

# объединениый ИНститут ядериых исследований <br> аубиа 

E5-87-95
M.Frank

ONE-PARAMETER GROUPS ARISING
FROM REAL SUBSPACES
OF SELF-DUAL HILBERT $W^{*}$-MODULI

Submitted to "Mathematische Nachrichten"

## Si Introduction

A (left) pre-Hilbert A-module over a certain $c^{\text {m}}$-algebra $A$ is an $A-m o d u l e ~ \mathscr{X}$ equipped with an $A$-valued non degenerate conjugatebilinear mapping $\langle\rangle:. \mathcal{X} \times \mathcal{X} \rightarrow \mathrm{A},\langle\cdot$,$\rangle being A-11$ naar at the first argument. $\mathcal{X}$ is Hilbert if it is complete with respect to the norm $\|\cdot\|=\|\langle\cdot,\rangle\|_{A}^{1 / 2}$. We suppose always that the linear structures of $A$ and of $\mathcal{H}$ are compatible. For basic facts concerning Hilbert $C$-moduli we refer to [ 7 ]. A Hilbert A-module X over a $C^{*}$-algebra $A$ is called self-dual if every bounded module map $r: \mathcal{X} \longrightarrow A$ is of the form $\langle\cdot \vec{\theta}\rangle$ for some $\bar{a} \in \mathcal{R}$. In this paper we restrict our attention mainly to Hilbert $\mathrm{i}^{\mathrm{n}}$-modu11 . For them some more facts are known as in the general case. ite need the following ones :

## Definition 1.1.: $[4,0 \in \mathrm{f} .7]$

Let $A$ be a $W^{(m-a l g e b r a, ~} \mathcal{X}$ be a pre-Hilbert $A-m o d u l e$ and $P$ be the set of all normal states on $A$. The topology induced on $\mathcal{X e}$ by the semi-norms

$$
f(\ll \cdot>)^{1 / 2}, f \in P
$$

is denoted by $\tau_{1}$. The topology induced on $\mathcal{X}$ by the ilneer functionals

$$
\mathrm{f}(<, \bar{y}\rangle), \bar{y} \in \mathscr{C}, \text { fep, }
$$

is denoted by $T_{2}$.
We remark that, in general, the topology $\tau_{2}$ is waeker then the
topology $\tau_{1}$, and that they are both weaker then the norm topology. Throughout this paper we use the following notation. If $\mathcal{K}$ is a subset of the Hilbert $w^{k}$-module $\mathcal{X}[X]_{\tau}^{-}$denotes the set $\left\{\lambda \bar{x}: \lambda \in \mathbb{R}_{+}, \bar{x} \in \mathcal{X}_{0}\right\}$ where $\mathcal{K}_{0}$ is the $\tau_{1}$-completion of the set $\{\bar{x} \in \mathbb{K} ;\|\bar{x}\| \leqq 1\}$.

## Theorem 1.2.: [4.Th.9]

Let $A$ be a $W^{\prime \prime}$-algebra and $\mathcal{X e}$ be a lilbert A-module. The following conditions are equivalent :
(i) $X^{X}$ is self-dual.
(ii) The unit bell of $\mathcal{X}$ is complete with respect to the topology $\tau_{1}$, i.e. $\mathcal{X}=[\mathscr{X}]_{\tau}^{-}$.
(iii) The unit ball of $\mathcal{H}$ is complete with respect to the topology $\boldsymbol{T}_{2}$.
Corollary 1.3.: [4,Cor.11]
If $A$ is a $w^{*}$-algebra and $\mathcal{H}$ is a self-dual Hilbert A-nodule the linear span of the range of tite A-valued inner product on $\mathcal{X}$ becomes both a $W^{n}$-subalgebra and an ideal in $A$.
Theorem 1.4.: [7.prop.3.10.]
Let $A$ be a $w^{2}$-algebra and $\mathcal{Z}$ be a self-dual Hilbert A-module. Then, the set $E_{A}(\mathcal{X})$ of all bounded A-linear operators on $\mathcal{X}$ is a $w^{*}$-algebra.
These facts make clear that in the case of $\mathcal{H}$ being a self-dual Hilbert $W^{*}$-module, the spectral theorem ( $[10, T h .1 .11 .3$.$] ) is$ valid for each self-adjoint element of End $(\mathcal{Z})$. Moreover, there exists a polar decomposition for each element of End $(\mathcal{X})$ in End $_{A}(\mathcal{X e})$. This is of importance throughout this paper. Now let $A$ be a commutative $W^{n}$-algebra. $\mathcal{Z}$ be a self-dual Hilbert A-module. $\$^{2}$ deals with real self-dual Hilbert $A_{h}$-submodules $\mathcal{K}$ of $\mathscr{F}$ and with some bounded operators arising from them. In particular, a conjugate-A-linear involution $J$ on $\mathcal{Z}$ with respoct to $K$ is defined. $\S 3$ investigates the strongly continuous oneparameter group $\left\{\triangle^{i t}: t \in \mathbb{R}\right\}$ defined for each $\mathcal{K} \subseteq \mathscr{X}$ on $\mathcal{X}$. The relation of this group to a generalized k.it.s. condition is established. We remark that the main definitions of 92 and 83 are formulated without the restriction to $A$ to be commutative. 54 gives on interpretation of the results of the former paragraphs in terms of locally trivial Hilbert bundles over hyperstonian compact spaces. In $\$ 5$ some aspects of the general noncommutative case are discussed. Other applications can be found in [5].

S2 On some real subspaces of self-dual Hilbert $W^{*}$-moduli and related parators
Let $A$ be a $W^{*}$-algebra and $\mathscr{X}$ be a self-dual Hilbert A-module. Te suppose without loss of generality that the linear span of the range of the $A$-valued inner product on $\mathcal{X}$ is identical with A. (cf. Cor.1.3.), Let $K$ be a norm-closed real subspace of $\mathcal{X}$ being invariant under the action of $\mathcal{Z}(A)_{h}$ ( the selfadjoint part of the centre of $A$ ) and having the following properties :
(i) $X \cap \in K=\{\overline{0}\}$.
(ii) $K+1 X$ is norm-dunse in $\mathcal{X}$.
(ii1) $K=[X]_{\tau}^{-}$.
As an example one can take $A=\mathscr{H}$ and $A_{h}=\mathcal{K}$. The following assertions make clear why the third condition above is necessary. Definition 2.1.:
$\mathcal{X}^{2}=\{\bar{x} \in \mathscr{X}:\langle\bar{x}, \bar{y}\rangle+\langle\bar{y}, \bar{x}\rangle=0$ for any $\bar{y} \in \mathcal{K}\}$.
proposition 2.2.: $\mathcal{K}^{1}$ is a norm-closed real subspace of $\not{H}$ being invariant under the action of $Z(A)_{h}$ and satisfying the conditions $\mathcal{K} \cap \mathbb{K}^{+}=\{\overline{0}\}, X^{+}=\left[\mathbb{X}^{+}\right]_{\tau}^{-}$
proof: The connection $\mathcal{K} \cap \mathcal{K}{ }^{4}=\{0\}$ follows from the non degeneracy of the $A$-valued inner product on $\mathcal{X}$. The equality

$$
\begin{aligned}
\langle\bar{y}, a \bar{x}\rangle+\langle a \bar{x}, \bar{y}\rangle & =\langle\bar{y}, \bar{x}\rangle \cdot a+a \cdot\langle\bar{x}, \bar{y}\rangle \\
& =a\langle\bar{y}, \bar{x}\rangle+\langle\bar{x}, \bar{y}\rangle-a \\
& =\langle a \bar{y}, \bar{x}\rangle+\langle\bar{x}, a \bar{y}\rangle \\
& =0
\end{aligned}
$$

