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There are two reasons to investigate the three-identical-par­
ticle problem with S -wave potentials 

Vex>= ~x-a (1) , 
where ~ is an arbitrary parameter and X is interparticle dis­
tance. The first reason is that the existence theorem of regular so­
lutions to Faddeev differential equations in the case of potentials 
with singularity- x-zis not proved/11. The other reason is that 
the modern nucleon-nucleon potentials constructed within field­
-theoretical models, for example, the Bonn one/21, contain the short-
-range singular term ~x-~ 

Some exact solutions of the three-identical-particle problem 
with potential (1) were first obtained bv Avishai/3/. Usin~ the 
separation of variables into the radial and angular one he reduced 
the problem to two one-dimensional equations. The radial equation 
was Bessel equation, while the angular equation was an integra­
differential one. Avishai has found only some numerical solutions 
to the latter equation. 

In the present work we show that the angular equation with a 
certain parameter rL of potential (1) has analytic solutions. 

To describe the positions of three identical particles, we 
use the byperradius ~ and two different sets of byperspherical ang­
les ~ and .Q' • Our byperspherical coordinates are associated with 
two different sets of usual reduced Jacobi vectors /1/ ( X , y ) 
and (x'. f> by 

f/Z 
~ ::. ( X .2 + ~2. ) ' 

A A) 
Q=(lf',X.~ n'-( , ,., "') 

ur. - 'f ' X • ~ , 
where 

ta.n'f'=u/x , ta.nlf''=!(tx' 
A J -and4 stands for two spherical angles of the vector CL. 

The wave function of the three-particle state with total energy 
E and quantum numbers E = ( l.Hi), where e is the total angular momen-
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tum andffi is its third component, reads in hyperspherical coordi­
nates/4/ 

\}'e=z<triStiU~t,.p'>> 'YE.cx.y>l>t~sin2cp. <2> 
Here, the operator !l is the symmetrization operator in brackets of 
bispherical harmonics/51 

'lJE A A _ Y. A Y. A (J) 
A l I) (X • y ) = 00 (X) t;n ( ~) . 

The operator 5 acts on the variables tp and tp' as,. !he sum of 
the identity operator and doublet geometrical operator h: • The map­
ping of the Paddeev component lJ by this operator may be written 
as the integral/4/ 

c+ l'9> 
A l t s I ( 0, 0) l <'Pin IU cz,lf'>> = c z;ff) dcp P1lu> u r't,cp'). <4 > 

P (a., 8) C_(lp} /6/ 
where ~ is the Jacobi polynomial of variable 

" u. =cos cg f> = ( cos2tp + cos2tp'- f/2) 1 z sintp sin cp' 
and the integral limits are tbe break-lines 

C±Cif) =min. ( llf' t X/3' I , Zfc:/3- cp ). 
The Paddeev equation/1/ has the form/4/ 

,2 Af t "f l Cat +t-•a'l-?:_z A, +E)Ul'~,cp)=Vcx> <lf IS IU £'l,tp'>) (5) 

where the operator 
"[ 2 A" == - a., + t ct + n; sin.:zcp (6) 

is tbe grand angular momentum operator in brackets of the functions 
(J) and the variables 't and '9 belong to tbe first quadrant R.! 
of the two-dimensional plane. 

2 We denote by l> the class of functions defined in tbe region 
Fl+ having continuous second-order derivatives with respect to the 
angular variable and vanishing on tbe raystf"'-O,Si./2.. The orthogonal 
angular basis in this class is formed/51 by the re~lar eigenfunc­
tions of the operator (6). These functions read 16 

1 l td cl+H2, tJ2) 
ur K = N K ( sincp) cos 'I' P n. (cos 2q>) (7) 

witbN~ being the normalization constant, "-"'"2n+l and rt=O,i, ••• 
At first we try to simplify tbe problem (5) assuming for some 

its solutions belonging to thel> -class tbe factorized form 

2 

II 

V t = z Pc YET> 9 ~ c If'> 
(8a) 

with the angular function represented by a finite linear combination 

at = E gl 11/ ccp> (8b) 
Orrt. K= f K K t 

of the basis function (7) and numerical coefficients gk• We substi­
tute ansatz (Sa) into eq.(5) and perform the Avishai/J/ separation 
of variables. As a result we obtain the Beasel equation with index 

p for the radial function Zp and the integrodifferential equa­

tion 
.2 At l At ~ 

(costp) ( p2
- "' ),9rn C'f) = ~(If> Is '9m ccp'> > (9) 

for the angular function 9~ • 
Consider how all the operators of el.(9) act on the functions 

of our angular basis (7). Any function ~k satisfies the equality/51 

A l t 2 l A ur =CK+2) w 
'j) k K 

(10) 

as well as the equality/4/ 

SA~ w1 : s' w..t 
K K k 

(11) 

t f f 
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coefficient 111. The equality 

