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1. Introduction

In a scattering theory the problem naturally arises of cha-
racterizing possible scattering operators or scattering matri-
ces. Such a problem was posed and solved by V.M.Adamjan and

i for the Lax-Phillips scattering theory with and

D.Z.Arov
without losses who found that every measurable contraction-va-
lued function can be regarded as the scattering matrix of a
Lax-Phillips scattering theory which is lossless in the case

of a unitary-valued function and which is with losses in the op-
posite case.

This result was generalized by M.Wollenberg 2,14,15 who
established that every operator which is unitary on the absolu-
tely continuous subspace of the free evolution and elsewhere
zero and which commutes with the free evolution can be viewed as
a scattering operator of a complete scattering system of self-
adjoint upersiors .

In 6 C.Poias characterizes the scattering matrices of the

go-called non-conservative Lax-Phillips scattering theory 9.

A further dissipative scattering theory was considered in 10
which generalizes the acattering theory of selfadjoint operators 2
to maximal dissipative operators and which includes the non-
conservative Lax-Phillips scattering theory. A first step to
deacribe the possible scattering operators of this ascattering

11. It waa shown that every contraction,

theory has been made in
which 18 zero outside the absolutely continuous subspace of the
free evolution, which commutes with the free evolution and which
satisfies the additional condition that the ranges of the con-
traction itself and its adjoint are dense in the absolutely
continuous subspace of the free evolution, can be regarded as
a scattering operstor of a complete dissipative scattering
1
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system 10. Moreover, in this special case the meximal dissipa-
tive operator describing the perturbed evolution can be chosen
from the class C11. Obviously, the result extends the conmclu-

sions of M.Wollenberg 2’14’15.

In this note we generalize the paper n in two directions.
Firstly, we suppose that we have different free evolutions for
the past and for the future. This generalization we need to com-
pare our results with those of the dissipative Lax-Phillips scat-
tering theory. Secondly, we allow arbitrary contractions inter-
twining the free evolutions and actually acting from the absolu-
tely continuous subspace of the past free evolution into that of
the future free evolution.

In section three we compare our results with those of 6’13.
We establish that in distinction to the.dissipative or nom-con-
servative Lax-Phillips scattering theory every measurabtle con-
traction-valued function can be viewed as a scattering matrix of
a complete dissipative scattering system.

Naturally, the question arises to indicate the difference to

1. In 1 the desired non-unitary matrix

V.M.Adamjan and D.Z.Arov
was obtained with the help of incompleteness of the scattering system
full Hemiltonian of which is selfadjoint. We have a complete scat-
tering system which forces the non-unitarity of the scattering

matrix by the disasipativity of the full Hamiltonian.

In the last section we give an application of the obtained
results to nuclear physics. Considering scattering processes in
nuclear physics, which involve a number of particles, we are very
often interested only in a pert of the possible reactions. These
interesting scattering reactions can be described by the compres-

sion of the full unitary scattering operator on a certain subspace

of the state Hilbert space which reduces the free evolution.

Naturally, the following question can be posed: Is it possible

to forget the complicated structure of the full system and to
replace the evolution by a certain non~unitary evolution on the
interesting subspace (taking into consideration in such a way

the effects of the other reactions) such that the partial
scattering operator is nearly uneffected by this replacement?
This idea was firstly realized by H.Feshbach, C.E.Porter and
V.P.Weisskopf 4. In a greater generality this problem was solved
by H.Peshbach 5,6 who introduced the so~called optical potential 3.
But in general it seems to us that the problem is unsolved. At
the end of the paper we give a mathematiocally rigerous proof of
the assertion that in every case such a replacement is poésible.
It is important to note that the solution is not unique in the
class of dissipative operators. The disadvantage of the presented
proof is that we cannot indicate the structure of the obtained
full Hemiltonian how this is possible in the case of the optical
pureavial. nowever, our dissipative operator exactly reproduces

the partial scattering operator.

2. _Inverse problem
Let L+ be two selfadjoint operators on the separable Hilbert

spaces iq, Purther, let H be a maximal dissipative operator,
Im(Hf,f)< O, fe dom(H), on the separable Hilbert space 4}. Ob-
viously, the operator H generates a one-parameter coantraction

semigroup T(t),
T(t) = e~ 1tH) (2.1)

t> 0. By J_ we denote bounded linear operators acting from i+

into ﬁ , 1.e. {tz I!;—*‘ﬁ, which we call the identification opera-



tors., Using these objects we introduce the wave operators W

+l
igu* -1tL
W, = s-lim e J, e + pa°(L+), (2.2 )
. t— +o0
and W_,
W_ = s-lim e 1PH 5 1YLl p8o(y ), (2.3 )
t— +o0
where P2°(.) denotes the projection onto the absolutely continuous

subspace of a selfadjoint operator. We remark that if the operator
H is selfadjoint, then the definitions of w+ and W_ coincide
with the usual ones of selfadjoint operators., We assume that the
wave operator W+ is complete 10’11.