$=0$
( $\quad \in \mathcal{Z}(A)_{h}, \bar{x} \in \mathbb{K}^{2}, \bar{y} \in \mathcal{K}$ ) shows that $\mathcal{K}^{2}$ is a real subspace of $\mathcal{H}$ being invariant under the action of $z(A)_{h}$. If we consider a bounded set $\left\{\bar{x}_{\alpha}: \bar{x}_{\alpha} \in \mathbb{K}^{+}, \alpha \in I, \tau_{2}-11 m \bar{x}_{\alpha}=\bar{x} \in \mathcal{X}\right\}$ we get
$0=\lim _{\alpha \in I} f\left(\left\langle\bar{x}_{\alpha}, \bar{y}\right\rangle+\left\langle\bar{y}, \bar{x}_{\alpha}\right\rangle\right)$
$=f(\langle\bar{x}, \bar{y}\rangle+\langle\bar{y}, \bar{x}\rangle)$
for any $\bar{y} \in \mathcal{K}$, any normal state $f$ on $A$. I.e.. $\bar{x} \in \mathbb{K}^{+}$and, thus, by theorem 1.2. $X^{1}=\left[X^{1}\right]_{\tau}^{-}$. The norm-completeness $1 s$ obvious now.
Corollary 2.3.: $\left(K^{\perp}\right)^{\perp}=K$.
Therefore, we have shown the necessity of the condition (iii) above. We remark that this condition is satisfied automatically if $A$ is finite dimensional.(i.e...particularly, if $\mathcal{X}$ is a Hilbert
space). Now we pass on to considerations about the properties of such real subspaces $\mathcal{K}$ of $\mathcal{X}$ supposing $A$ to be commutative.

Proposition 2.4.: There exist two $A_{h}-1 i n e a r$ projections $P: X \rightarrow X$ and $Q: \mathcal{X} \longrightarrow 1 \mathcal{K}$, the operator norms of which are equal to one. They fulfil the equalities

$$
\begin{align*}
\langle P(\bar{x}), \bar{y}\rangle+\langle\bar{y}, P(\bar{x})\rangle & =\langle\bar{x}, P(\bar{y})\rangle+\langle P(\bar{y}), \bar{x}\rangle  \tag{1}\\
& =\langle P(\bar{x}) \cdot P(\bar{y})\rangle+\langle P(\bar{y}), P(\bar{x})\rangle \\
\langle Q(\bar{x}) \cdot \bar{y}\rangle+\langle\bar{y}, Q(\bar{x})\rangle & =\langle\bar{x} \cdot Q(\bar{y})\rangle+\langle O(\bar{y}), \bar{x}\rangle \\
& =\langle Q(\bar{x}), Q(\bar{y})\rangle+\langle Q(\bar{y}), Q(\bar{x})\rangle
\end{align*}
$$

for any $\bar{x}, \bar{y} \in \mathcal{X}$.
Proof: We can consider the real self-dual Hilbert $A_{h}$-module
$\left.\left.\mathscr{C}_{x}=\{\mathscr{C},\langle\cdot\rangle\rangle\langle *\rangle\right\rangle^{*}\right\}$ since $A_{h}$ is a real w-algebra with
 real self-dual Hilbert $A_{h}$-submodule of $\mathcal{Z}$. From [4,Th.9, Proof] we draw that $\mathcal{L}=K_{+}+K^{\prime}$. Thus, there exists a projection $P: \mathscr{K} \longrightarrow \mathcal{K}$ defined by the rule $p: \mathcal{C}^{\prime} \rightarrow \mathcal{K}^{\prime}$. The projection satisfies the condition (1) by its definition and it is $A_{h} h^{-1 i n e a r}$. Keeping in mind that $P$ acts on $\mathbb{X}$ as the identical map the inequality

$$
\begin{align*}
\langle\bar{x}, \bar{x}\rangle & =\langle(P+(1-P))(\bar{x}),(P+(1-P))(\bar{x})\rangle  \tag{2}\\
& =\langle P(\bar{x}), P(\bar{x})\rangle+\langle(1-P)(\bar{x}),(1-P)(\bar{x})\rangle \\
\equiv & \equiv\langle P(\bar{x}), P(\bar{x})\rangle
\end{align*}
$$

being valid for any $\bar{x} \in \mathscr{X}$. shows $\|P\|=1$. The proof is analogous for $Q$.
The projections $P$ and $Q$ do not commute, in general. We define R:m $P+Q$ and JT:m $P-Q$, where $T$ is a positive selfadjoint operator and $J$ is a partial isometry.

Lemma 2.5.: $R$ is an injective $A-1 i n e a r$ operator ond ${ }^{2}$. The connection $0 \leqq R \leqq 2$ is valid. The same is true for the operator (2-R).

Proof: Denoting by 1 the square root $f$ ron ( -1 ) we can state the equalities $1 P=Q 1$ and $1 Q=P 1$. Taking an element $C=c_{1}+c_{2} i \in A$, $\left(c_{1}, c_{2} \in A_{h}\right)$, and $\bar{x} \in \mathcal{X}$ arbitrarily the equality
$R(c \bar{x})=P(c \bar{x})+Q(c \bar{x})$
$=c_{1} P(\bar{x})+c_{2} P(1 \bar{x})+c_{1} Q(\bar{x})+c_{2} Q(1 \bar{x})$
$=c_{1} \cdot P(\bar{x})+c_{2} 1 * Q(\bar{x})+c_{1} \cdot Q(\bar{x})+c_{2} i=P(\bar{x})$

- $c \cdot(P(\bar{x})+Q(\bar{x}))$
= $c \cdot R(\bar{x})$
is satisfied. 1 , e. the operator $R$ is $A$-linear. If now $R(\bar{x})=\overline{0}$ for a certain $\bar{x} \in \mathscr{H}$ we obtain
(3) $0=\langle\beta(\bar{x}), \bar{x}\rangle+\langle\bar{x}, R(\bar{x})\rangle$

$$
\begin{aligned}
& =\langle P(\bar{x}), \bar{x}\rangle+\langle\bar{x}, P(\bar{x})\rangle+\langle Q(\bar{x}), \bar{x}\rangle+\langle\ddot{x}, Q(\ddot{x})\rangle \\
& =2 \cdot(\langle P(\bar{x}), P(\bar{x})\rangle+\langle Q(\bar{x}), Q(\bar{x})\rangle), \text { cf. (1). }
\end{aligned}
$$

