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1 Introduction

A (left) pre~Hilbert A-module ovar a certain C.-algebra A is an
A-madule J} equipped with an A-valued non degenerate conjugate-
bilinear mapping <,> 1 HK*X —> A, G, being A-linear

at the first argument. J 1s Hilbert 1f it is complete with
respect to the norm ”‘I’= ”<?r'>”i/2- e suppoes always that the
linear structures of A and of J£ are compatible. For basic facts
concerning Hilbert C®-moduli we refer to [7] . A Hilbert A-nmodule
M over a C’—algebra A is called self~dual if every bounded
module map r: J —> A is of the form <,8> for some ded& . In
this paper we restrict our attention mainly to Hilbert Wh-modu~

11 . For them some more facts are known as in the general case.
We need the following ones :

Deftnition 1.1.: [4,0ef.7] ,

Let A be a w‘-algabra. X be a pre-Hilbert A-module and P be the
set of all normal states on A. Ths topology induced on ?f'by the
semi~norms ’

(< D)VY2, fep,

is denoted by 13. The topology induced on ;!? by the lineser funce
tionals

F(<CFD) o 7, fep,
is denoted by 'T‘.'a.

We remark that, in general, the topology'té is weeker thean the
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topology Tl' and that they are both weaker than the norm topology.
Throughout this paper we use the following notation., If X is a
subset of the Hilbert w*-nodule J€, [x]J_. denotes the set
)\ER . Xe X } whare J( is tne“C‘-completion of the set
[xcx sl £1f.
Thegrem 1,2.: [4.Th.9]
Let A be a w*-algebm snd 7€ be a Hiilbert A-module. The following
cpnditions are equivalent :
{1) ¥ is self-dual.
{ii) The unit ball of @ is complete with respect to the
topology Tje 1.0. # = 21, .
{(1i1) The unit ball of € is complete with respect to the
topology T,.

Corollary 1.3.: [4.Cor.11]

If A is a w'-algebra and & 1is a self-dual Hilbert A-module the
linear span of the rangs of the A-valued inner product on &
becomes both a w.-subalgebra and an ideal in A.

Theorem 1.4.: [7.Prop.3.10.)

Let A be a WX-algebra and F¢ be a self-dual Hilbert A-module.
Thaen, the set End (ZC} of all bounded A-linear apsrators on &C
is a W -algebra.

These facts make clear that in the case of J€ being & self-dusl
Hilbert W"~module, the spectral theorem ( [10,Th.1.11.3,]) is
valid for each self-adjoint element of EndA(ae). loreover, there
exists a poler decomposition for each slement of EndA(Ze) in
EndA(QC). This is of importance throughout this paper.

Now let A be a commutative w.-algebra, 7€ be a self-dual Hilbert
A-module. §2 deals with real self-dual iilbert Ahwsubmodules x
of &K and with some bounded operators arising from them. In
particular, a conjugate~A~linear involution J on P with respect
to X is defined. §3 investigates the strongly continuocus ane-
parameter group {An: te[R} defined for euch K € on 7€, The
relation of this group to a generalized K.1.5. condition is
established. We remark that the main definitions of {2 and {3

are formulated without the restriction to A to be commutative.
§4 gives an intaerpretation of the results of the former paragraphs
in terms of locally trivial Hilbert bundles over hyperstonian
compact spaces. In §5 some sspects of the general nponcommutative
case are discussed, Other applicstions can be found in [5].

§2 On some real subspaces of self-dual Hilbert w*-moduly and
rglated opsrators
Let A be a w’-algebra and £ be a self-dual Hilbert A-module.
76 suppose without loss of generality that the linear span of
the range of the A~valued inner product on ¢ is identical with
A, {cf. Cor.1.3.), Let & be a norm-closed real subspace of A
being invariant under the action of 31A)h { the selfadjoint part
of the centre of A } and having the following properties :

(1) X' ni1X={6}.

(11) K +1X is norm-dunse ind€,

(111) X'= [:x’]r
As an example one can tske A = # and An = & o The following
assertions make clear why the third condition sbove is necessary.

Definition 2.1,

X'={xed s <Z,9> + <§.&> = 0 for any e X},
Proposition 2.24: «7(115 a norm=-closed real subspace of F being
invariant under the action of }(A)h and satisfying the conditions
xnxth (5hoKELRTTT.

Proof: The connectiaon Knn K "[0} follows from the non dege-
neracy of the A-valued inner product on . The equality

(i,a§> + <a)?.§> = <§.§>-a + a Xy
a<y.x> + <K.y>a
{ag.x> + <§.a?>

%

¥

{ aec}(A)h. iekd: 7e Ky shows that A7 48 a real subspace of
€ being invariant under the action of }(A)h If we consider a
bounded set fx‘,( X, € Xt <ex, To-lim o= ¥ € XFf we get

0 = lim £ <Ker7> + FaRe>)
= f( <’-(9‘7> <;0§>)

for any §€.X, any normal state f on A. I.e., X € 2" and, thus,

by Theorem 1.2, Fta [x‘]r « The norm=completeness is obvious
NOwW.

4
Corollary 2.3.: (J(J) - K&,

Therefore, we have shown the necessity of the condition (iii)
above. We remark that this condition is satisfied automatically
if A 1s finite dimensional,(i.e..,perticularly, if A 1is a Hilbert
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spaca). Now we pass on to considerations about the properties of
such real aubspaces:ﬁf of supposing A to be commutative.