We call th: 5-tuple 4 = LH;L+,L_;J+,J_} a complete scattering
system if the wave operators W+ exist and are complete.

With every complete scatt:ring system o = {H;L,L_;J,,J_}

we assoclate a scattering operator S defined by
S=WW_. (2.4 )

It is not hard to show that S is a contraction obeying the con-

ditions
ima(s) & X3%,), (2.5 )
’ ac
ker(s) 2 Z_© Z_ (L), (2.6 )

where i,:c(L+) are the absolutely continuous subspaces of L+, and

e itl, 5 o g o1t | (2.7)

t &ﬁﬂ. Our problem is the following: Suppose that the operators
L,,L_,J, and J_ are given end that there is a contraction S satis-
fying the conditions (2.5) - (2.7).Does there exist a maximal dissi-
pative operator H on 4} such that 4 = {H;L+,L_;J+,J_} forms a
complete scattering system whose scattering operator S(4 ) coin-

cides with S, i.e.
S(A) = S? (2.8 )

First of all we remark that the existence of such a solution de-
ponds on the identification operators J+ and J_. Only if the iden-
tification operators fulfil certain properties a solution is pos-
sible.

Definition 2.1: We say the identification operators J, and J_ are
admissible with respect to L and L_ if there are two partial
isometries ?i: da;—a\b obeying

1) F;Fi = p“°(pi),

(11 ) FiF_=0

(111) s~lim (F+ - J+)e

-itL+ PEC(L+) = 0.
t—> 40 = -

Remark 2.2: If 2, = ¥_ =%, L =1L =1LandJ =J_=J, then
it can be shown that the assumptions of Lefinition 2.1 are ful-

filled if there is a partial isometry F:L+—>¥ with P'F = PE(1)

such that
s-1im (P - e 1%L p8S(1) 2 0 (2.9 )
t >+ .

holds. Hence in this case Definitions 2.3 of " and Defe-

nition 2.1 are equivalent.

The following theorem enswers the proposed problem.



Theorem 2,3: Let L _ be two selfadjoint operators on &:a.nd let

J, and J_ be two iEentification operators which are admissible
with respect to L and L_. If S is a contraction obeying (2.5) -

- (2.7), then there is a maximal dissipative operator H on 43

such that o = {H;L+,L_;J+,J_} i8 a complete scattering system
whose scattering operator S(# ) coincides with S, 1.e. S(s4 ) = S.
Remark 2.4: The assumption that J _and J_ are admissible with re-
gpect to L+ and L_ is not only sufficient but also necessary. It
can be proved that if 4 = {H;L_,L_3J ,J_} is a complete scattering
gystem, then the identification operators J+ and J_ are admissible
with respect to L_eand L_ 2,

Remark 2.5: If in addition S is a contraction obeying ker(3) =

= 4_© ‘.f,fc(L_) and (ima(s))” = i:c(L+), then the theorem can
easily be obtained from Theorem 3.7 of " by reducing the problem
to the form of ! and taking into account Remark 2.2. Moreover,

in this case H can be taken from the class C, .

If S is even a partial isometry acting from L2°(L_) onto
I,:c(L+), then the solution follows already from the above
mentioned papers of M.Wollenberg 2,14,15 eand H can be chosen
selfadjoint.

Remark 2.6¢ The solution of Theorem 2.3 is not unique. Having one
solution 1t 1is not hard to construct a family of solutions.

Further we note that S = O fulfils the conditions (2.5) -

- (2.7). Hence there i1s a complete scattering system
A = {H;L+,L_;J+,J,,} with S(4) = 0.
In order to prove Theorem 2,3 we try ito apply Theorem 3.7

11

of . But this 19 only partially possible. The remaining part,

11, is handled by using a cer-

which cannot reduce to Theorem 3.7 of
tain generalization of Lemma 3.1 of ”.

Lemma 2.7. Let L b2 an absolutely continuous selfadjoint operator

on the separable Hilbert space £ . Then there is a non-negative
densely defined closed quadratic form Y’o(.,.) on & with the fol-
lowing properties:

o-itL dom(vo) =3 dom(wro), t20, (2.10)

Ren? ¢ v (o7l £, oI ) ¢ v (2,1), fedon(v,),

(2.11)
t»0,
Um ¥, (eI £,o71tL ) o y202, f e don(v), (2.12)
t—> 400
D ={re N ¥ dom(v,)s sup ‘lb(eiﬂ‘ £,6tt £) <
t>»0 t»0 (2.13)

<+oo} a {o}.