Consequently, $P(\bar{x})=Q(\bar{x})=\overline{0}$. Since $X+i \mathcal{K}$ is dense in $\not \subset{ }^{K}$ there follows $\bar{x}=\bar{O}$. Thus, $R$ is an injoctive operator. Furthermore, since $R$ has a conjugate operator $R^{\prime}$ in end $(\mathcal{O})$ the equality below is valid:
(4) $=\left\langle R^{2}(\bar{x}), \vec{y}\right\rangle+\left\langle\hat{y}, R^{2}(\vec{x})\right\rangle$
$=\langle(P+P \cdot+0 P+Q)(\bar{x}) \cdot \bar{y}\rangle+\left\langle\bar{y} \cdot\left(P+r^{\prime} 1+2 P+1\right)(\bar{x})\right\rangle$
$=\langle(p+Q)(\bar{x}) \cdot(p+Q)(\bar{y})\rangle+\langle(p+Q)(\bar{y}) \cdot(p+(1)(\bar{x})\rangle$, cf. (1)
$=\langle R(\bar{x}) \cdot R(\bar{y})\rangle+\langle R(\bar{y}) \cdot R(\bar{x})\rangle$
$=\left\langle R^{n} R(\bar{x}) \cdot \bar{y}\right\rangle+\left\langle\bar{y}, R^{n} R(\bar{x})\right\rangle$
for any $\bar{x}, \bar{y} \in \mathbb{Z}$. Therefore, $\left(R-R^{*}\right) R=0$. Because of the injectivity of $R$ we draw $R=R^{\text {. Using (3) we get }}$

$$
\begin{aligned}
\langle R(\bar{x}), \vec{x}\rangle & =1 / 2 \cdot(\langle R(\bar{x}), \bar{x}\rangle+\langle\bar{x} \cdot R(\bar{x})\rangle) \\
& =1 / 2 \cdot(\langle P(\bar{x}), P(\bar{x})\rangle+\langle Q(\bar{x}), Q(\bar{x})\rangle) \\
& \geqq 0
\end{aligned}
$$

for any $\bar{x} \in \mathcal{D}^{\circ}$. On the otiner hand

$$
\langle i(\bar{x}), \ddot{x}\rangle \leq 2,\langle\bar{x}, \bar{x}\rangle
$$

for any $\bar{x} \in \mathscr{A}$ by (2). Consequantly, $0 \leqq R \leqq 2$. The proof for (2-R) is analogous changing $\mathrm{P}, \mathrm{Q}$ to (1-P),(1-Q).

Lemma 2.6.: ( $P-Q$ ), $T$ and $J$ are injective operators. ( $P-Q$ ) and $J$ are conjugate-A-linear, whereas $(P-Z)^{2}$ and $T$ are A-linear. The equalities $J^{2}=i d_{X}$ and $T=R^{1 / 2}(2-R)^{1 / 2}$ are valid, and the operators $J$ and $T$ commute.

Proof: The following equality is satisfied for any $a=a_{1}+a_{2} i \in A_{1}$ $\left(a_{1}, a_{2} \in A_{h}\right)$ : and any $\bar{x} \in \mathcal{X}$ :

$$
\begin{aligned}
(P-Q)(a \bar{x}) & =a_{1} \cdot P(\bar{x})+a_{2} \cdot P(i \bar{x})-a_{1} \cdot Q(\bar{x})-a_{2} Q(i \bar{x}) \\
& =a_{1} \cdot P(\bar{x})+a_{2} \cdot Q(\bar{x})-a_{1} \cdot Q(\bar{x})-a_{2} i \cdot P(\bar{x}) \\
& =\left(a_{1}-a_{2} i\right)(P-Q)(\bar{x}) .
\end{aligned}
$$

I.e.. $(P-O)$ is conjugate-A-linear and, correspondingly, $(P-Z)^{2}$ is $A-1$ inear. woreover. $(P-U)^{2}=P-P Q-Q P+Q=(2-R) R$, and thus, $(P-Q)^{2}$ is a selfadjoint positive, injective operator on $\mathcal{F}$. He define the operator $T: X \rightarrow X$ by the formula

$$
T=\left[(P-Q)^{2}\right]^{1 / 2}=(2-R)^{1 / 2} R^{1 / 2}
$$

Thus, $T$ is a A-linear, bounded, injective, selfadjoint positive operator on $\mathscr{X}$. The sets $[T(\mathscr{X})]_{\tau}^{-}$and $\left[T^{2}(\mathscr{X})\right]_{\tau}^{-}$are both equal to $\mathcal{H}$. There exists a map $\mathcal{J}$ for which the aquality Jr ( $\mathrm{P}-\mathrm{Q}$ ) is satisfied on $\operatorname{Je}$ since the operators $T$ and ( $P-Q$ ) are injective and $T^{2}=(P-Q)^{2}$. J mape $T(\mathcal{X})$ into $\mathcal{X}$. Out of the equality $(P-Q)^{2}=$ $=$ JTat $=T^{2}$ we draw $T=$ JTJ since $T$ is injective. Hence, $J$ can be extended to a map defined on being bounded, conjugate-A-1inear and injective. Furthermore, the existence of the inverse operator $\mathfrak{J}^{-1}$ defined on $\chi$ being bounded, conjugate-A-linear and injective
 $J T^{2}=T^{2} J$. Congequently, J commutes with $T$ and therefore, with $T$. Moreover, $J=J^{-1}$ on $\mathcal{X C}$ and $J^{2}=1 d \mathfrak{X}^{\prime}$.
Lemma 2.7.: $T$ commutes with $P . Q$ and $R$. The equalities $J P=(1-Q) J$. $J Q=(1-P) J$ and $J R=(2-R) J$ are valid.
Proof: (cf. [8, Proof of Prop.2.2.7)
The equality $T^{2} P=(P-T)^{2} P=P(P-Q)^{2}=P T^{2}$ shows that $P$ commutes with $T_{i}^{2}$ and hence, with $T$. The proof for $Q$ and $R$ is analogous. The following equality is valid:

$$
T J P=J T P=(P-Q) P=(1-0)(P-0)=(1-0) J T=T(1-0) J
$$

Since $T$ is injective wo get $J P=(1-Q) J$. The equality $J Q=(1-P) J$ can be proved by analogous computations. For $R$ we obtain the iought equation adding the first two.

## Lemma 2.8.:

```
(1) }\langle丁(\overline{x}),\overline{y}\rangle=\langleJ(\overline{y}),\overline{x}\rangle\mathrm{ for any }\overline{x},\overline{y}\in\mathcal{Z}\mathrm{ .
    (i1) }\langleJ(\overline{x}),\overline{x}\rangle\geqslant0\mathrm{ for any }\overline{x}\in\mathbb{K}\mathrm{ .
        \(\overline{x}),\overline{x}\rangle\leqq0\mathrm{ for any }x\in1\mathcal{K}.
```

Proof: There yields PJP $=P(1-2) J=P(P-Q) J=P T J^{2}=P T$. Thus, $\langle J(\bar{x}), \bar{x}\rangle+\langle\bar{x}, J(\bar{x})\rangle \geqslant 0$ for any $\bar{x} \in \mathbb{K}$ since $T$ is positive and $P$ and $T$ commute. (cf. (1)). On the other hand

$$
\begin{aligned}
0 & =\langle(\bar{x}) \cdot i \bar{x}\rangle+\langle i \bar{x}, J(\bar{x})\rangle \\
& =i \cdot(\langle\bar{x}, J(\bar{x})\rangle-\langle J(\bar{x}), \bar{x}\rangle)
\end{aligned}
$$

for any $\bar{x} \in \mathcal{K}$ (cf. Lemma 2.7.). Consequently, $\langle J(\bar{x}), \bar{x}\rangle=\langle\bar{x}, \mathfrak{J}(\bar{x})\rangle$, $\langle J(\bar{x}), \bar{x}\rangle \geq 0$ for any $\bar{x} \in \mathcal{X}$ and $\langle(\bar{y}), \bar{y}\rangle \leqq 0$ for any $\bar{y} \in i \mathcal{X}$. Furthermore, the equality

$$
\begin{aligned}
0 & =1 \cdot(\langle i \bar{y}, J(\bar{x})\rangle+\langle J(\bar{x}), \bar{y} 1\rangle) \\
& =\langle J(\bar{x}) \cdot \bar{y}\rangle-\langle\bar{y} \cdot J(\bar{x})\rangle
\end{aligned}
$$

