and the three-diagonal matrix A® ., The elements of its main (5=0),
upper ($=1) and lower (S=-1) diagonals are equal to

a{s(d) = pz-(x+25*z)2] d£+zs,-s - d S,!( Sso . O

where index K , runs with step two from [+2§ to m-Zb_"s, and the
coefficients dfs are defined by eq.(12b). Algo we reduce the prob-
lem (5) with assumed solutions (8) to the matrix problem (13). Next
questions are: when the latter prablem has solutions and how one
can find these solutions?

There are only two cases, namely, k'=2, #=0 and k= =4 ,
when the matrix elements S'c(,, vanish and the operator (11) acting
on the function w'f, yields identically !zero. In these cases eq.(13)
ig the identity relation if m=K’ and BK =(§;K:and the corresponding
solution (8), i.e. the function

U‘= Zyys (VET) wg,(ip) (15)

satisfies eq.(5) for any parameter & , The solution (15) with K=2 ,
{=0 was first obtained in ref, 8/ and was further analysed in

ref.lg/.

The homogeneous eq.(13a) has the solutions Bc with two or more

nonzerg elements if and only if the parameter ol is a zero of the mat-
rix A%a) determinant o/, According to eqs.(14) the matrix ele-

men a’mo is proportional to the parameterld. and the matrix element
a,'w is indepenilent of this parameter if Sx=0 « Therefored =0 is

a zero of det A (d)and the number of remaining zeros does not exceed
the number

n= (m-02/2 - 8p-8p. (16)

. 4
If the matrix A (L) has the diagonal being dominant, then its deter-
minant is not vanishing + Therefore all zeros of this determinant
satisfy the set of inequalities
L oor- Sl < L
lal, -4 S, | SZ.'“ a (1)

with Kk=0,0+2,...,m.

) S

If the matrix Al has a small dimension, then using eqs.(12b),
(14) and eq.(36) of ret./7/ for coefficients hK one ocan obtain the
polutions to eq.(9) in a closed form,

(/]
The case [=0 . If m=0 , JShen only the trivial solution B"=(0)
exists, If m=2 , then B =(0,1)" 1g the solution for any parameter
& ., Por m=4 the single solution

a=4 . BY-=(-54,5T

exists, and for m=6 already two solutions appear

0 60 280
d:StV-lT, B'_'(",dvt-lo' 24"“.4 ’ d’.(zl”df) )T'

1
The.case £ =4 ., The solution B =(4) is unique form=1 and any
parameter & , If m=3 , then eq.(13) has only a trivial solution,
and ifm=5 | the unique solution reads

«=79/6 ,Bl=(79vF, - 395, 120V2—'/S;. )T

The case />4 . Ifm=_ , then only the trivial solution exists.
Iftm=F+2 , then the unique solution reads

a=6/[1+202t1 Bl (Vaitem 5;*2 ,V2l+3 55 o

In the general case Raynal-Reval coefficients are complicated sums/7/,
therefore a more detailed analysis of eqs.(13) with arbitrary indi-
ces t and m is difficult. But a numerical solution of these equa-
tion is in principle simple. Actually, the methods of numerical solu-
tion of the general eigenproblem like gq.(13b) is well-knovm/“/.
Moreover, the elements of the matrix A(0) are simple functions (14)
of integer numbers and Raynal-Reval coefficients can easi be cal-
culated by using eqs.(4), (11). Really, th coeiﬁcient hx owing
to (7) is the ratio of integral (4) with U= W, to the function
wy taken at the same point ¢ .

As an illustrative example, we study the problem (13b) in the

case /=0, Some caloulated eigenvalues to this problem are listed in
the table. From inequalities (17) with =0 and any m we have o >0 ,

Table, Spme eigenvalues of the problem (13b) with =0 .

m o

8 5.194 12,000 30.806

10 5.838 16.990 39.401 59.104

12 6.063 18.953 28,239 73.938 106,807

14 | 5.816 17.051 31.851 53.811 103.378 170.427




Hence if f=0 and & <0 , i.e. the potential (1) is attractive, then
eq.(9) has any solution like (8b). Numerical investigation of this
equation with a certain negative parameter o was performed by
Avighai /3

Now we substitute each solution (8) of the Paddeev equation (5)
into eq.(2) and using eq.(11) write the corresponding solution to
the Schrodinger equation in the form

m
Ye_ -2 ZP(V'E—"c) ,(Z-IL g£ Sf [2 w.{“ﬂ 'ye(f,y‘)/sinth](w)

with the polyspherical hyperharmonica/S/ in the square brackets and

pP=t(m+2). The golution (18) is zero identically if and only if
its Faddeev component has the form (15) with K'=2, l=0 or«x'= P-1.
The potential (1) in nature is a centrifugal potential, therefore
the functions (18) are more close to the well-known solutions of the
free Schrodinger equation. These solutions,are similar to (18) with

P=t(Kﬁﬂand one nonzero coefficient x 6ond are used as funda-
mental functions for studying the three-identical~-particle problem
with any § -wave potentials. If the potentiasls are sums of potential
(1) and a more smooth one, then the exact solutions (18), of course
if +hex aviat mav he naed aa fundamental functions.

In conclusion, the main result of the present work may be for-
mulated as follows:
Theorem. The three-identical-particle SchrSdinger equation with
potentials (1) has solutions (18) with the Paddeev component (8) if
and only if the parameter & is an eigenvalue of the correaponding
problem (13b). For any fixed indices L and m the eigenvalues sa~-
tisfy ineqs. (17) and their number does not exceed the number n gi-
ven by eq.(16).
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HexoTopele TOUHbE DEMEHHsI 3amadd TpexX

TOXOEeCTBEHHBIX YA4CTHI, B Cliydde S—BOJIHOBBIX

MOTeHuHaNoB O06paTHO MPOMOPUHUOHANBHEX KBagpaTy

pPaccToOAHUA

B pamkax uHTerpomubdepeHnuanbHHX ypaBHeHui1 ®agneesa
IOKa3aH KpHTepHH CymecTBOBaHMs pemeHHiH ypaBHeHusa llpenun-
repa, TMpenCcTaBlIAeMbX B BHOE 3aBHCAmMEeH OT rumneppagnyca
dyuxknuun BeccemnAa, yMHOKEHHOH Ha KOHeUYHYH CyMMy THOep—
TapMOHHK .

Pa6oTra BmmonHeHa B JlaGopaTopuu TeopeTHueckol OGH3HKH
OUsH.

INpenpuit O61eAHHEHHOr0 HHCTHTYTA ANEPHMX HecaenoBaumii. [ly6ua 1988

-monics is proved within the Faddeev integrodifferential

Pupyshev V.V. E5-88-456
Some Exact Solutions of the Three—-Identical-
Particle Problem with S-Wave Inverse Square

Potentials

The existence criterion of exact solutions to the
Schrddinger equation as a product of the Bessel func-
tion of the hyperradius and a finite sum of hyperhar-
approach.

The investigation has been performed at the Labora-
tory of Theoretical Physics, JINR.
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