Proof. We prove Lemma 2,7 in several steps.
1. We introduce the Hilbert space L2( ‘\R1, &), where Ir is a se-
parable infinite dimensional Hilbert space. lLet Bo be the ge-

1tB

nerator of the shift group e 13y on 12( R', &) defined by

(e1*Bs £)(x) = £(x - t), (2.14)

f&Lz( R1, ), t eR'. Since L i3 absolutely continuous we can re-
gard L as a part of Bo‘ Hence there is an igometry Fo from &,
into L3( R1,lr) such that

-1tB ~-it
e "o B = F iV, (2.15)

1 oo
teR'. Let {fk}k=1 be an orthonormal basis in & . We choose an

arbitrary sequence of complex numbers (ak}:=1 satisfying the pro-
perties a % 0, k = 1,2,,,,, and



29 2
T e lc =1, (2.16)
=k

With the help of this sequence we-define the real fumction

gl): R1—1,

&(x) =§§;rak12n<Pork><x>n2 > o, (2.17)

where U.l! is the norm of & . Obviously, we have

oo
( &(x)dx=1. ' (2.18)
-

We set
h(x) = ch g(r) dr > 0, (2.19)

x €R'. The function h(.) satisfies the conditions
0 < h(x) & h(x') ¢ 1, (2.20)
-0 < X & X' & +%, and

1lim h(x) = 0, 1lim h(x) = 1 . (2.21)
X— = oco X—>+ O
Only the property 0 < h(x), x > -9, is not trivial. Assume
that this property is not fulfilled. Then there is a real number

x, such that

X
° 2
{ WE LI ax = 0 (2.22)

for every k=1,2,... . Since {fk}:ﬂ is an orthonormal basis of
L we get

xO
S e N2 ax = 0 (2.23)

for every f € .. Taking into account (2.15) we obtain

X X
0= Sou(roe‘“L £) (@2 ax = S°|(ror)(x-t)|2 at =
- -0
t (2.24)
H(BE) (x)II? ax

x,-
=4
for every £ € £ and t€R', But (2.24) yields F,f = O for every
red, Consequently, our assumption was false and we have

0 < h(x), x> =¢co,

2, We introduce the function S(.): R! —»Tkl,
(x) = (n(x)~/4, (2.25)

x&TR1. Because of (2.20) this definition makes sense. Prom (2,20)
and (2.21) we obtain

1< 8%(x) & 32(x") < +%o, (2.26)

-0 < x' & X & +%,

lim 82(x) = +o, (2.27)
X —» =0q o

2
lim 8%(x) = 1. (2.28)
X—>+90

The function 8 (.)enables us to define the selfadjoint multipli-



2 1 A
cation operator M( %) on L°( R',% ). We set - E 1S(x)lzll(P°f)(x-t)ll2 ax
>0

2, p1 2, w1
dom(M(3)) = {2 T2(R', ) 3(x)2(x) € 13(R, &)} (2.29) 1 et 20e,0) (012 ax

§_ 1361 2uz0) (1)) ax,

<
()1 (x) = 3(x)(x), (2.30) £ edom(~,), t>0. But (2.34) yields (2.10) and (2.11). Because
of the Lebesgue dominated convergence theorem, (2.26) and (2.28)
we obtain (2.12) from (2.34).
It remains to show (2.13). To this end we assume the extatence

fedom(M(%)).
Fow we prove that the set g ,

of a nontrivial element £ &, 1.e. £ % O. For every t >0 we get
Dg={red: Fr e domM(3)), (2.31)

. ttlp ¢ dom(w'-o). (2.35)
is dense in £, To this end it 18 enough to establish that every

£ 21,2544 to D¢, We f :
K ¥=1,2, » belongs to «s e find Consequently, we find

- 2 2 oo
JISEITHEL) (N ax < v (ettl 2,61t ) o *\'vig(x)lal(PoeitL £)(x)12 ax
-2 7 -1/2 -2 =
<lagl™ § (a(x) /2 g(x) ax = 218172, (2.32) = U801 2ur ) (2 ax (2.36)

- OO

hich 1 =1,2,000 & t/2
which implies fkel)s, k=1,2, B \8(x—t)|2U(P°f)(x)“2 dx,

3. We define the quadratic form To(.,.) setting

t >0, Because of (2.26) we get
Yo(£.8) = (M(8 )P £,M(3 )P, 8), (2.33)

t/2
e, ett 2y 3y 18 (-t/2012 O wE @2 ax,  (2.37)

f,g e dom(*ro) = {0y . The quadratic form ¥,(.s.) is non-negative,

densely defined d closed.
¥ and close t » 0. Taking into account (2.27)

Taking into account (2.15) and (2.26) we get
) ‘o0 sup *’o(eitl‘ £, £) 2 4o, (2.38)
1212 ¢ 318001 20(R et £) ()12 ax (2.34) 2O ~
== But this is in contradiction with £ &€d.