(cosip)2.Uf!{'f)=E ell urt ('/'} 
S=-"' O t kS k+2S ... , 

(12a) 

with coefficients 

t 
dK-ZOu,S:. ~D ( 1- tlf+0/(K+i)(K•3)]/.2 + (1 2b) 

[ l ~n 
n.(2rt+0(rt+f+1)(K+ H)/K(K+Z)] /2(K+{) 

follows from recurrence relations for Jacobi polynomials/61. 
Now we substitute ansatz (8b) into eq.(9) and with the help of 

eqs.(10-12) we obtain the equation pZ={m+.Z)2 for the separation 
constant and a matrix equation for the column 

' l ·, f t T 
B = ( 8, , B, ... 2 •••• , 8,.. ) 

of unknown coefficients. The latter equation may be written in the 
two equivalent forms 

AtcJ.>Bl=o. (1Ja) 
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At co> B t = rJ.. S l B t (13b) 

with the diagonal matrix 

t t I t 
d~ag S = <St, St+J. , ••• , Sm) 

and the three-diagonal matrix At • The elements of its main ( 5=0), 

upper(S=i) and lower (S=-i) diagonals are equal to 

alc,o=[p2 -(K+2S+l).2]dt -cJ.S1 li <14> 
KS · K+ZS,-S k SO • 

where index K runs with step two from l+2~.5to m -2o;5 , and the 
coefficients d!s are defined by eq.(12b). Also we reduce the prob­
lem (5) with assumed solutions (8) to the matrix problem(13). Next 
quastions area when the latter prGblem has solutions and how one 
can find these solutions? • 

There are only two oases, namely, K'=2, l=O and K'= l=t 
when the matrix elements s! .. vanish /7/ and the operator (11) acting 
on the function 10~. yields identically (ero. In these oases eq.(13) 
is the identity relation if m = K' and 8K = ~K·and the corresponding 
solution (8), i.e. the function 

l t . u = z~·!z cVE't> Uf ~,(cp> (15) 

satisfies eq.(5) for any parameter rJ.. • The solution (15) with 1<.'=2 
l = 0 was first obtained in ref / 81 and was further analysed in 

ref /9/ • • t 
The homogeneous eq.(13a) has the solutions B with two or more 

nonzer~ elements if and only if the parameter cl is a zero of the mat­
rix A (J..) determinant 1101. According to eqs. (14) the matrix ele­
menl a~0 is proportional to the parametercl and the matrix element 
a 

0 
is indepe~ent of this parameter if S~: 0 • Therefore d. =0 is 

a z!ro of det A {cC.)and the number of remaining zeros does not exceed 
the number 

~= Crn-h/2- bio-di{. (16) 

t 
If the matrix A (J..) has the diagonal being dominant, then its deter-
minant is not vanishing 1101. Therefore all zeros of this determinant 
satiety the set of inequalities 

J a l co>- rJ.. S t \ < L KO t( 
S=-j,{ 

a,t 
KS (17) 

with K=l,f+2, .•• ,rn.. 
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If the matrix Af has a small dimension, then using eqs.(12b), 
(14) and eq.(36) of ref./7/ for coefficients h~ one can obtain the 
solutions to eq.(9) in a closed form. 

The case l=O • If m=O , then on¥ the trivial solution 6°= (0) 
exists. If rn = 2. , then 6°= ( 0, 0 is the solution for any parameter 

rJ.. • P'or rn ='I the single solution 
0 T 

rL = lf • B = (- S, lf' 5) 

exists, and for rn = 6 already two solutions appear 

•177' Bo-( 60 ZBO T 
J..=9±nt, - 'l,d..t-40, Zi-clt, J..+EH-~,). 