holds for any $\bar{x}, \bar{y} \in \mathcal{K}$ (or respectively, $\bar{x}, \bar{y} \in i \mathcal{K}_{\text {. }}$ ), (cf. Lemma
2.6.). Thus.
(5) $\langle J(\bar{x}), \bar{y}\rangle=\langle\bar{y}, J(\bar{x})\rangle \in A_{h}$ for any $\bar{x}, \bar{y} \in \mathcal{K}$ (or, respectively, $\bar{x}, \vec{y} \in i \nless)$.
If we consider now $\bar{x}_{\mathrm{x}} \bar{x}_{1}+\bar{x}_{2} * \bar{y}=\bar{y}_{1}+\bar{y}_{2}\left(\bar{x}_{1}, \bar{y}_{1} \in \mathbb{K}, \bar{x}_{2}, \bar{y}_{2} \in i \mathcal{K}\right)$ there yields
$=\langle J(\bar{x}), \bar{y}\rangle$
$=\left\langle J\left(\bar{x}_{1}\right), \bar{y}_{1}\right\rangle+\left\langle J\left(\bar{x}_{2}\right) \cdot \bar{v}_{2}\right\rangle+1 \cdot\left(\left\langle J\left(\bar{x}_{1}\right) \cdot 1 \bar{y}_{2}\right\rangle+\left\langle J\left(1 \bar{x}_{2}\right) \cdot \bar{y}_{1}\right\rangle\right)$
$=\left\langle J\left(\bar{y}_{1}\right) \cdot \bar{x}_{1}\right\rangle+\left\langle J\left(\bar{y}_{2}\right) \cdot \bar{x}_{2}\right\rangle-1 \cdot\left(\left\langle J\left(1 \bar{y}_{2}\right): \bar{x}_{1}\right\rangle+\left\langle J\left(\bar{y}_{1}\right), 1 \bar{x}_{2}\right\rangle\right)$
$=\langle J(\bar{y}), \bar{x}\rangle$.
(cf. Lemma 2.7. and (5)). Since $\mathbb{K}+1 K_{\text {is }}$ norm-dense in $\mathbb{Z}$ the equality $\langle J(\bar{x}), \bar{y}\rangle=\langle J(\bar{y}), \bar{x}\rangle$ is satisfied for any $\bar{x}, \bar{y} \in \mathbb{C}$. Corollary 2.9.: $J(\mathbb{K})=\left(1 \mathcal{K}^{\perp}, J(1 K)=\mathbb{K}^{+}\right.$.
This follows from Lemma 2.7.. Finally, we can formulate the following
Proposition 2.10.:
(1) $R$ and (2-R) are A-linear, injective operators with the prom perty $0 \leqq R \leqq 2,0 \leq 2-R \leqq 2$.
(ii) $T$ is injective and $A-1 i n e a r . ~ T=R^{1 / 2}(2-R)^{1 / 2}$.
(iii) $J$ is conjugate-A-linear and injective. $J^{2}=1 d_{x} \cdot$ For any $\bar{x}, \bar{y} \in \mathbb{R}$ yields $\langle J(\bar{x}), \bar{y}\rangle=\langle J(\bar{y}), \bar{x}\rangle$.
(iv) T commutos with $P, Q, R, J$.
(v) $J P=(1-(!) J, J!=(1-P) J, ~ J R=(2-R) J$.

For a better geometrical characterization of the operator $J$ we show
Proposition 2.11.: The operator $J$ defined above is the unique conjugate-A-linear partial isometry with the two properties:
(i) $J\left(K^{\prime}\right)=1 \mathbb{K}^{1} \cdot J(1 \nless K)=\mathcal{K}^{1}$.
(ii) $\langle\mathcal{J}(\bar{x}), \vec{x}\rangle \geq 0$ for any $\bar{x} \in \mathcal{K},\langle J(\bar{x}), \vec{x}\rangle \equiv 0$ for any $\bar{x} \in i \mathcal{K}$.

Proof: (cf. [B.Prop.2.3.])
The operator $J$ has the properties (i) and (ii) as we have shown at Lemmata 2.7. and 2.8.. Let $K$ be another conjugatemA-linear partial isometry satisfying the conditions (i) and (ii) above. We get $(J K) P=J(1-Q) K=P(J K)$ : i.e.. $J K$ commutes with P. Similarly it can be proved that JK commutes with $Q$ and, hence, with $R$ and $T$. Consequently,
(6) $\quad(J K)(R T)=(R T)(J K)=((P+Q)(P-Q) J)(J K)=(P(1-Q)-Q(1-P)) K$ - PKP - QKQ
$=K((1-Q) P-(1-P) Q)=(K J)(J(P+Q)(P-Q))$

- (KJ) (RT) .

Since RT is injective, $J K=K J$. Furthermore, from (6) and (ii) we draw $(R T)(J K) \geqq 0$ on $\mathcal{X}$, (cf. Lemma 2.8.). Because of the uniqueness of the polar decomposition and since $R T \geqq O$ the equality $J K=i d \notin$ must be satisfied. Hence, $J=k$.
Definition 2.12.: we take $\mathcal{X}, \mathcal{K}$ and $i \mathbb{K}$ as at the beginning of this paragraph. There exists an operator $s$ defined on $D(s)=\mathbb{K}+i, \mathcal{K}$ by the formula

```
s(\overline{x}+\overline{y}):= \overline{x}-\overline{y},\vec{x}\in\mathcal{K},\overline{y}\ini\mathcal{K}.
```

The operator $s$ is unbounded, in general. Since $1 \mathbb{K}^{t}$ and $\mathbb{K}^{1}$ fulfil the conditions $-1 \mathbb{K}^{1} \cap \mathbb{X}^{-1}\{0\}$ " and " $\left(1 \mathcal{K}^{1}+\mathcal{X}\right\}$ is dense in $\mathcal{X}$. . also there exists an operator $F$ defined on $O(F)=1 \mathcal{K}^{\perp}+\mathcal{K}^{\perp}$ by the formula

$$
F(\bar{x}+\bar{y}):=\bar{x}-\bar{y}, \bar{x} \in 1 K^{1}: \bar{y} \in \mathcal{X}^{l}
$$

It is also unbounded, in general. $F$ and $s$ are closed operators.

## Proposition 2.13.:

(1) $F=J S J, F=S^{*}$.
(ii) $((2-R) S)(\bar{x})=(J T)(\bar{x})$ for any $\bar{x} \in O(S)$.
(iii) Taking $\Delta:=(2-R) R^{-1}$ the polar decomposition $1 s$ described by $s=J \Lambda^{1 / 2}, F=J \Delta^{-1 / 2}$.
Proof: (cf. [8.§6.Prop.])
The equality $f=J S J$ follows from corollary 2.10.. Taking $\bar{x} \in \mathbb{X}$, $\bar{y} \in i \mathcal{K}, z \in i \mathcal{K}^{+}, t \in \mathcal{K}^{\phi}$ we get

$$
\begin{aligned}
\langle s(\bar{x}+\bar{y}), \bar{z}+\bar{t}\rangle & =\langle\bar{x}-\bar{y}, \bar{z}+\bar{t}\rangle\rangle \\
& =\langle\bar{x}, \bar{z}\rangle-\rangle \bar{y}, \vec{t}\rangle \\
& =\langle\bar{x}+\bar{y}, \bar{z}-\bar{t}\rangle
\end{aligned}
$$