10 11



The quadratic form Va(.,.) 18 closed. Hence there is a self-

adjoint operator Z 2> I:L such that the represehtstion
¥ (£,8) = (21/%2,21/%g), (2.39)

f,gedom(wro) = dom(zvz), holds.

Corollery 2.8: The operator 2 obeys the properties

(1ma(z"172)y" = 2, (2.40)
e~1tL -1 AL (21 40, (2.41)
g=-1im (I -~ Z-1/2)e'it1’ = 0, (2.42)
t2+0

g-1im 2-1/2 ~1tL _ 4

tr-=0

Fm emn
\Cet2)

Proof: The property (2.40) follows from ima(z~1/2) = dom(z'/2) =
= dom(?b). From (2.11) we obtaln (2.41). The estimate

(1 - z-1)e-i1:L f,e‘itL £) ¢

$(Z1/2 e"itL f,z1/2 e-itL f) - (f’f)' (2~44)

fedom(Z1/2), t>0, and (2.12) imply (2.42). Taking into account

(2.41) and Theorem 3.3 of T.Kato ©

AL g1 ALy

we find the existence of

8=1im e
t—> 400

with e

. Obviously, the operator x+ comnutes

_itL, i.e.

e~itL X, = X+e_iﬂ", (2.45)

12

t eR', and fulfils the relation

-1
X, ¢ 27, (2.46)

Because of Corollary 7-2 7 there 18 a contraction Y such that
x1/2 - 7712y, (2.47)

Hence we find

1na(x)/2) € 1na(z71/?) = aom(z'/2) = dom(v). (2.48)
In addition we get
421/2 xl/z el ugl, (2.49)

f ¢, Since (2.45) we have

o-1tL X1/2 . x1/2 e 1tD (2.50)

t e.1R1. Hence we obtain

o 1tL ima(Xl/z) 2 1ma(xl/2) < dom(\ro), (2.51)

t €R'. Because of (2.49) we find

‘;(eitL Xlzz f’811:1, X1/2 £) = llZ1/2 X1/2 eltL f“z <
(2.52)
<1ep2,

fed, t>0, But (2.57) and (2.52) yield iza(X,) < © . Taking
into account (2.13) we obtain X, =0.8

13



We notice that Lemma 2.7 and Corollary 2.8 generalize Lem-

1:0.

ma 3.3 and Corollary 3.6 of " %o the case S~

With the help of Lemma 2.7 and Corollary 2.8 we prove the
following '
Proposition 2.9: Let L be a selfadjoint operator on the separable
Hilbert space ¥ and let J:dr—— "a be an identification operator.
If there is an ;sometry P+:i,———+‘5 obeying F:F+ a P2%( 1),

ima(F,) = 43 and

s-n (P, - eI pB0(1) . o, (2.53)
t—> 400

then there is a maximal dissipative operator H on ﬁ of class
C4o such that the wave operator W+(H,L;J) exists and 1s complete.

Proof. Without loss of generality we assume that L 1s absolutely
continuous, Let 2 be defined by (2.39). We idtroduce the operator

W: L — \"a [}
va.rz V2 (2.54)

The operator W is a contraction fulfilling ker(W) = {0}. Because
of (2.40) we have

(1ma(W))”™ = ~¢’, . (2.55)

On account of (2.41) the relation

itL

T(t) WL = We £, (2.56)

f e¢d, t> 0, defines a contraction semigroup T(t), t 20, on 4? .