Proposition 2.4.: Thers exist two Ah-linaar projections
Pi¥ s K and Q: H# —> 1K, the operator norms of which are
equal to one. They fulfil the equalities

(1) <P(R),7> + <FPRD = KP(T> + <P(7),%>
<PIX) PP+ <PIT)P(RY
<QUK) 7> + <TOUED = <K(F)D + <0(7).E>
UR) UTY> + <QUT)O(RD

for any )‘t.?éx B

Proof. We can consider the real self-dual Hilbert Ah-module
g»ék? 'O } slnce A, 1s a real \ —algabra with
1dent1ca1 invelution. Tha set:lf' 3?:*5 o<, } is a
real self-dual Hilbert A -submodule of &, . From [4,Th.9, Proof ]
we draw that H = & <e;kf'. Thus, thsre exists & projection
Pk — K definad by the r'ule P2 &?/—-)X/ . The projection
satisfies the condition (1) by its definition and it is Ah-linear.
Keeping in mind that P scts on. A< as the identical mep the inw
squality

(2) <G>

(P+(1-P})(X) 2 (P+(1-P))(X)>

PP+ <[1-P)(X).(1-P)(R)>
<P(X)P(X)>

being valid for eny X € K, shows IPff = 1. The proof is snalogous
for Q.

Y

The projections P and Q do not commute, in general. Ve define
Rim P+Q and JT:= P=-Q, where T is a positive selfadjoint operator
and J is a partial isometry.

Lemma 2,5.: R 1s an injective A-linear operator on , The con=
nection DXRS2 1s valid. The same is true for the operator {(2-R).

Proof: Denoting by i the square root from (=1) we can state the
aqualities 1P = Qi and 1Q = Pi . Taking an element c=c,+c,ieA,
{cyec, €AY, and ek arbitrarily the equality

R{eX) = P{cx) + Q{cX)
= c P(R) + cy P(1X) + c Q(X) + c, Q(iX)
- clvP(i) + e, Q(X) + oy QX)) + cy1-P(X)
= ¢ {P(X) + Q(X))
= ¢ R{X)

is satisfieds i.e. the operator R is A-linear, If now R(X)=0 for
a certain X € Zwe obtain

RRY >+ FaR(%)>

PR+ P>+ <R+ <KD

2-( <P(R),P(R> + <UR) QX ). cfe (1)
Consequently, P(i)sQ(R}ﬂﬁ. since K +1 X is dense in& there fol~
lows X=0. Thus, R is an injective operator. Furthermore, since R

has a conjugate operator R* in EndA(Jf) the equality below is valid:

(4) R 7>+ <GRE(D>

dpwuwpmﬂxhy> CFa(Par+ap e ) (X))

GP+a) (K)o (P+2)(FID + <(PHONF) o(Pr)(%)> 5 cf. (1)
R(R) RLF)D> + <R(F) $R(%)>

= GMR(X)TD> + <FRER(X)D>

for any X,ye€ & , Therefore, (R-R')Rao. decause of the injectivity

(3) ©

#

of R we draw R=R¥, Using (3) we get
CR(R) > = 1/2-( <R(X),X> + <K.R(%)>)

172+ <P(R),P(X)> + <Q(X).Q(X)>*)
3]

o

for any X €. On the otier hand

CR(X) WX > 5 20 <KuX>
for any X ¢ by (2). Consequantly, 0f RE 2., The proof for (2-R)
is analogous changing P,Q to {1-P),{1-Q).
Lemma 2.6.: (P-Q), T and J are injective operators. (P-Q} and J
are conjugate-A-linear, whereas (P ))2 and T are A-linsar. The
egualities Jzaida: and T=R! (2 &)l/?
J and T comnute.

are valid, and the operators

Proof: The following squality is satisfied for any a=a,+a,i e A,
(ags8,€4,),s and any xe &
{(P-3)(aX) = ay P(X) + azoP(ii) - 8,7 Q(xX) - ay Q(iX)

= ai-P(i) + azi'Q(i) - aloq(i) - a2i-P(§)

= (a,~a i)(P-r}){:TZ).
I.e.. {P=0Q) is congugate—A-lineur and, correspondingly, (Pnﬁ)
A=linear. vioreover, (P-0) =P~DO-OP*Q=(2-R)R and thus, (P-Q)
a selfadjoint positive, injective operator on @€, ye define the
operator T: X —>F by the formula

T = [(P-—Q)z]i/z = (2~R)1/2R1/2.



Thus, T is a A-linear, bounded, injective, selfadjoint positive
operator ond . The sets [T(?C)];: and [}2(35)];» are both equal to
P . There exists a map J for which the equality JT = (P=Q) is
satisfied on # since the operators T and (P=Q) are injective and
12 . (P-Q)z. 3 maps T(K) into & . Out of the equality (P—Q)2 =

= JTIT = T2 we draw T = JTJ since T is injective, Hence, J can be
extended to a map defined on & being bounded, conjugate=-A~linear
and injective. Furthermore, the existence of the inverse operator
gt defined on A being bounded, conjugate~A=linear and injective
is guarantced.ie obtain IT = T3"! and T2 = ITIT = 312073, t.e.

:JT2 - T%3 . Congequently, J commutes with T% and therefore, with T.
Moreover, 3 = 37! on & and 32 = 1d ..

Lemma 2,7.: T gommutes with P,3 and R. The equalities JP = (1~(Q)}J,
JQ = (1~P)}3J and IR = (2~R)J are valid.

Proof: (cf. [B,Proof of Prop.2.2.])
The equality T2P = (P=0)2P = P(P-0)2 = PT
with T? and hence, with T. The proof for 0 and R is analogous.
The following equality is valid:

TIP = JTP = (P=0Q)P = (1-0)(P~0) = {1=0)3T = T(1-0)3 .
Since T is injective we get JP = (1-1)] . The equality JQ = (1-P)3
can be proved by enalogous computations. For R we cbtain the sought

2 shows that F commutes

equation adding the first two.