$=\langle\bar{x}+\bar{y}, F(\bar{z}+\bar{t})\rangle$.
Therefore, $\mathrm{F} \subseteq \mathrm{S}^{\mathrm{m}}$. On the other hand the equality

$$
\langle\bar{x}-\bar{y}, \bar{z}\rangle=\langle s(\bar{x}+\bar{y}), \bar{z}\rangle=\left\langle\bar{x}+\bar{y}, s^{n}(\bar{z})\right\rangle
$$

is satisfied for any $\bar{z} \in D\left(S^{*}\right), x \in \mathbb{K}, y \in 1 \mathcal{K}$. If $\bar{y}=\overline{0}$ there holds ( $\left.\bar{z}-S^{*}(\bar{z})\right) \in \mathbb{K}^{+}$. Taking $\bar{x}=\overline{0}$ we get ( $\left.\bar{z}+S^{*}(\bar{z})\right) \in 1 \mathcal{K}^{-1}$. Consequently. $\bar{z}=1 / 2 \cdot\left(\left(\bar{z}+S^{( }(\bar{z})\right)+\left(\bar{z}-S^{(z)}(\bar{z}) \eta \in D(F)\right.\right.$. Thus, F=S'. Furthermore,

$$
\begin{aligned}
((2-R) S)(\bar{x}+\bar{y}) & =(2-P-Q)(\bar{x}-\bar{y})=(1-P)(\bar{x}-\bar{y})+(1-Q)(\bar{x}-\bar{y}) \\
& =(1-Q)(\bar{x})-(1-P)(\bar{y})=(P-Q)(\bar{x}+\bar{y}) \\
& =\operatorname{JT}(\bar{x}+\bar{y})
\end{aligned}
$$

for any $\overline{\mathrm{x}} \in \mathcal{K}, \bar{y} \in \mathbf{i} \mathcal{K}$. There follows $(2-R) \mathrm{S}=\boldsymbol{J T}$ on $(\mathrm{i}) \leqq \mathfrak{X}$. From (i) we hav. (Js) $=\mathrm{S}^{*} \mathrm{~J}=\mathrm{FJ}=\mathrm{Ji}$ on $\mathrm{O}(\mathrm{S})$. (cf. (5)). Hence, Js is selfadjoint. On the other hand $(R J S)(\bar{x})=T(\bar{x})$ for any $\bar{x} \in Q(S)$, (cf. (ii) above and Lemma 2.7.). Consequently. JS $(\bar{x})=\left((2-R)^{1 / 2} R_{R}-1 / 2\right)(\bar{x})$ and $\bar{x} \in D\left(\Delta^{1 / 2}\right)$. Therefore, JS $\leqq \Delta^{1 / 2}$ and since selfadjoint operators are maximal $J S=\Lambda^{1 / 2}$. The second equality can be proved in a similar way.
Corollary 2.14.: $\Lambda^{1 / 4} K=\Lambda^{-1 / 4}\left(i K^{-1}\right), A^{1 / 4}(i, K)=\Delta^{-1 / 4} K^{1}$. Remark 2.15.: The naturally arising question is why wo did not
, treat the subject of $\$ 2$ in the following way:
First, suppose $A$ being a $\sigma$-finite $H^{\prime \prime}$-algebra. Then, there exists a normal faithful state $f$ on $A$ and $\mathscr{C}$ can be completed to a Hilbert space $\mathcal{X}_{\mathrm{f}}$ with the inner product $f(\langle, \cdot\rangle)$. Investigating $\mathcal{K}_{f}$, the norn-completion of $\mathcal{K}$ in $\mathcal{K}_{f}$, we would get operators $P_{f}, 0_{f}, \mathcal{R}_{f}, J_{f}$, $\mathrm{T}_{\mathrm{f}}$ and $\Lambda_{\mathrm{f}}$ on $\mathcal{H}_{\mathrm{f}}$ as done at $[8,011,2]$. There would "remain" only to restrict all these operators to $\mathbb{Z}^{\prime \leqq} \subseteq \mathbb{K}_{f}$.
Secondly, we would generalize these results for non- $6^{-f}$-finite $x^{*}$-algebras $A$ using the construction of [1,p,164].
But, unfortunately, all these operators, in general, do not leave $\mathscr{H} \subseteq \mathscr{X}_{\mathrm{f}}$ invariant and/or are not $\mathcal{Z}(A) \mathrm{h}^{-1 \text { linear, at least if } A \text { is }}$ not comautative (cf. $\$ 5$ of this paper).
Therefore. wo can maike use of this methot ally if the existence of the appropriate module operators is alrady known. do.we will do in the following paragraph.
Horeover, it seens to be posuble to generalize tie results of this paragrepi if $A$ is assuned only to be any comatative $C^{\text {m}}$-algebra. The condition (iii) for $\mathcal{K}$ reformulatos then as follows: (iii) $X$ is a real self-dual Hilbert ${ }^{\prime} h$-subandule of $\mathcal{X}$. For suggestions in this direction look at 4 of the present paper.
\$3 One-parameter groups and the generalizud k.li.i. condition In this paragraph we consider strongly continuous unitary oneparaneter groups on self-dual lilibert $\|^{*}$-modules $\not \subset$ sutisfying a generalized K.M.s. condition with respect to real subspaces $\mathbb{K}^{\prime}$. as they were defined at $\S 2$ of this paper. Especially, supposing $A$ to be commutative, we define the group $\left\{\Lambda^{i t}: t \in \mathbb{R}\right\}$ in terms of the operator $R$ related to $\mathcal{K} \subseteq \mathscr{X}$. This group is obtained to be charactorized by the generalized k.lis. condition. We remark the close relations of our results to the results of M.A.Rieffel.
A. van qaele $[8, \xi 3]$ and to the subject of F.Combes,H.Zettl [2, $\mathcal{G} 3$ ] . Suppose $A$ is a commutative $N^{\text {n-algebra. According to Theorem 2.10.. }}$ (1.), R and (2-R) are both injective, A-linear, selfadjoint positive operators for which $0 \leqq R \leqq 2,0 \leqq(2-R) \leqq 2$. From [10,Th.1.11.3.] we draw tho spectral representation of $R$ and ( $2-R$ ). The spectral measure, therefore, is concentrated on the open interval (0.2). Now we can define the one-parameter groups $\mathbb{R}^{\text {it }}$ and $(2-R)^{\text {it }}, t \in \mathbb{R}$, since the map $\lambda \longrightarrow \lambda^{\text {it }}$ is correctly defined, bounded and continuous on ( 0.2 ) for any $t \in \mathbb{R}$. These groups commute and are strongly continuous on $\mathcal{H}$. Moroover, the equality
(7) $\quad J R^{i t} J=(2-R)^{-1 t}$
is satisfied for any $t \in \mathbb{R}$. (cf. Prop.2.10..(5.)), where the minus sign in the right exponent is caused by the conjugatemA-linearity of 3.
definition 3.1.: Let $\Lambda^{1 t}:=(2-R)^{1 t} R^{-1 t}, t \in \mathbb{R}$, so that $\left\{\Delta^{i t}: t \in\{R\}\right.$ is a strongly continuous unitary one-parametar group defined on $z$.
proposition 3.2.: For any $t \in \mathbb{R}$ there holds :
(i) $J^{1 t}=\Delta^{i t} J$ 。

Proof: (cf. [8.Proof of Prop.3.3.])
According to (7) we get

$$
\begin{aligned}
J \Delta^{i t} & =J(2-R)^{i t_{R^{-i t}}} \\
& =R^{-i t} J R^{-i t} \\
& =R^{-i t}(2-R)^{i t} J \\
& =\Delta^{i t} J
\end{aligned}
$$

for any $t \in \mathbb{R}$ since $R^{i t}$ and $(2-R)^{\text {it }}$ commute, $1 . a$. , the group $\left\{\Lambda^{i t}\right.$ : $t \in \mathbb{R}\}$ commutes with $J$. since this group is a function of $R$ it commutes with $T$ and $R$. Thus, it commutes with $P$ and $Q$. Consequently, $\Delta^{i t}(\mathbb{K}) \leqq \mathbb{K}$ and also $\Delta^{-i t}(\mathbb{K}) \leqq \mathcal{K}$ since $t \in \mathbb{R}$ is arbitrarily chosen. i.e.. $\Lambda^{1 t}(K)=K$. The other equality con be proved in the same way. The connection (iii) follows from Corollary 2.14..
Suppose now $A$ is a $W^{*}$-algebra, non commutative in general. de remark that an A-valued function $g$ defined on $O(g) \subseteq c$ is called to be analytic if $g$ is strong analytic in the sense of [1.Prop.2.5.21].