14

A w——

Let the maximal dissipative operator H be defined by T(t) =
= e'itﬂ, t> 0. Taking into consideration (2.43) we find

s-lim T(t)* = 0O, (2.57)
t—+0

Hence He C_,. The definition (2.56) and the property (2.55) imply

‘1m W'T(t)Ll A MWL > O, (2.58)
t=2>+0
04 fe% . But (2.58) yields HEC,qe
Now we establish the existence of the wave operator W, (H,L;J).
Prom (2.42) we derive

s-1im (W - F+)e'1ﬂ‘ = 0. (2.59)
t>+400

Hence the wave operator W, (H,L;F,) exlsts and we have W =

= W+(H.L;F+). Because of Theorem 3.5 of 10 the wave operator

W, (H,L;F,) is complete, if the condition

s-1lim (W™ - 1a+)<a'itH =0 ' (2.60)

t o460

is patisfied. The representation

We w-lim eltL p¥ it . (2.61)

t— 400

follows from the existence of w+(H,L;F+). Our aim is now to replace
the weak limit by the strong limit. This can be done if the

condition

lim  §Pte™IH £42 | yyupr2, (2.62)

t >400

15



feﬁ, is fulfilled. From (2.56) we obtain

e 1tL jna(w*) € ima(w®), (2.63)
t>0, and
o 1tH (w")" £ a (w"‘)" o-1tL t, (2.64)

feima(W*), t> 0. Using (2.12) we find

1m KR} eI (w971 22 .

Eoaee (2.65)

= 1m 1272 1 2 Pl 4002,
t—+00
fe ima(W*) = dom(Z1/2). 3ut (2.65) proves (2.62).
Taking into account (2.53) the existenc? and completeness
~f W (A T:% ) imply  the eristence and completeness of ¥ (H.L:J).m
+Obviously, a similar result holds for the opposite time
direction.
Corollary 2,10: If there is an isometry F_:i-—f>4} obeying
F*F_ = P°(1), ima(P_) =% and

s-1im (F_ - J)e~1¥L p8(1) = o, (2.66)
t—o+c0
then there is a maximal dissipative operator H on *b of class
001 such that the wave operator W_(H,L;J)exists and is complete.
We left the pfoof to the reader. We notice that Proposition
2.9 and Corollary 2,10 imply the existence of maximal dissipative
operators belonging to the class 010 and 001 such that thelr re-
gldual perts are unitarily equivalent to a given absolutely con~

tinuous selfadjoint operator.

16

We are now in a position to prove our theorem.
Proof of Theorem 2.3 We introduce the subspaces R, = (ima(s))”,
®_ = (ima(S ))” and J(+ = EC ® R The subspaces 7?: and Jf
reduce the selfadjoint zﬁerators L . We set R =L rdom(L n ]%
and N =1 Pdom(L mn Jf « The selfadjoint operators R are absolu-
tely continuous, while the operators N+ have in general singularly

continuous parts.

The operator S can be regarded as a contraction acting from
RL into 'E « Doing so we denote the contraction S by S', i.e,
Sf = S'Pu f, e d,_. Obviously, we have (ima(S'))~ = R, end
(ima(s'*))” = R_.

By F_ and F_ we denote the pertial isometries of Defini-
tion 2.1. We define G =F, I‘Jf and F' =F PR, as well as
i“ = G+Jr.t snd 4 = F"R, @;'R 0n account of (11) of Defi-
nition 2.1 all these subspaces are orthogonal to each other. Wa

introduce the subspace 5

5'

toli-o you.). (2.67)

Further we need the notation Y_ =Y o 224 g MR
‘5 Y- -0 '+ “a' + +
and Y = 25 J N JV . Obviously, we have

_ -1tN

:_Ji:zo(c =Y )eT - P8%(N ) = o, (2.68)

- _ -1tR

:_)1;- (Fi' Zt)e + = 0, (2.69)
- ~1tN¥, Lac,,,

:_}il:. (G Y+)e + P (u+) = 0, (2-70)

*
Because of F+F_ = 0 we obtain FL'F: = 0, Consequently, the identi-

17



fication operators Z and Z_ are admissible with respect to R,
and R_. ’

Now we apply Theorem 3.7 of " and Remark 2.5 to S', R+, R_,
Z+ and Z_. We obtain a maximal dissipative operator H' on {a' of
class (!11 such that «' = {H';R+,R_;Z+,Z_} forms a complete scat-
tering system whose scattering operator S( #') coincides with S',
i.e. S(4') = 5'.

Further, Proposition 2.9 and Corollary 2.10 imply the existence
of two maximsl dissipative operatoras H € C;, and H_& Cyy defined
on 4)+ and 43_, respectively, such that the wave operators
W, (H,,F ;Y,) and W_(H_,§_;Y_) exist and are complete.

