


1. Introduction

The solution of the wave equation in an infinitely lang
curved planar strip was often discussed in the electromagnetic
and/or acoustic waveguide literature {1-6}. In all these works.
however, people restricted their attention only to the
"scattering” solutions of the corresponding equations, calculating
the transmission and reflection coefficients for particular
waveguide configurations. It was silently suppesed that in a3 strip
with a constant non-zero width solutions of another type do no
exist. In particular, it was supposed that there are no gquare
integrable solutions. Actually, this assumption <an be
mathematically confirmed in the case of sound propagation
{Neumann boundary conditions on the strip boundary). [t seems to
be Atkinson [7] who first showed that the acousti~ wave equation

in a tube of a constant width has a continuous spectrum only.

On the other hand, from the theorv of surface waves (a
wave equation with mixed boundary conditions t + Ug% = 0; o= 0 )
we know that trapping modes (square integrahle folutions) appear
even on the surface of a straight infinite éanél - see[8]and also
[9] for the experimental verification : the name “"trapping mode”

was invented by F.Ursell in [8].

In this context it seems to be intereesting to
investigate the existence of the trapping modes inside a bent
electromagnetic waveguide with perfectly conductineg walls
(Dirichlet boundary conditions). It is the aim of the present
paper to show that such solutions really exist in this case,

provided the waveguide is bent ennugh.

The wave equation
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with Dirichlet boundary conditions on boundaries of an infinite
extent has been investigated in the mathematical literature for a
long time. For instance, for a semiinfinite tube it was shown that
the spectrum of ky iz purelv discrete when the tube becomes

infiritely narrow at infinity {10) and purely cantinuous when the
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tube is conical [11], i.e., if the outward normal at every point
of the semiinfinite tube makes an angle not less then % with a
fixed direction. No results are known, however, for the case of a

bent tube of a constant width.

Recently the possible existence of square integrable
solutions of the wave equation was discussed by Popov [12]}, who
investigated TM waves propagating in a straight waveguide which
has a protrusion over a finite length but being otherwise of
uniform width. In distinction to this paper we focus our attention
to waveguides which are everywhere of a constant width but

possibly bent.

Our paper is organized as follows: The main result is
formulated in Section 2. Section 3 contains some concluding
remarks, while the proofs of the theorems are sketched in the

Appendix.

2.The main results

Let us investigate the electromagnetic wave propagating
inside an infinite rectangular waveguide with a constant
cross-section, the lower and upper walls of which lie in two
parallel planes (Fig.1). We suppose the walls of’ the waveguide
being perfectly conducting and we restrict ourselves to the

TM-type waves only.

Because of the constant height of the waveguide the
problem can be reduced to investigation of the two-dimensional
wave equation (1) in a curved planar strip Q (being the projection
of the waveguide to the lower plane) with Dirichlet boundary
conditions [13] . .

f(x,y) = 0 ; (x,y) € &0 (2)
on the strip boundary. Here f denotes the z component of the

electric field, f = Ez

We are interested primarily in the spectral properties
of the equation (1) with the boundary conditions (2). It is

therefore reasonable to rewrite it in the operator form

AD f =k

and to investigate its spectrum applying the methods of functional
analysis (borrowed from the Schroedinger operator theory). Here AD
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defined on C?(Q). The strip Q is supposed 17 be smooth and of a
constant widihA Using one of its boundaries as a reference curve
'y we can introduce natural curvilinear cocordinates (s,u) as
x = a(s) - ub’'(s)
y - wikr i oua tars
where a,b are smooth functions characterizina the curve I
= { (a(s).b(s)): s € R }- (63
We assume, moreover,
a'(s)2 + b'(s)2 =1 . (7
so s is8 the arc length of ' and u means the distance of the point

(x,y) from I' (Fig.2).

The coordinates (s.u) are locally orthogonal. Therefore
the metrics in Q expresses with respect *2 ther through 3 diazorz.

metric tensor,

2 2 Z Z i - ‘ .
dx® + dy® = gssds + guudu -
with
€oo =& = (l+uy s}y te
B ° 1.

where ¥(s) is the signed curvature of the reference curve I
¥{s) = b (s)a'(s) - a (s8)b (s) . (103
We suppose that the width d of the strip is restricted by the
inegquality dy(s) > -1 for all s « F and that the wavegunide i¢
X

bent in a finite region only, i.e. that ; € ‘;(R).



The first step in proving the existence of the trapping
modes is to transform the operator AD to the coordinates (s,u).
Using the unitary map 0 : LZ(O) — LZ(Rx(O,d)) given by

W) s,w) = g4 (s.u)f(s,m) (11)
we get after straightforward differentiation that AD is unitarily

equivalent to an operator A defined on LZ(Rx(O,d)) by the

differential expression

Af =

—_— —

z_ -1 2 02
[ 3s & as auZ

]f + V(s,u)f ' (12)

and by the Dirichlet boundary conditions f(s,0) = f(s,d) = 0 for

all s € R . Here
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Hence to prove that the wave equation (1) has square integrable
solutions , one has to check that the operator A has a non-empty

discrete spectrum.

Theorem 1
Let us suppose that the strip 0! is bent nontrivially , i.e.,that

r{8) is non-zero for some 8. Then there is a positive number do
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The magnitude of d° can be estimated by

Theorem 2
The operator A has at least one bound state if
d
2 2 2
II [— r(a) 5 + 2Z (s) 4]51n(g )du ds < 0. (14)
{1+ur(s)) (l+uy(s))

Proofs of these two Theorems are sketched in the Appendix.