Lemma 2.8,

(1) <F)7> = <IAFIED> for any X, ek,

(i1) <JX), x> Z 0 for any x& X,

<I(R) %> £ 0 for any xg 1K,

Proof: There yields PP = P(1-0)3 = P(P=)Jd = PT3® a PT, Thus,
<J(>‘<).3i>’ + G.J(i)>3—: 0 for sny X< X since T is positive and
P and T commute, {(cf. (1))« On the other hand

0= <I(K)AF> ¢ <AR,I(E)>

= 1-( <K%, (K> - <IR),K>)

for any X € X, (cf. Lemma 2.7.). Consequently, <I(X), %> =<K, IX}> .,
CIE) %2 2 0 for any x €K and <I(§) 57 = O for any ve 1 K.
Furthermore, the equality

0 = 4+ (<19.3(K)> + <IUF) 5§D
= &IFRYTD> - <VLIAUR>

holds for any R,?!Eka(or respectively, %,y€ 1 X), (cf. Lemma

6

2.64)s Thus,

(5) (3(5{),7} = (V,J(f)>6i\h for any X,y € X (or, respecti=-
vely, X,ye 13’5).

If we consider now X=X, +X,.: ¥=¥,+V, ( il,VléfJEf. iz,Vae?iilf)

there yields

G(x) 7>

Ry T + <OKp) Fp> + 1( IRy o1V + <I(1%) 47, )
<3(~71)-Sc':> + QT %> = L-(<UAF,) %> + <Y, )R> )
<P x>

{cf. Loemma 2.7, and (5)). Since F+1X 18 norm-dense in & the

equality <I(X).,.¥> = <I(V),%X>> is satisfied for any X.j € &% ,
)

Corollary 2.9.: J{K) = (1.3"()'L s LK) = KT,

L]

u

This follows from Lemma 2.7.. Finally, we can formulate the
following

Proposition 2,10.:

(1) R and (2-R) are A-linear, injective operators with the pro-
perty O SR£2, 0£2-RS2.

{ii) T is injective and A~linear. T = R (2-R)

{1ii) 3 is conjugate-A-~linear and injective. 32 = 1dge .
For any X,7 € o€ yields <3I(X),¥> = <HT).Z> .

(iv) T commutes with P,Q,R,J.

(v} JP = (1~0)3, 30 = (1-P)J, IR = (2=R)J.

1/2 1/2.

For a bettar geometrical characterization of the operator J we
show

Proposition 2.11.: The operator J defined sbove is the unique
conjugate~A-linear partial isometry with the two properties:

(1) X)) = 1 X4, oy = T

(1i) <3R), K> = 0 for any xe X, O(R),%> Z0 for any xe ik,

Proof: (cf. [B,Prop.2.3.])
The operator J has the properties (1) and (i1) as we have shown at
Lemmata 2.7. and 2.8.. Let K be another conjugate~A~linear partial
isometry satisfying the conditions (i) and (ii) above. We get
{(J)P = J(1=Q)K m P(IK)s 1.€., IK commutes with P, Similarly it can
be proved that JK commutes with Q and, hence, with R and T,
Consequently,
(6)  (IK)(RT) = (RT)(IK) = {{P+Q)(P=-Q)3){IK}) = (P(1-Q)=Q(1~P))K

= PKP = QKQ



= R{(1=Q)P=(1~P}Q) = (KI)(I(P+Q}{P-Q))

» (KJJ(RT) . ~
$ince RT is injective, IK = KJ. Furthermore, from (6) and (ii) we
draw (RT)(IK) Z 0 onH, (cf. Lemma 2.8.). Because of the unique~
ness of the polar decomposition and since RT & 0 the equality
K = 1d5€ must be satisfied, Hence, J = K.

Definition 2.12.: We take A”, & and 1. as at the beginning of
this paragraph. There exists an operator § defined on D{S)=X+1.K"

by the formuls
S(R+§) = K-y , XK , yeik',
y]
The operator S is unbounded, in general. Since 1 & tand K furfal
the conditions -y R {63~ and "(11_’1-1» F4 is dense in K v,

4
also there exists an operator F defined on 0(F)=1](J+ka by the
formula
£

F(%4Y) = %7 o Xel KT ye X7,
It is alsoc unbounded, in general. F and S are closed operators.
Proposition 2.,13.:
(1) F = 353, F = s®,
(i1) ((2-R)S}{X) = (IT)(X) for any X€0(S).
(11i) Taking «J:= (2-R)R-1 the polar decomposition is described

by s = 34Y2, F = 347V/2,

Proof: (cf. [§.§6.Prop.3 )
The equality F=JS) follows from Corollary 2,10.. Taking X € X,
- 23 Z
Jeik, ze1X”, teX " wo getr
<5(x49),24T> = <R-7,248>
<§li‘> - Qob

<E+TF(ZHE) D .
Therefore, FEs™, On the other hand the squality
X722 = GB(R+7).2D> = Ky s™(T)D
is satisfied for any Z€0(s™), xeXE, ye 1K . If y=0 there holds
(2-s™(#))e &K% Taking xa0 we get (2+s™(2))e 1 XL Consequently,
5-1/2'((i*S’(i))&{i-S‘(i)»e D{F}. Thus, FaS™. Furthermore,
((2-r)5)(X+Y) = (2-P-Q)(R~¥) = (1-P)}(X-¥) + (1-Q)(X-¥)

= (1-Q){R) = (1~P)(¥) = (P=Q)(X+¥)
= JIT(X+y)

B
%%
<1
N
N
1
a1l
\v4

for any X€ X", ye i K, There follows (2-R}S=3JT on HS)EH .