By Hs we denote an arbitrary singularly continuous selfadjoint

operator on *933. In accordance with the orthogonal decomposition
43: %_@( 43'(9%5)@ %+we set

-H_ @ (8' ©8,) ®E, . : (2.71)

It remains to show that o = {_H;L+,L_;J+,J_} is a complete scat-
tering system with S(#) = S. To this end it is enough to show
~ L.
that the identification operators J : £ —>~93 ’ J f=X PJ £+
I ~ Z,
z_PR_f,fei_, J =P, f+ZPhq'f re d 4» and J, are

equivalent, i.e.

s-lim (F, - 7)e71%y p2%(1 ) = o, (2.72)
to+co : - -

Because of (2.68) ~ (2.70) we obtain

s-lim (F, - J )e -ito, Pac(L ) = 0. (2.73)
t ot = -

But condition (iii) of Definition 2.1 and (2.73) imply (2.72). @

18

3. Scattering matrix

It is well-known that every selfadjoint operator admits a repre-
sentation as a multiplication operator on some direct integral of
Hilbert spaces 2. Usually, such a representation is called the
spectral representation of a selfadjoint operator. In the follo-
wing we consider the spectral representations of the absolutely
continuous parts Lac of the selfadjoint operators L . We denote
these spectral representations by Lz( ’R‘,/u’_ ~!) , ‘_f 5 where ,LL+
are some measures on 1R1 {%x \ R are families of sepa.rable
Hilbert aspaces and ‘f are separable admissible (with respect to '
£ 2 e selfadjoint operators 'L:° are

A

now unitarily equivalent to multiplication operators L;—'\' on

L2( "R’,/u.i; 43’\3 ’ jfi). The operators L;c are absolutely continuous,

,u ) subsystems of X1

Hence the measures M., are absolutely continuous with respect to
the Lebesgue measure i.! on R, Consequently, there are measu-

rable subsets /\ of ‘R1 such that the measures ,u. can be chosen

as restrictions of the Lebesgue measure on R', i.e. ,u+( ) =

={Aa D /\ | for every measurable set 4 S R', In the following we
specify the measures U to this form,

Every contraction-s obeying (2.5) - (2.7) can be now repre-
gsented as the multiplication operator with a measurable operator-
valued family {S() )}xe R ©f bounded operators acting from 'b;
into ‘fa‘; 2. The family 1s uniquely defined ( up to a set of
Lebesgue measure zero) on the subset A= /\+ n A _» Purther,
we believe that {S() )}xﬂﬂ is zero outside A, L.e.

S(X\) = 0 for %th1\/\. This well corresponds to the fact that in
case iAl = 0 the operators Lic have no unitarily equivalent parts,
Therefore, S = 0 is the u.ni;ue operator which fulfils (2.7).
Since 5 is & contraction the family {s(x )}/\GTR1 consists of con-~
tractions acting from 5: into 'ld: for a.e. YeR!.

19



With the above~described conventions a uniquely defi-
;1ed (up to & set of Lebesgue measure gzero) famlly of
contractions {S() )Skelﬂ acting from ‘5; into “5; corresponds to
every contraction S obeying (2.5) - (2.7) and every given spec-
tral representation:of L:c. Let Ja= {H;L+,L_;'J+,J_} be a complete
scattering system. Then ;e call this uniquely defined family of
contractions, which corresponds to S(4 ), the scattering matrix
of the scattering system 4,

Theorem 2.3 implies now the following:

Theorem 3.1: A family {S()\ )}x cg! of contractions acting from the
separable Hilberi space ﬁ; into the separable Hilbert space ‘5;
can be regarded as the scattering matrix of a complete scattering
system 1f and only if there are separable admissible (with z"espect
to the Lebesgue measure }.| on TR1) subsystems FJB;_Q X bei such
that for every fe‘z {S(X )E{ BN )}X€1R1 is stroneg m:a&surable
with respect to i_ 2- ‘
Proof: To complete the necessity of this theorem it remains to
find two separsble admissible (with respect to the Lebesgue
measure 1. on R subsystems %_ of X 1‘93: such that

hd AeRN O
7.,,[‘/\4. - ‘,f+. But this can easily be done. Now for every fe J_
{S-(-x )—f-(k )}:eﬂl1 is strongly measurable with repsect to tf’+.
Using S( X ) ( RN A) = 0 we obtain that for every f e:!""_
{s(x)e(x )}xeﬂﬂ is strongly measurable with respect to ?f;.