1. - -
The. case l =.f. • The solution B = ( i) is unique form= 1. and any 
parameter d. • If m= '! , then eq.(13) has only a trivial solution, 
and if m = S , the unique solution reads 

rL = 79/6 • Bt=(1.9ff, -395, fZOff!S; )T 

The case ! > j • If m = l , then only the trivial solution exists. 
If rn = l + 2 , then the unique solution reads 

rL=6/[1-t-2l-;n-1l, B1=<fict+lf). sJf-2 '~2l+3' s~ )T 

In the general case Raynal-Revai coefficients are complicated sume/7/, 
therefore a more detailed analysis of eqs.(13) with arbitrary indi­
ces l and m is difficult. But a numerical solution of these equa­
tion is in principle simple. Actually, the methods of numerical solu­
tion of the general eigenproblem like ,q.{13b) is well-known/111. 
Moreover, the elements of the matrix A CD) are simple functions (14) 
of integer numbers and Raynal-Revai coefficients can easiJY be cal­
culated by using eqs.(4), (11). Really, th~ ooelficient h!K owing 
to (7) is the ratio of integral (4) with U = ~K to the function 
ur! taken at the same point If' • 

As an illustrative example, we study the problem (13b) in the 

case l = 0. Some calculated eigenvalues to this problem are listed in 
the table. Prom inequalities (17) with l=O and any m. we have rL>O. 

Table. Spme eigenvalues of the problem (13b) with l = 0 • 

rn. tL i 

8 5.194 12.000 30.806 

10 5.838 16.990 39.401 59.104 

12 6.063 18.953 28.239 7).938 106.807 

14 5.816 17.051 31.851 53.811 103.378 170.427 
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Hence if f=:O and J..<O, i.e. the potential (1) is attractive, then 
eq.(9) has any solution like (8b). Numerical investigation of this 
equation with a certain negative parameter d. was performed by 
Avishai /31. 

Now we substitute each solution (8) of the Faddeev equation (5) 
into eq.(2) and using eq.(11) write the corresponding solution to 
the Schrodinger equation in the form 

o/f= '1:-.Z ZpC'iE'-r:) Et s~ s! [2ur!<'f) 'Y~x.g>tsin2.p](18) 
with the polyspherical hyperharmonics/5/ in the square brackets and 

p=: t"(rrt+Z). The solution (18) is zero identically if and only if 
its Faddeev component has the form (15) with K'=Z, l = 0 or K'= l=i. • 
The potential (1) in nature is a centrifugal potential, therefore 
the functions (18) are more close to the well-known solutions of the 
free SchrOdinger equation. These solutions

1
are similar to (18) with 

p=:!:(K+2)and one nonzero coefficient Btc and are used as funda­
mental functions for studying the three-identical-particle problem 
with any S -wave potentials. If the potentials are sums of potential 
(1) and a more smooth one, then the exact sol~tions (18), of courae 
.. .p ... 'ha .. ,. -- ....... _., ~:"::!.!!+. ma~ ha ...... rt a .. 'fundamental functions • 

In conclusion, the main result of the present work may be for­
mulated as follows: 
Theorem. The three-identical-particle ScbrOdinger equation with 
potentials (1) has solutions (18) with the Faddeev component (8) if 
and only if the parameter ~ is an eigenvalue of the corresponding 
problem (13b). For any fixed indices l and ~ the eigenvalues sa­
tisfy ineqs. (17) and their number does not exceed the number n gi­
ven by eq.(16). 
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ITyn&tmeB B. B. E5-88-456 
HeKOTOp&Ie ToqH&Ie pemeHHH sap;aqH Tpex 
TO~eCTBeHHhlX qacTH~ B cnyqae S-BoJIHOBb~ 
ITOTeH~HaJIOB o6paTHO nponop~OHaJibHb~ KBap;paTy 
paCCTOHHHH 

B PaMKax HHTerpogH~epeH~HaJibHb~ ypaBHeHHA ~aggeeBa 
goKasaH KPHTepHA cy~ecTBOBaHHH pemeHHA ypaBHeHHH IDpegHH­
repa, npegcTaBnHeMb~ B BHge saBHCH~eA OT rHneppa,n;Hyca 
~yHK~HH BecCeJIH, yMHO~eHHOA Ha KOHeqHyro CyMMY rHnep­
rapMOH~K. 

Pa6oTa B&monHeHa B fla6opaTopHH TeopeTHqecKoA ~H3HKH 
OHHH. 

llpenpHHT 06-.t!AHHeHHoro HHC111T)'Ta .~~,~~;epllhllt accne.u;oaiiJIHii. ,lly6aa 1988 

Pupyshev V.V. E5-88-456 
Some Exact Solutions of the Three-Identical-
Particle Problem with S-Wave Inverse Square 
Potentials 

The existence criterion of exact solutions to the 
Schrodinger equation as a product of the Bessel func­
tion of the hyperradius and a finite sum of hyperhar-

. monies is proved within the Faddeev integrodifferential 
approach. 

The investigation has been performed at the Labora­
tory of Theoretical Physics, JINR. 
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