From (i) we hav: (35)™=5™J=F3=25 on 0(8), (cf. (5)). Hence, J5 is
selfadjoint. On the other hand (R3IS){X)=T(X) for any X €3(8), (cf.
(ii) above and Lemma 2.7.). Consequently, Ds(§)=((2-R)1/2R-1/2)(§)
and ie(ﬂzﬁi/z). Therafore, Jsigzﬂa/z and since selfadjoint opera=-
tors are maximal JS=A71/2. The second equality can be proved in

a similar way.

Corollary 2.14.: JY*% = 4 VXA, A4YV4iK) = A7V %

Remark 2,15.: The naturally arising question is why we did not

treat the subject of §2 in the following way:

First, suppose A being a & -finite w‘-algcbra. Then,there exists a
normal faithful state f on A and &€ can be completed to o Hilbert
space él; with the inner product (<, >). lnvestigating“?(}. the
norm=completion of kX in é?}. we would get operators P,0gsReiJy
Tf and éjf on L(? as done at [9.551.2}. There would “remain" only
to restrict all these operators t0<ﬁ7§}(;.

Secondly, we would generalize these results for non-#& -finite
ﬂ’-algebras A using the construction of fi,p.164].

But, unfortunately,all these oporators, in general, do not leave
2{’§:Zﬂ invariant and/or ure notcg(h)h—linear, at lcast if ~» is
not comwutative (cf. §5 of this paper).

Therefore, we can make usc of this methol only if the cxistence

of the appropriate module operstors is already known, Lo,we will
do in the following paragraph. ’

Horeover, it scems to be pos.ible to yenerulize tae results of
tihiis paragrepih if ~ is assumed only to Le any commutastive C’-alge»
bra., The condition (1ii) for A7 reformulates then as follows:
(iii)” 7 is a real self-dual Hilbert ~p-subncdule of FE o

For suggestions in this direction look at .4 of the present paper.

83 One-parameter aroups and the generalized K.il.8,., condition

In this paragraph we consider strongly continuous unitary one-
paraneter groups on self-dual Hilbert w®-nodules A satisfying a
generalized K,M.5. condition with respect to real subspaces-7%/.
as they were dcfined at §2 of this paper. cspecially, supposing A
to be commutative, we define the group {4ﬂit: tea%? in terms of
the operator R related to J(;’:‘X » This group is obtained to be
characterized by the generalized K.1.5. condition, We remark the
close ralations of our results to the results of M.A.Rieffel,
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A. van Uaele @.53} and to the subject of F.Combes,H.Zettl [?.53] .

Suppose A 1s a commutative w.-algebra. According to Theorem 2.10.,
{1.}s R and (2=R} are both injective, A~linear, selfadjoint positive
operators for which 0SRE2, 0 S(2-R}Z2. From @O.Th.l.il.BJ we
draw tho spectral representation of R and {2-R)}. The spectrsl mea-
sure, therefore, is concentrated on the open interval (0,2). Now

we can define the one~parameter gfoups rRY and (2-R)1t. t< R,

since the map N — )\1t is correctly defined, bounded and conti-
nuous on (0,2) for any teR. These groups comnute and are strongly
continuous on K . Moreover, the equality

(7) 3wy . (2-r)"1t

is satisfied for any telR., {cf. Prop.2.10,.,(5.)), where the minus
sign in the right exponent 1is caused by the conjugate~A-linearity
of J.

definition 3.1.: Let Aﬂit:s (2-R)1tR‘it, teR, so that gﬂit: te{R}

is & strongly centinuous unitary one-parametsr group defined on 2€.

Proposition 3.,2.,t For any t€[R there holds :
(1) JAit - Aita‘ ) )
(11) Aizuo :x.éii%:ﬁ) K -
(11 A4 il‘—dl/i%ﬂf’%] /83y )= A (1]<')_]1_=
- S5
A A Ak -
Proof: (cf. [B,Proof of Prop.3.3.])
According to {7} we get
JAit - J(Z—R)itR-it
R'itJR-it
R (2-r) 1%

- Aitj

for any t¢[R since R

]

1t and (2-R)itcommute. 1.8.s the QVOUPZZjit:

te[R‘ commutes with J. Since this group is a function of R it
commutes with T and R. Thus, it commutes with P and Q. Conssquently,
éjit(}{)§§5k/and also Lj-it(lf)ﬁQ}fsince te(R is arbitrarily
chosen, 1.9..‘£jit(}{} = &/ . The other equality cean be proved in

the same way. The connection {1ii) follows from Corollary 2.14..

Suppose now A 1s a w‘-algabra. non commutative in general. Ve re=
mark that an A-valued function g defined on D{(g)S € is called to
be analytic if g is strong analytic in the sense of [@.Prop.Z.S.ZiJ .

10

Definition 3.3.: (the generalized K.M.5. condition)

Let A be & w’-algebra and F be a self-dual Hilbert A-module. A
strongly continuous unitary one-parameter group {Ut: teﬂR} defined
on;k? is said to satisfy the generalized K.M.S5. condition with
respsct to the real norm-complete subspaca.}(’of Qk? , K boing
invariant under the action of ‘}(A)h and satiefying the conditions
(1) = (11i) ar the beginning of §2, if for any X,¥ € X thare exists
a map g: €L —» A defined, bounded and continuous on {i:-lﬁim(z)éfo}
and analytic in the interior of this strip, with boundary values
given by

o) = <UR).FD
g(t-1) = <Y.u (3)> .

for any teR.