To prove the converse we consider the multiplication opera-
tors Lf = Li on 3’1 = L2( 1R1, lals ‘93-3- , ?71). The selfadjoint
operators L, are absolutely coniinuous. On account of the measu-
rability as;umption the family {S() )3)‘&121 induced a multipli-
cation operator. S acting from ¥_ into ;8+ which is a contraction.
Purther, let %be an auxiliaryseparable Hilbert space. Because ¥+

are separable 2 tnere are isometries P, acting from a{,+ into ‘3)
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such that F{F_ = 0. Applying Theorem 2.3 to S,L,L_,F_and F_
we find a maximsel dissipative operator H on “‘3 such that

S+ = {H;L+,L_;F+,F_} forms a complete scattering system with
S(s ) = S. Bow it is not hard to see that the scattering matrix
{SJ(X )}xelﬂ of %4 coincides with {S() )}xeRL n

It “a: = N_ and -5: = S, ¢ R!, then the measurability
condition of Theorem 3.1 reduces to the assumption that for
every £ €J_ {S() )f'}xen’ is strongly measurable. In this case we
call {S() )}Xéw measurable, '

Corellary 3.2: Every measurable family {s(x )}xuﬂ of contractions
acting from JX_ into Jr+ can be regarded as the scattering matrix
of a complete scattering system,

The proof is obvious. The last corollary allows a comparison
with the scattering matrices of the well-known dissipative or
non-conservative Lax~-Phillips scattering theory 9.

First of all we remark that the dissipative Lax-Phillips
scattering theory can be embedded in ours and is complete in
our sense., The dissipative Lax-Phillips scattering theory is
characterized by a 5-tuple of operators = {H;L+,L_;J+,J_} and
two subspaces ), and J_ of *5 as well as of ¥ _and ¥_, respec-

tively, such that

ey D, e D, MY D, 20, (3.1 )
ML ca, Y <o, i, (3.2 )
e'“?‘ﬁl),f - e1tHrp,, t20 (3.3 )
RN SR A T (3.4 )
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-1tL

te\/ﬁ1 ey, = 2, , (3.5 )

N, et 3 . {0} - N ity (3.6 )

ter? + ter! -

- \) -itE

rintea, ey

*
:-lim P:;em eitH = 0,
> 400 -

Defining the identification operators J+l xqr—%‘ﬁ bﬁ

+

4y
=Pt e, (3.8 )
18-t

fe i+, we can introduce the operators W+(H,L+;J+) which exist
underrkhe assumptions (3.1) - (3.7). Conzitio; (5.7) enables us
to show that these wave operators are complete .in the sense of‘10.
Sonsaguanilys o = LI, I 9,00 ) fvius & vuapieis scaiiering
system, The scattering operator S(o ) is defined by S(d ) =

= W, (H,L ;3,0 W_(H,L_;J_). Because of (3.2), (3.5) and (3.6) the

selfadjoint operators L+ are unitarily equivalent to multiplication

A
L2(1R1,l.l; J;) are usual Hilbert spaces of square integrable

operators It on some Hilbert spaces LZ(’R1,|.\; J;), where

vector-valued functions (with respect to the Lebesgue measure |,!
om Ry, Obviously, L3( RY, 10 J,) together with L§ are spectral
representations of Li' By {s() )}:;Ig we denote the uniquely de-
termined scattering matrix in these spectral representations. Na-
turally, the question arises to characterize all those measurable
families { S() )}xelR1 of contractions acting from J_ into ~f+

which can be regarced as the scattering matrix of a dissipative

Lax-Phillips scattering theory. This problem was solved by
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C.Foias in 6. A new solution of this problem was given in 13. In
both papers the so-called discrete case was considered. Trans~
forming the results of 13 to our situation we obtein that a
measurabie contraction-valued function {S( X )SA€R1’ S(X)s UY}—é\X;,
can be regarded as the scattering matrix of a dissipative Lax-
Phillips scattering theory if and only if there are separable
Hilbert spaces (1+ and measurable contraction-valued families

D0 BA 00 Y ey {00 Jsa00), gt and {0, 0,58 OO, (gt
which can analytically be extended in the upper half plane, such

that

8(x)  A,(N) a_ 0L,
S'Y(N\) = @ —® (3.9 )
A(N) s(X)) x_ .

forms a measurable unitary-valued function. It can be shown that
this condition cannot be fulfilled by every measurable contrac-
tion-valued family { S() )}xetﬂ' The restrictions on the set of
scattering matrices result from the special assumptions which we
have made_in (3.1) - (3.4) and (3.7).

These special assumptions are omitted in our dissipative
scattering theory and replaced by the completeness condition.
Taking into account Corollary 3.2 we see that this replacement is
accompanied by an enlargement of the set of possible scattering
matrices. Moreover, it turns out that the condition to obtain the
desired full Hamilitonian in the class of maximal dissipative
operators is not a real restriction. In terms of a block-matrix
representation this can be expressed as follows.