Definition 3.3.: (the generalized K.M.S. condition)
Let $A$ be a $\mathbb{W}^{*}$-algebra and $\mathcal{X}$ be a self-dual Hilbert A-module. A strongly continuous unitary one-parameter group $\left\{U_{t}: t \in \mathbb{R}\right\}$ defined on $\mathcal{H}$ is said to satisfy the generalized K.M.s. condition with respect to the real norm-complete subspace $\mathcal{K}$ of $\mathscr{H}, \mathcal{K}$ boing invariant under the action of $z(A)_{h}$ and satisfying the conditions (1) - (1ii) at the beginning of $\mathfrak{\xi 2}$, if for any $\bar{x}, \bar{y} \in \mathbb{K}$ there exists a map g: c $\longrightarrow$ A defined, bounded and continuous on $\{z:-1 \leq \operatorname{Im}(z) \leqq 0\}$ and analytic in the interior of this strip, with boundary values given by

$$
\begin{aligned}
& g(t)=\left\langle u_{t}(\bar{x}), \bar{y}\right\rangle \\
& g(t-1)=\left\langle\left\langle\bar{y} \cdot u_{t}(\bar{x})\right\rangle\right.
\end{aligned}
$$

for any $t \in \mathbb{R}$.
Proposition 3.4.: Such a function $g$ as it is defined by Definition 3.3. is unique.

Proof: Suppose thero are two functions $g$ and $h$ with the same given properties. Furthermore, first suppose $A$ being $Z$-finite. Then , there exists a normal fatthful state $f$ on $A$ and the complex-valued function $f\left((g-h)(g-h)^{*}\right)$ is defined, bounded and continuous on $\{z:-1 \leqq \operatorname{Im}(z) \leqq 0\}$, analytic in the interior of this strip with trivial boundary conditions. By $[8, p, 195]$ this function must be equal to zero on the given strip. (cf. Remark 2.14.). Consequently. $g=h$ on $\{z:-1 \leqq \operatorname{Im}(z) \leqq 0\}$.
If $A$ is not 3 -finite by [ $1, p, 164]$ there exists an increasing directod net $\left\{p_{\alpha}: \alpha \in I\right\}$ of projections, $p_{\alpha<} \in A$, such that $p_{\alpha} A P_{\alpha}$ is $\delta-f i n i t e$ for any $\alpha \in I$ and $w^{x}-1 i m p_{\alpha}=\frac{1}{4}$. Investigating the Hilbert $p_{\alpha} A p_{\alpha}$-module $\left.\mathcal{X}_{\alpha}=\left\{p_{\alpha} \mathcal{X}, p_{\alpha} \ll_{0}\right\rangle p_{\alpha}\right\}, \mathcal{K}_{\alpha}=p_{\alpha} \mathcal{K}$ and the functions $p_{\alpha} 9 P_{\alpha}$. $P_{\alpha} h p_{\alpha}$ for any $\alpha \in I$ we got $p_{\alpha} 9 p_{\alpha}=P_{\alpha} h p_{\alpha}$ on the strip $\{z:-1 \leqq \ln (z) \leqq 0\}$. Hence, $g=h$ on this strip.
Proposition 3.5.: Suppose the situation given in Dafinition 3.3.. A stronjly cont inuous unitary one-parameter group $\left\{U_{t}: t \in \mathbb{R}\right\}$ on $\mathcal{H}$ satisfies the generalized K.M.S. condition with respect to $\mathbb{K}$ if and only if for any $\bar{x}, \bar{y} \in \mathcal{K}$ there exists a function $g: c \longrightarrow A$ defined, bounded and continuous on $\{z:-1 / 2 \leqq \operatorname{Ia}(z) \leqq 0\}$. analytic in the interior of this strip with boundary conditions

```
g(t)}=\langle\mp@subsup{u}{t}{}(\overline{x}),\overline{y}\rangle\mathrm{ for any t}t\in\mathbb{R}\mathrm{ ,
g(t-1/2)\in Ah for any t\in\mathbb{R}.
```

Proof: If $\bar{x}, \bar{y} \in \mathcal{K}$ are given we define $g(a-b i):=g(a-(1-b) i)^{\text {for }}$ any number $a \in \mathbb{R}, b \in[1 / 2,1]$. This function is defined, bounded and continuous on $\{z:-1 \leqq \operatorname{Im}(z) \leqq 0\}$ and has boundary values

$$
\begin{aligned}
& g(t)=\left\langle u_{t}(\bar{x}), \bar{y}\right\rangle \\
& g(t-i)=\left\langle\bar{y}, u_{t}(\bar{x})\right\rangle
\end{aligned}
$$

for any t $\mathbb{E} \mathbb{R}$. If $f$ is an arbitrary normal state on $A$ the construction above gives us the schwar $z$ reflection principle applied to the analytic function $f(g(z))$ along the line $\operatorname{Im}(z)=-1 / 2$, i.e.. $f(g(z))$ is analytic on $\{z:-1 \leqslant \operatorname{Im}(z) \leqq 0\}$ for any normal state $f$ on $A$. Therefore, $g$ is analytic on this strip.
Conversely, supposo the generalized K.N.S. condition is valid and $g$ is the K.M.S. function. Uefining another function $h: ¢ \rightarrow$ A by the formula $h(z):=g(z-i)$ we have two functions $g, h$ with the same properties and boundary values. Bince the K,il.S. function is unique (Prop. 3.4.), $g=h$ and $g(t-i / 2)=h(t-i / 2)=g(t-i / 2)$ for any $t \in \mathbb{R}$. Consequently, $g(t-i / 2) \in A_{h}$ for any $t \in \mathbb{Z}$.
Now we return to consider the group $\left\{\Lambda^{i t}: t \in \mathbb{R}\right\}$ in the case of $A$ being commutative.
Lemma 3.6.: for any complex number $z$ with $\ln (z) \leqq 0$ we can define the bounded operator $R^{i z}$. The map $z \longrightarrow R^{i z}$ is strongly operntor continuous on $\{z: \operatorname{Im}(z) \leqq 0\}$ and analytic in the interior of this set. It is uniformly bounded on horizontal strips of finite width. The same results are true for $(2-R)^{i z}$.
Proof: (cf. [8.froof of Lemma 3.6.])
The spectral measure of R is supported on the oben interval ( 0,2 ). For any complex number $z$ with $\operatorname{Im}(z) \leqq 0$ the function $\lambda \rightarrow \lambda_{i z}^{i z}$ is bounded and continuous on ( 0,2 ). Thus, ve can define $R^{i z}$. ince $\left|\lambda^{i z}\right| \leqq 2^{-\operatorname{Im}(z)}$ if $\lambda \in(0,2)$ and since $l m(z) \leq 0$ by supposition there follows that $R^{i z}$ is uniformly bounded on horizontal strips of finite width. How let $\bar{x} \in \mathscr{C}$ and $\left\{E_{E}: E>0\right\}$ be the spectral resolution of $R$. Then, the restriction of i to $\left(1-E_{\varepsilon}\right) \mathcal{X}$ has its spectrum in $(\varepsilon, 2)$ and so has bounded logaritom. Conseguently, the function $R^{i z}\left(1-E_{E}\right) \bar{x}$ is analytic in the entire complex plane. Since $R$ is injective, $\left(1-\tilde{E}_{E}\right) \bar{x}$ converges to $\bar{x}$ as $\mathcal{E}$ joes to zero. Thus, $R^{i z}\left(1-E_{E}\right) \bar{x}$ converges to $R^{i z}(\bar{x})$, in fact uniformly on horizontal strips of finite width where $I m(z) \leqq 0$ since $R^{i z}$ is uniformly bounded there. Therefore, the map $z \rightarrow R^{i z} \bar{X}$ is continuous on $\{z: \operatorname{Im}(z) \leq 0\}$ and analytic in the interior of this set.