Proposition 3.4.: Such a functrion g as it 1s defined by Definition
3.3+ is unique.

Proof: Suppose thsro are two functions g and h with the same given

properties. Furthermore, first suppose A being g ~finite. Then ,
there exists a normal faithful state f on A and the complex-valued
function f((g-h)(g-h)’) is defined, bounded and continuous on

{z: -1§;Im(z)§§O}, analytic in the interior of this strip with
trivial boundary conditions., Sy {6.9.195] this function must be
enual to zero on tne given strip, (cf. Remark 2.14.). Consequently,
g=h on {z: -1 :{Im(z)gof.

If A is not & -finite by [i.p.lﬁ{] there exists an increasing
directed net {n,,: o< 61} of projections, p, €A, such that g Ap, is
6 ~finite for any < € I and wh=lim Poc = « Investigating the
Hilbert p Ap,~module 7(«={p°<x. Py <l.‘> Pocl s k;ctp,‘»)(and the funce
tions P .gpus PubhPa fOor any o< €1 we got pudPu=Puhp. on the strip
{}: «1‘gim(z)§§0}. Hence, g=h on this strip.

Proposition 3.5.: Suppose the situation given in Definition 3.3..
A stronjly continuous unitary one-parameter group {Ut: téﬂ%} on
F satisfies the genaralized K.M.5. condition with respect to x
if and only 1f for any X,y € X there exists a function g: G A
dafined, bounded and continuocus on {i: —1/2;5x¢(z);£o}. analytic
in the interior of this strip with boundary conditions

g(t) = <fUt(§}.§c> for any telR,
g{t-1/2) & An for any t€R.

1
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Proof: If X,7 € X are given we define g{a-bi):i=g(a~(1~b)i)* for
any number a€lR, be[i/z,f]. This function is defined, bounded and
continuous on {é: -1:§Im(z)450}‘and has boundary wvalues

oty = <U(%).5D .

g(t-1) » &F.U (X))
for any t €R. If f 1s an arbitrary normal state on A tne construc-
tion above gives us the Schwar z reflection principle applied to
the analytic function f(g(z)) along the line Im{2Z)=-1/2 i.e.,
f(g(z)) is analytic on {i: wiiflm(z)égo}for any normal state f on A.
Therefore, g is analytic on this strip.
Conversely, suppose the generslized K.M.S5. condition is valid and g
is the Ke1.Se function, Odfining another function h: € — A by the
formula h(z)::g(z-i)l we have two functicons g,h with the same pro-
perties and boundary velues. Since the K,il.Gs function is unique
{Prop. 3.4.), g=h and g(t~1/2)=h(t-1/2)=g(t-1/2)’ for any t€[R.
Consequently, g(t--:l./Z)e'Ah for any teiR.

Now we return to consider the group {2ﬂit: teﬂz} in the case of A
being commutative.

lLemma 3.6.: For any complex number z with lm(z):fO wz can define
the bounded operator Riz. The map z w3 Riz is strongly oszermtor
continuous on 3z: Im(z)é{O} and analytic in the interior of this
set, It is uniformly bounded on horizontal strips of finite width,
The same results are trus for (2~R)iz.

Proof: (cf. [B.Proof of Leuma 3.6.])

The spectral measure of R is supported on the open interval (0,2).
For any complex number z with Im(z)=£0 the function )\__’_)M}z is
bounded and continuous on (0,2). Thus, we can Jufine Riz. uince
})‘izlsz-lm(z) 1f A € (0,2) and since 1m(z)% O by supposition
there follows that R12 is uniformly bounded on horizontal strips of
finite width. tlow let x € & and {EE: €>k‘3 be the spectral resolu=
tion of R. Than,the restriction of R to (1-E. ) has its spectrum in
(£ .2) and so has bounded logaritnm. Consenuently, tihe function
Riz(i-Es)§ is analytic in the entire complex plane., Since R is in-
Jective.(i-ﬁE)X converges to X as £ gjoes to zero. Thus, Riz(l-EE)?
converges to Rlz(ij. in fact uniformly on horizontal strips of finite
width where Im(z)<0 since Riz
the map z —» Rizi is continuous on {i: Im(z):so} and analytic in
the interior of this set.

is uniformly bounded there. Therefore,
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Proposition 3.7.: The one-parameter group Ajit defined in Defini-
tion 3.1. satifies the generalized K.M.3. condition with respect

to:kf.

Proof: (cf. [B.Proof of Prop.3.7.])
Let X,7€X. s can not set g(z)= Q}iz(i) .\7> since thig 1s un-
defined, in general, on {i: -1/2$:1m(z)§§0}. But we obtain

2% = 2P(X) = (R+TI}{X) = (R1/2(R1/2+(2-R)1/23))(i)

and, therefore,

(8) ¥ = RY2(Z) where Z = 1/2+(R
Then

(9) A (%) = ARVEE) = (2-r)RYET(E)

and we can define a function
12 .1/2~ =y =
g(z) = <<(2-R) 2p1/2-12 5y 5™

on {;: -1/2§§Im(z)§50}. This function is defined, bounded and con-
tinuous on {i: -Lﬁzglm(z)ggo}'and analytic in the interior of this
set, since Lemma 3.6. 1s valid and the multiplication of operators

172, 2-r) 123 ().

is strongly continuous on bounded gets. Using (8) wo get

g(t) = <:Zjit(§).7t> for any te[R.
There remains to show g(t-i/z)e}ﬂ]for any t€R, The cquality
(-0t 2= Y21 (5),50 |, cf. (9)
<At (2= Y 2(3) W
<(z-)M2(z), A5 >

is satisfied where

L]

g{t=-i/2)

#

it

2(2-R)12(zy = (2-0) V2RV 24 (2-0)23) (%) , cf. (9)

{(T+3R)(X) + cf. Prop. 2.10.,(5.)
J (TI+R)(X)

23P(X)

23(%) .