3 .Discussions

Let us now discuss some physical consequences of
Theorem 1. First of all we have to mention that as far as we know
the existence of trapping modes inside a curved waveguide has been
overlooked in both the theoretical and mathematical literature. On
the other hand, the trapping modes can manifest themselves in an
experimentally verifiable way. In order to illustrate this we

would briefly discuss the energy transmission through a bent

waveguide of a finite length

Mathematically speaking, once we deal with a waveguide
of a finite length L the trapping modes disappear from the
spectrum turning into resonances the imaginary parts of which
approach zero as L —» o . (This can be rigorously proven using
the asymptotic perturbation theory and spectral concentration
results (14].) Physically it means that the trapping modes would
contribute to the energy transfer through the truncated waveguide.
This contribution would be substantial especially for waves with
frequency below the first transversal mode of the waveguide,
leading in such a way to a resonant peak in the energy transfer
plot. The peak is supposed to be sharp for waveguides long enough,
when the imaginary part of the trapping mode resonance tends to

Zero.

A similar resonant peak was observed in a sound
transmission through bent pipes (see {15} for experimental and
[{16] for theoretical resulta). Moreover the peak was localized
below the frequency of the second transversal mode. This is in a
close analogy with our results, since a direct computation shows

that for a rectangularly bent waveguide the trapping mode appears
n
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Let us now comment briefly on Theorem 2. Using it one
can obtain simple bounde on the width do below which at least one
trapping mode gppears. For a simply bent strip ( i.e., ¥(8) =2 @
for all s € R ) we find that

dz%[v’xunﬁ -1]. (15)

o]

where 1
z = { f(r'(s))zds ] I +%(s) ds (186)
R 14

and r, = max y{(s). This bound shows that the inverse dél of the
zritical width ie of the same order of magnitude as the maximal

curvature v,

Appendix

Before proving Theorems 1 and 2 we formulate a
slnple Lemma concerning the operator H, = - AD + AV on
L (Rx[0,d]), where AD is the Dlrlchlet Laplacian.
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Lemma
Suppose that V:Rx[0,d] —>» R is a bounded and measurable function

such that

d
flvixoy) (1 v x% ) dx dy < w . (17}
R 0
Then H, has at least one bound state E(X) below the bottom of the
continuous spectrum, E(A) < (nz/dz), if
d
;2.7
J [ Veay) sin®(3y) dx dy < o . (18)
®R 0

Proof:We use the Birman-Schwinger principle [14] according to

which E(x) is a bound state of H, if and only if the operator kKa
I .

has an eigenvalue -1 for o~ = E(M\). Here Ka is an integral

operator with the kernel

1/2

VIR (anxy oy vy 1, (19)

K (x.v.x"y ) = |Vix,v)|

where R, (a,...) is the kernel of Ryle) = ( -4y - of )—1 and

VI/ZZIVII/ngn V. Separating the variables we can decompose
Ryloux.y,x"y") as [17]
w
) oy . . p
Roleux,y,x oy’ ) = 3 x (y) ro(e,x,x7) x (v°), (20)
n=1

where Xn(y) :(Z/d)l/dsin (gﬂy ) is the n-th transversal-mode

wavefunction and rn(a,x‘x') is the kernel of

[_ﬁ +ﬁz_(,z]‘l
d2

Using (20) we can divide the kernel (19) into two parts

Ka = Ma + Lan : S (21)
where o |
exp(-k (&) |x-x"|) 2
M (x,7,x ,y'):|V<x,y)|l/2§z: X, (¥) o x, (v Wix L,y Y/
~ 2k (o)
nz2 n
exp(-k,(a)|x-x"}) - 1 1/2
s VoL 1M 2 (o) ! X vV, y 2 22)
2kl(a)

”
L(x,y,x",y7) = 5;%737 IV(X,y)Il/le(y)xl(v') Vix,y)/Z

and

The operator Ma is bounded for a € {0,7/d]. Therefore for
a € [0,7/d] and A sufficiently small we have
llkma H o<1 (23)

80

(k)™ = 0o, 1 aam )7L (24)

Hence AK, has the eigenvalue -1 iff the same is true for

A(1ean )71

therefore just one non-zero eigenvalue Z(A) given by

La. Thie operator is, however, of rank one and has

- A 1/2 -1 1/2
T = g ey J I VG x (9 [y 11](x,¥)dxdy-(25)
R O

Using the formula (25) we find for A small

t0 = gy [ 15 voamnonaxay + oo ] (26)
1 ® 0
and solving the equation Z(X) = -1 we get finally
d .
ki) = = 3 [ fVOmx (v)2axdy + on?) (27)
R0

Moreover kl(R) corresponds to a bound state of HA iff kl(k) > 1,
which proves the Lemma

We estimate first the operator A from above by an operator A+

1 a8

A, = - ———s —, - —5 + V(8,u) * (28)
* (1+dr )2 862 au?
where ¥_ = inf y(s). The function V(s,u) fulfils the condition

(17) of the Lemma. We find in such a way that A+ has at least one
bound state if

d
I’I V(s,u) sinz( 55—) ds du < 0 (29)
R0

which is obviously true for d small enough. Since A = A+, and both
A and A+ have the same continuous spectra, the existence of the
bound state of the operator A+ implies the existence of the bound
state of the operator A.

Proof of Theorem 2:

As already mentioned in the proof of Theorem 1, we have only to
check (29) and to apply the Lemma. The part of V(s,u) containing