Proposition 3.7.: The one-parameter group $J^{i t}$ defined in Definition 3.1. satifies the generalized K.M.S. condition with respect to $K$.
Proof: (cf. [8, Proof of Prop.3.7.])
Let $\bar{x}, \bar{y} \in \mathcal{K}$. ve can not set $g(z)=\left\langle\Delta^{1 z}(\bar{x}) ; \bar{y}\right\rangle$ since tins is undefined. in general, on $\{z:-1 / 2 \leq \operatorname{In}(z) \leq 0\}$. But we obtaln

$$
2 \bar{x}=2 P(\bar{x})=(R+T J)(\bar{x})=\left(R^{1 / 2}\left(R^{1 / 2}+(2-R)^{1 / 2} J\right)\right)(\bar{x})
$$

and, therefore.
(B) $\bar{x}=R^{1 / 2}(\bar{z})$ where $\bar{z}=1 / 2 \cdot\left(R^{1 / 2}+(2-R)^{1 / 2} J\right)(\bar{x})$.

Then
(9) $\Lambda^{i t}(\bar{x})=\Delta^{i t_{1}}{ }^{1 / 2}(\bar{z})=(2-R)^{i t_{R^{1 / 2-i t}}(\bar{z})}$
and we can define a function

$$
g(z):=\left\langle(2-R)^{i z_{R}}{ }^{1 / 2-1 z}(\bar{z}) \cdot \bar{y}\right\rangle
$$

on $\{z:-1 / 2 \leqq \operatorname{Ia}(z) \leqq 0\}$. This function is defined, bounded and continuous on $\{z:-1 / 2 \leqq \operatorname{Im}(z) \leqq 0\}$ and analytic in the interior of this set, since Lemma 3.6 . is valid and the multiplication of operators is strongly continuous on bounded sets. Using (8) we get

$$
g(t)=\left\langle\Lambda^{i t}(\bar{x}), \bar{y}\right\rangle \text { for any } t \in \mathbb{Z} .
$$

There renains to show $g(t-1 / 2) \in A_{h}$ for any $t \in \mathbb{R}$. The oquality

$$
\begin{aligned}
g(t-i / 2) & =\left\langle\left((2-i z)^{i t}(2-R)^{1 / 2} R^{i t}\right)(\bar{z}) \cdot \bar{y}\right\rangle \quad \text { cf. (9) } \\
& =\left\langle\Delta^{i t}(2-R)^{1 / 2}(\bar{z}) \cdot \vec{y}\right\rangle \\
& =\left\langle(2-R)^{1 / 2}(\bar{z}) \cdot \Delta \Delta^{i t}(\bar{y})\right\rangle
\end{aligned}
$$

is satisfied where

$$
\begin{aligned}
2(2-R)^{1 / 2}(\bar{z}) & =(2-R)^{1 / 2}\left(R^{1 / 2}+(2-R)^{1 / 2} J\right)(\bar{x}) \cdot c f \cdot(9) \\
& =(T+J R)(\bar{x}), \text { cf. Prop. } 2 \cdot 10 \cdot 1(5 \cdot) \\
& =J(T J+R)(\bar{x}) \\
& =2 J P(\bar{x}) \\
& =2 J(\bar{x}) .
\end{aligned}
$$

Consequently, $g(t-i / 2)=\left\langle J(\bar{x}), \Delta^{-i t}(\bar{y})\right\rangle \in A_{h}$ for any $t \in \mathbb{R}$ because of Corollary 2.9. and Proposition 3.2.. (ii).
fe want to prove
Proposition 3.8.: The $\operatorname{group}\left\{\Lambda^{i t}: t \in \mathbb{R}\right\}$ is the unique strongly continuous one-parameter group of unitary operators on $\mathcal{X}$ mapping $\mathcal{K}$ onto $\mathcal{K}$ and satisfying the generalized $K . M . s$. condition with respect to $K$.

For this end we show the more general
Theorem 3.9.: Let $A$ bo any $v^{2}$-algebra and let $\mathscr{X}, \mathcal{K}$ as in paragraph $t w o$. Let $\left\{v_{t}: t \in \mathbb{B}\right\}$ be a strongly continuous unitary one-parametor group on $\mathcal{K}$, mapping $\mathbb{K}$ onto $\mathcal{K}$ and satisfying $t$ generalized ...l.s. condition with respect ta $\mathcal{K}$. Then, tiis group is the unique strongly continuous unitary one-parsmeter group with these propertios.
roof: Let $\left\{u_{t}: t \in \mathbb{R}\right\}$ be another such $y$ roup on $\mathcal{R}$. ie want to show $U_{t}=v_{t}$ for any $t \in \mathbb{R}$.
First, suppose it to be $\boldsymbol{G}$-finite and let us denote a nomal faithful state on $A$ by f. le axtend the both one-parameter groups from $\mathcal{X}$ to the Hilbert space $\mathcal{X}_{\mathrm{f}}, \mathcal{X}_{\mathrm{f}}$ being the complotion of $\mathcal{X}$ with rospoct to the norm $f(\langle\cdot, \cdot\rangle) 1 / 2$. (cf. [7.prop.2.6.]). The extendod one-parameter groups are strongly continuous and unitary on $\mathcal{K}_{\mathrm{f}}$. They map $K_{f}$ onto $K_{f}$, whers $K_{f}$ denotes the norm-completion of $K$ in $\mathscr{K}_{f}$. Also they satisfy the $K \cdot l . g$. condition with raspect to $\mathcal{K}_{f}$ what can be seen applying $f$ to the genaralized k.i.s. condition for $\left\{U_{t}: t \in \mathbb{R}\right\}$ and $\left\{v_{t}: t \in \mathbb{R}\right\}$. reepectively. consequently, from [ $8, \mathrm{Th} .3 .8 . . \mathrm{Th} .3 .9$.$] we derive \mathrm{V}_{\mathrm{t}}=U_{t}, t \in\left[\mathrm{k}\right.$, on $\mathcal{X}_{\mathrm{f}}$ and by construc$t$ ion also on $\mathcal{X}$.
secondly, if now A is supposed not to be $\mathbf{C - f i n i t e ~ t h e r e ~ e x i s t s ~ a ~}$ diracted incrasing net $\left\{P_{\alpha}: \alpha \in I\right\}$ of projections of $A$ sitism
 each $\alpha \in I$. Looking for tho Hilbert $P_{\alpha} A P_{x}-\operatorname{aodule} \mathcal{X}_{\alpha}:=\left\{P_{\alpha}, R_{0},<\cdot>P_{\alpha}\right\}$. $\mathcal{K}_{\alpha}:=P_{\alpha} \mathcal{K}_{\alpha}$ and the groups $\left\{P_{\alpha} U_{t}: t \in \mathbb{Q}\right\},\left\{P_{\alpha} V_{t}: t \in \mathbb{R}\right\}$ wa get $P_{\alpha} U_{t}=P_{\alpha} V_{t}$ on $P_{\alpha} \mathcal{X}$ for each $\alpha \in I$, for any $t \in \mathbb{R}$. Therefore. $U_{t}=v_{t}$ for any $t \in I R$ on $\mathscr{C}$. So we are done.