]

[

[

B

Consequently, g(t-i/2)=<f5(§).‘ﬂ—it(§):>€ Ay, for any t€R because
of Corollary 2.9. and Proposition 3.2., (ii).

‘e want to prove

Proposition Z.8.: The group 1% : teﬂ?} is the unique strongly
continuous one-parameter group of unitary operators onézg mapping
X onto X and satisfying the generalized K.M.S. condition with
respect to K.
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For this end we show the more general

Theorem 3.9.: Let A ba any e’l.-algebra and let ?f’..k‘ as in paragraph
two. Let {vt: te‘[}%} be a strongly continuous unitoary one-parameter
group on &, mapping X onto & and satisfying tae goneralized
nellabe condition with respect toX”. Then,tais group is the unique
strongly continuous unitary one-parumcter group with these proper—

tics.

i'roof: Let {Ut: te[R} te another such yroup on K. want to show
Utzvt for any tel.

First, suppose A to be £-finite and let us denote a narmal faith-
ful state on A by f. /e extend tho Loth one-parameter groups from

H€ to the Hiltert space )ff. Zf' being the complotion of K with
respect to the norm f(6.°>)1/2. {cf. D’.Prop.Z.GJ). The extendod
one-parameter groups are stronyly continuous and unitary on Xf.
They map ‘](f anto j(f. vihar: 74 denotes the norm-completion of A7
in Jff. algo they satisfy thne K.i.5. condition with raspect to .7\/f
what can be secn applying f to the generalized k.il.5. condition for
{Ut: telR} and {Vt: té’lR}. regpectively. Consequently, from
[B,Th.3.8.,Th.3.9.7 we derive Ve=U, + t€R, on ;E; and by construc-
tion also on X .

wacondly, if now A is supposed not to be &~finite there exists a
direscted incraasing net {p,(: o(GI} of projections of A sitise
fying wh-1lim Re=l, such tiat p.Ap. is a & -finite #*-algebra for
each & €1, Looking for the Hilbert p Ap,-wodule ,;Zj;::{p;o(%p.('é-}»g(}.
K i=p K, and the groups {p_(ut: tem }. {p,xvt: tem} vz get
pdutzp,,vt on R«X for each o< € 1, for any tem®. Therasfore, U,=v

t
for any t€iR on K, 50 we are done.

W#e remark that for Corollary 3.8. an appropriate genaralization of
the proof at [Q.Th.B.U.] con be realized. But it will be larger
than the present one.

Theorem 3.10.: Let A be any ‘-V'-algebra and let A, & as in para=
graph two. Let {Ut: te[R} be a strongly continuous one-parameter
group of unitaries on €. Suppose that ko is a3 real submanifold
of H being invariant under the action of }(A)h and such that
{Ut: teR} satisfies the generalized K.M.5. condition for ‘Yo'
Then {Ut: tem} also satisfies the generalized K.M.5. condition
with respect to the smallest real norm~closed subspace, K, in-
variant under {U, : teR}, containing }'/o and satisfying A= [»7(_7;.

t
Furthermare, Xn 1X ={8}, so that if we let #€, denote the nora-
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closure of K+i ¥, then we can defineg A1t teR} on }fi using X,
Then 3(1 is iovariant under {EJt: te®R}) and Utsdit for any t€R on

1’1'

Proof: {(cf. [B.Th.3.9.0)

The proof is exactly the same as for B.Th.B.Q.}. Tha only diffi-
cult point is to prove that Ylu EK ]; « Indeed, let 755(;. let
{i.(: ¥, ekl. w € I} be a bounded net and let gy be the gensralized
K.M.S. function (onfz: -1£1n(z)£0F) for the pair (X .¥). Assume
that {i“.(: o € 1} converges to %z € A with respect to the‘t&-topology.
Furthermore, first assume A to be G’-finite. and let f be an arbi-
trary normal faithful state on A. Then, applying the maximum modu-
lus principle on the strip {z: ~1§1m(z)§o} to the function
f(gk-gp) we obtaln

HERRTET IS R A IE S SR ES A Do hd
for any d,ﬁe 1 and, hence, {f(gd}: o(éI} is a uniferm Cauchy

net of complex=valued functions being bounded and continuous on the
given strip and analytic on its interior. Moreovar,

Lin f(g (1)) = lim F(<CU(X).5>) = F(<U(R).5>)
€] €1

so that this Cauchy net converges uniformly to a function f_ being
lefined, bounded and continuous on the given strip and analytic on
its interior. Moreover, there holds fg(t—i)‘=fg(t)=f(<fht(i).7:>).
since f was arbitrarily chosen, by [i.Prop.2.5.21;] thers has to
gxist an A-valued function g which is defined, bounded and conti-
nuyous on {i: -1§;1m(z)§§0} and analytic on the interior of this
strip, ond which satisfies thz boundary conditions

g(t-1)" = g(t) = <U (%),§> for any teR.
Therefore, if A is & ~finite there holds Xl - fSYi J.:..
Suppose now A to be non-&-finite. Then,there exists a net Boc $
pc €A, < €1} of projections such that p.Ap. is &-finite for any
<€l and w'-lim p = 1,. Consequently, 9.,43(1'[&(](1]; for any
o< €1 and, hence, K= [%3,. The desired statement is proved.