Corollary 3.3: Let {S(»x )}Aeﬁ1 be a measurable family of contrac-
tions acting from J_ into J;. Then there are measurasble fami-
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lies of contractions {J_, 0 ;A.(% )Bxewg, {oss J AN )},\ el
and {o_, o, B (X )}xﬂﬂ such that {oL_, o,; 6 (XN )Sxeﬂz’ can be
analytically extended in the upper half plane and S'(X) defined
by (3.9) forms a measurable family of unitary operators.

Corollary 3.3 can be proved using Corollary 3.2 and the
considerations of 13. We left the proof to the reader. Corollary
3.3 clearly shows in which places our scatiering theory and the
non-conservative Lax-Phillips scattering theory agree.and in
which they are different.

4, Application to nuclear physics

In nuclear physics one is rareiy able to solve the corresponding
many-body problems exactly. In order to get some information
about the scattering process, we must therefore select a suiltable
part of the whole state Hilbert space from which the needed quan-
tities can be extracted, while the influence of the rest is teken
into account in some phenomenological way. Consequently, 1t is
assumed that the Hilbert space ‘5 can be decomposed into two

subspaces,
*3"50@931‘ (4.1)

Purther, it 1s assumed that the free Hamiltonian Ko is reduced by
4, and %, We set L = K Mdom(K,)N ) and Hy = K Mdom(E,)nH .
For simplicity we assume that L is absolutely continuous. Let

K be the full Hamiltonian. We assume that the wave operators

1tK e-itK

W, = s-lim e o Pac(Ko) exist and are complete, i.e.

- 1 —-+co

d#o ={K;E0’Ko;Iﬁ'Iﬁ} forms a complete scattering system. Deno-
ting by Po the projection from ‘5 onto \ﬁo we are interested in
the part S,, = Posr"ea° of the unitary (on the absolutely continu-

ous subspace of Ko) scattering operator S = wtw_.
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The-problem now 1s to find & maximael dissipative operator
H on 50 such that the wave operators wi(H,L;Ibo) exist and are
complete and, furthermore, such that the scattering operator
5, = w+(H,L;I,5°)‘W_(H,L;I$0) is a good approximation of the par-
tial scattering operator Soo’ i.e. Soo QﬂSA.

There are several possibilities to solve this problem. One
solution was proposed by H.Feshbach 5. Assuming that the full

Hamiltonian K 1s given by K = Ko + gv, ge’TR1, representing V by

oo Vo1 ho Yo

V= DO ® (4.2 )
Vio V13 ‘51 ‘031

where for simplicity we set V11 = 0, and introducing the genera-

lized optical potential Vg(E),
Vo(E) = gV, ~ g%1im V., (H, - E - 1¢ )~y
F oo = & n Vorth 10° (4.3 )

EE;111. H.Feshbach uses the operator Hp(E) = L + VF(E). It can be
shown that the corresponding scattering operator sF =

¥
= W+(HF(E),L;152 w'(HF(E)’L;ISB glves a good approximation of 500
for a sultable class of perturbations V 3. The parameter E can

be used to improve the approximation.

Another method, which is widely applied in nuclear physics,
takes into account the influence of the reaction channels
{,'!36—*51} a.nd{% 1""’930} by some local potentials with negative
imaginary parts which are usually celled local optical potentials

(Saxon-Woods potentisals).

But 1t seems to us that the problem,whether in every case a
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maximal dissipative operator H on \%o can be found such that the
wave operators Wi(H'L;Iﬁo) exist and are complete as well as

So0% Sy or even So0 = Sy» 18 unsolved. Theorem 2.3 enables us

to answer this question.

Proposition 4.1; Let K, be a selfadjoint operator on the separable
Hilbert space “ea s, which is reduced by the subspace '030 C{a +« Assume
that L = KOP(dom(Ko)r\ﬁo) is absolutely continuous. If

Jb = {K;Ko'xo;lﬁ’Iﬁ} is a complete scattering system, then there
is a maximel dissipative operator H on \ﬁo such that o =

-'{H; L,L ;Is:Iﬁé forms a complete scattering system whose
scattering operator S(s ) coincides with the partial scattering
operator S defined by S = yos(&o)mao, 1.e. 5., = s(4h).
Proof; We try to apply Thearem 2.3 to %, = &_ =%, =J_ -
=Iy end L = L_ = L. By obvious changes of the notation the

o]

contraction S,  fulfils the assumptions (2.5) - (2.7). Teking

o
into account Remark 2.2 we can apply Theorem 2.9 and obtain the
desired maximal dissipative operator H on “bo. n

On account of Remark 2.6 the solution of Proposition 4.1 is

not unique.
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