B4 An interpretation on locally triviel Hilbert bundles

In two papers of R.5.5wan [11] and J.Dixmier,A.Douady [3] it was
stated that for every locally trivial Hilbert bundle (:(E.X.p.H)
with compact basis X the set of all continuous sections [ { f) is
a Hilbert C{X)~uodule. Later A.0.Takahashi ELE] has proved that
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for evary compact space X the category of Hilbert G(X)-moduliy &
is equivalent to the category of locally trivial i{ilbert bundles
f’z(E,X.p,H). The equivalence is realized by the map Ao «> ™( {’).
{(cf. @.Th.G.llJ). Thus, a GC(X)=~ linear opsratar on S can be
interpreted as an operator on r’(t’) leaving the fibres invariant.

Now let X be hyperstonian. Let be a Hilbert bundle over X with
the fibre H. For our purpose the iilbert bundle {T must be "full”
in that sense that & =] f) has to be self-dual, cf. Theorem 1.2..
Let :kfé%@kf"(f') be as in 52 of the present paper. If we fix some
x€ X and regard xxaﬁi(x): FeX}<cu, .1/>(={;?(x): xe X} £ H, the
classical Tomita-Takeosaki theory on H obtains the bounded operators
PX.QX,RX.TX.JX.AJ:t (teR) for the pair (A, X]). All these opera-
tors can be continued to bounded operators on H. For the global
operators defined by (€, %) we get the following property:

(10)  (U(X))(x) = U (X(x)) for any xex, XX =["({),
for Us P,0,R,T,3, A (tem).

Therefore, in our setting we could define these global bounded
operators for the pair (XWX} by the formula (10) only splitting
the appropriate bounded operators for the pairs (.Z;,Sl(x), x €X,

on X.

The natural question arising from this obssrvation is whether or
not this could be done if we merely suppose that X is any compact
spaca.é&’a[’(f’) is the set of continuous sections of any locally
trivial Hilbert bundle € over X and X is a Hilbert C(X),-module
out of &€, satisfying the conditions (i) and (ii) at the beginning
of §2 7

If both X and A are self-dual the global operators P,Q,R,T,J can
be defined in this way. (10), by the eppropriate local operators.
For the strongly continuous unitary one~paraneter groupsék?it:x X,
t€[R} the splitted group {Ait: tGCR} maps 5’(’:/"({’) into a laryer
class of sections of the Hilbert bundle f', in genersl. Thersfore,
this question must remain to be unanswered.

55 Remarks on the non commutative case

Let A be @ noncommutative w'-algebra and &€ be 8 self-dual Hilbert
A-module. Let X be as defined in §2 of the present paper. The
following axample shows the difficulties arising if we try to re-
peat our conception for the noncommutative case.

Example 5.1.: Lot A-Endc(lz} where 1218 the countably generated
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Hilbert space. Leték?:lz(A)'aﬂd\jfﬂlz(Ah)'n (cf. [a])y. ve wunt to
define the 2(A), -linear projections P: X —3X", 1: £ —> 1 K,
If {éit i=1,..0en, aiei\} € is a sequence of finite length and
if a,=8,,43,,1, (ay4.a,, €A ), we would define

P: o fa;: iemI—> {a,,: 1emi

0 {aiz iem} —» {a21: 1 e}
by analogy to the (unique) decomposition of each element a,€n.
tiow we take the elemant b= {bi: byea, ieﬂq}elz(h)' where

bi: fl-—é é.i ]
BJ-——) 6 .Jfl:

X, = -

bi. 8y — El »
éj——;» O . 3 ¥ 1.

(if {5&: 1€ N} denotes the standard orthonormal basis of (/) ).
Therefore,

Pifo,: 1emF  — fi/2-(b a0t semd

by definition, But the sequence {1/2-(b1+b;): 1€} does not
belong to 1,(A)". To see this we look at

V""[ﬁ' (b1+b:)2](€1) = (M3)/4.8, . NEN.
i=1

Obviocusly the sequence above diverges and, hence, P(E) doess not
belong to 12(A)'. The condition being equivalent to P(E)e‘lz(a)’
for a certain 5E12(A)'is

{ali: 160N, ag=a, +a,,1, Ay 08, € Ah‘}é‘lz(A)' .
The set u(P) of all such elements &€ 1,(A)* yields [o(P)]_ =,
but D{P) 1is not norm-dense ind€,
If we sum up our results we obtain that P and Q are unbounded
éi(A)h—linear operators on & with not norm-dense, different
ranges of definition D(P),0(%) for which 2’=E)(P)]_;=[L.)(Q)J; =
=E}(P)n 9(n) ] « The operator R=P+Q is the identity operator on
#€ being A=linear. The operator J is unbounded conjugate~a~line=
ar and it is defined on D(P)AU(Q). J acts there by the formula

J: a=fa, ieﬁ‘d}-——-—-—)ﬁa;; 1en) .

I.e., if A is an infinite-dimensional noncomautative W.-algebra we
can not repeat the bounded operator approach of this paper! The
main resson is the unequivalence of the convergence of the series
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i >

E 2 E n
a.s and a,a

o1 i®i = 14

for sequonces {31: aie;‘\}elz(.ﬁx) in A, in generzl.

Now woe discuss ths case of A being noncomuutative and finitew-
dimensional. In this case A can be assumed to be & cogplex wutrix
algsora of finite dimension. The main phanomena will be shown by
the following example.

Sxample $542.: Let A be a finite-dinznsional C.-algebra and lat
Z=A with the A=valued inner product <G,B> =ab®, a,be &, Lot
JKEAh. since A is finite-diuensional the norm induced on A= by
the complex=-valuel inner product f{«%,<>) is equivalent to the
given Hilbert norm on & for any faithful positive {normal) state
f on A, by [A.Th.Z} for the positive faitnful state f therc sxists
a bounded linear operator C on & such tuat

(i)  f({ <a.b>)=tr{ <B.S(b)>) for any a,beX.

(i1) oZc=c™ respectively to tr{<%, ) and to F{<F, >,

(iii) There exists ¢t being bounded and linear.

Oy the enuality

tr(<2,3(1,)0>) = tr(<ab,o(4,)>) = f( <ab,1,>>)
= f(<abD) = tr( <a,C(b)>)

for any a €&, b €& there turnc out that

(b)) = C(%A)b for any b €& (and by complex linecarity far
any b € &),

Thaerzfora,
f( <a,6>) = tr(<a,b> 2(4,)) for any a,b € A

and C(4) is o selfudjoint positive element of #€=A, the eigen~
values of which arez all gresater then zero.
Since we can not regard J< as a reel (self-dual) Hilbert submodule
of € and since tna Hilbert norm is eguivalent to tas norm
f(<?.€>)1/2 for any faithful positive state f on A,we would like to
define the projection P:H ~» & as the projection P¢ mapping the
real Hilbert space { & Re f(<%,->)} onto the real Hilbert subspace
{x: Rre £(<<,>)3. But, unfortunately,such a projection P¢ depends
on the choice of f t If fatr we get P _: aeX—n 1/2(ava) € X,
This projection is ;;(A)h-linear and bounded by one. If f is now

an arbltrary faithful positive state on A and if we suppose Pf'Ptr
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by (i)} we obtain the equality (if asa,+a,i ed, 248, €4,)

tr({a,b + bal)-cf(iA)) = f(a,b + ba,)
= f(ab + ba)
= tr((a;b+baj+i(a,b-bay))rce(4,))

for any a « &, be X, (cf. Proposition 2.4.,{1))s Therefore,

L}

0 tr((agb-baz)ccf(ig))

tr(b-cf(gA}oaz - aZ'Cf(jﬂ).b )

L]

for any a,,b £J?;Ah. This is true if and enly if G, (4,) is a dia=-
gonal matrix. But, since f is arbitreorily chosenstie matrix Cf(lA)
can be any selfadjoint positive matrix with strictly positive
eiganvalues.

This is a contradiction to our supposition Pf=Ptr.

Therefore, Pe=P if and only if Cf"h) is a selfadjoint positive
diagonal matrix with strictly positive elenznts,

Summing up we have to ask whether for each finite C'~alqebra A and
for any given #€ and X7 axists a faithful positive state f on A such
that the induced projection Pf:}f-—4>kais F(A)glinear  and

bounded by one with respect to the Hilbert norm on o . Unfortunato=-
ly, we are not able to answer this quection at present,
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$panux M. E5-87-95
OﬁHOHapaMeTqueCKHE T'PYILibl, BO3HUK A:Hue
B BeUeCTBEeHHOM NOANpOCTPAHCTEE aBTOAYAlIbHBIX
TuIb6epTOBLIX MOIYIIEH
O6obmanTtes pesynbrartel M.A.Pubens v A. dau [Jlana nng

runeBeproBpx C¥~Momyieil HAL KOMMYTATHUBHEIMH W*—anre@panu.
HavyawTcas HEKOTOpLIe CHelMAIbHbE BelleCTEReHHbie NOoHNpOCTpaHcT-
Ba TAakUX THNbGepTOBBX W¥~MOAyneil M OTHOCSNHMECS K HUM ornepa-
TOPH. B HACTHOCTH, YCTAHOBIEHO COOTHOMEHHE MEeXOYy CHIBbHOHe-
ApEephiBHBIME YHHTAPHBIMM OIHONApaMeTpH4YecKHMH Cpynnamm onepa-
TOPOB, CBA33HHHMH C HUMH, H 0600meHHbM YycjgoBueMm KMIl. Bcece
raasHne onpegeneHud cHopMynupoBaHe 8e3 npeanoChlyIKM KOMMYTa~
THBHOCTH Noanexamedt W*-anveﬁpm. Haercst uarepliperauudst 3THX
PEe3YIbTATOB I MHOKECTB HENpephiBHHX cedeHuil 'aBToayanbHHX,
VIOKANTbHO TPHMBHAJIBHLIX TUNBOEpTOBLX PACCIIOeHHH Han KOMMAKTHLI
MH TPOCTPAHCTBAaMH.

PaBora suitonHeHa B JlaGopaTtopuu TeopeTHdeckoH GHIUKH

OUAHN.
Tpenpuit O6beHHEHHOIO HHCTHTYTA AfEPHBIX HecaeaoBaHuA. [lyGuaa 1987

Frank M.

One-Parameter Groups Arising from Real
Subspaces of Self-Dual Hilbert W*-Moduli
The paper generalizes the results of M.A.Rieffel and
A. van Daele for Hilbert C*-moduli over commutative W¥-al-
gebras. Some special real subspaces of such Hilbert W¥-mo-—
iduli and the related operators are investigated. Particular]
ly, the relation is established between strongly continuous
unitary one—parameter groups of operators arising from themn
and the generalized K.M.S. condition. All key definitions

are formulated without any commutativity supposition for
the underlying W*-algebra. The interpretation of these re-
sults is given for sets of continuous sections of "self~
dual’ locally trivial Hilbert bundles over compact spaces.
The investigation has been performed at the Laboratory
of Theoretical Phygics. JINR.
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