We remark that for Corollary 3.B. an appropriate generalization of the proof at [8.Th.3.U.] can be realized. But it will be larger than the prosent one.

Theorem 3.10.: Let $A$ be any $y^{m}$-algebra and let $\mathcal{X}, K$ as in paragraph two. Let $\left\{U_{t}: t \in \mathbb{R}\right\}$ be a strongly continuous one-parametor group of unitaries on $\mathcal{C}$. Suppose that $\mathcal{K}_{0}$ is a real submanifold of being invariant under the action of $\mathcal{Z}(A)_{h}$ and such that $\left\{U_{t}: t \in \mathbb{R}\right\}$ satisfies the generalized K.M.S. condition for $\mathbb{K}_{0}$. Then $\left\{U_{t}: t \in \mathbb{R}\right\}$ also satisfies the generalized K.M.S. condition with respect to the smallest real norm-closed subspace, $\mathcal{K}$. invariant under $\left\{U_{t}: t \in \mathbb{R}\right\}$, containing $\mathcal{K}_{0}$ and satisfying $\mathcal{K}=[\mathcal{X}]_{\tau}^{-}$. Furthermore. $\mathcal{K} n i \mathbb{K}=\{0\}$. so that $i f$ we let $\mathcal{Z} \mathcal{C}_{1}$ denote the norm-
closure of $\mathcal{K}+i \notin$, then we can define $\left\{\mathbb{U}^{1 t}: t \in \mathbb{R}\right\}$ on $\mathcal{K}_{1}$ using $\mathcal{K}$. then $\mathscr{X}_{1}$ is invariant under $\left\{u_{t}: t \in \mathbb{R}\right\}$ and $u_{t}: \Delta^{i t}$ for any $t \in \mathbb{R}$ on $\mathcal{X}_{1}$.
Proof: (cf. [8.Th.3.9])
The proof is exactly the same as for [8,Th.3.9.]. The only difficult point is to prove that $\mathcal{K}_{1}=\left[\mathbb{K}_{1}\right]_{\tau}^{-}$. Indeed, let $\bar{y} \in K_{0}$, let $\left\{\bar{x}_{\alpha}: \bar{x}_{\alpha} \in \mathbb{K}_{1}, \alpha \in I\right\}$ be a bounded net and let $g_{\alpha}$ be the generalized K.M.S. function (on $\{z:-1 \leqq \operatorname{Im}(z) \leqq 0\}$ ) for the pair $\left(\bar{x}_{c}, \bar{y}\right)$. Assume that $\left\{\bar{x}_{\alpha}: \propto \in I\right\}$ converges to $\bar{x} \in \mathbb{X}$ with respect to the $\mathcal{X}_{1}$-topology. furtharmore, first assume $A$ to be $\zeta$-finite, and let $f$ be an arbitrary normal faithful state on $A$. Then, applying the maximum modulus principle on the $\operatorname{strip}\{z:-1 \leqq \operatorname{Im}(z) \leqq 0\}$ to the function $f\left(q_{\alpha}-q_{p}\right)$ we obtain

$$
\left|f\left(g_{\alpha}-g_{\beta}\right)(z)\right| \leqslant f\left(\left\langle\bar{x}_{\alpha}-\bar{x}_{\beta}, \bar{x}_{\alpha}-\bar{x}_{\beta}\right\rangle\right)^{1 / 2} \cdot f(\langle\bar{y} \cdot \bar{y}\rangle)^{1 / 2}
$$

for any $\alpha, \beta \in I$ and, hence, $\left\{f\left(g_{\alpha}\right): \alpha \in I\right\}$ is a uniform Cauchy net of complex-valued functions being bounded and continuous on the given strip and analytic on its interior. Moreover.

$$
\lim _{\alpha \in I} f\left(g_{\alpha}(t)\right)=\lim _{\alpha \in I} f\left(\left\langle u_{t}\left(\bar{x}_{\alpha}\right): \bar{y}\right\rangle\right)=f\left(\left\langle u_{t}(\bar{x}) \cdot \bar{y}\right\rangle\right)
$$

so that this Cauchy net converges uniformly to function $f_{g}$ being lefined, bounded and continuous on the given strip and analytic on its interior. Horeover, there holds $f(t-i)^{*}=f_{g}(t)=f\left(\left\langle u_{t}(\bar{x}), \bar{y}\right\rangle\right)$. since $f$ was arbitrarily chosen, by [1, prop.2.5.21] there has to oxist an A-valued function $g$ which is defined, bounded and continuous on $\{z:-1 \leqq \operatorname{Im}(z) \leqq 0\}$ and analytic on the interior of this strip, and which satisfios the boundary conditions

$$
g(t-i)^{n}=g(t)=\left\langle u_{t}(\bar{x}), \bar{y}\right\rangle \quad \text { for any } t \in \mathbb{R} .
$$

Therefore, if $A$ is $\boldsymbol{Z}$-finite there holds $\mathcal{K}_{1}=\left[\mathbb{K}_{1}\right]_{\mathbf{T}}^{-}$.
Suppose now A to be non- $\mathbf{6 - f i n i t e}$. Thenethere exists a net $\{$ Pre : $\left.P_{\alpha} \in A, \propto \in I\right\}$ of projections such that $P_{\alpha} A P_{\alpha}$ is B-finite for any $\alpha \in I$ and $w^{*}-11 m P_{\alpha}=\mathbb{1}_{A}$. Consequently, $\mathrm{P}_{\alpha} \mathbb{K}_{1}=\left[\mathrm{R}_{\alpha} \mathcal{K}_{1}\right]_{\tau}^{-}$for any $\propto \in I$ and, hence. $\mathcal{K}_{1}=\left[\mathbb{K}_{1}\right]_{T}^{-}$. The desired statement is proved.

S4 An interprotation on locally trivial Hilbert bundles
In two papers of R.G.Swan [11] and J.Dixmier,A.Douady [3] it was stateJ that for every locally trivial Hilbert bundle $(=(E, X, P, H)$ with compact basis $x$ the set of all continuous sections $\Gamma$ ( $\}$ ) is a lillbert $C(x)$-module. Later a.o.Takahashi [12] has proved that
for every compact space $X$ the category of inllbert $C(X)$-modult $\mathcal{X}$ is equivalent to the category of locally trivial ifilbert bundles $\mathcal{\xi}=(E, X, P, H)$. The equivalence is realized by the $\operatorname{map} \mathscr{X} \longleftrightarrow \Gamma(\rho)$. (cf. [G,Th.8.11]). Thus, a $\mathrm{C}(\mathrm{x})$ - linear oparator on $\mathcal{H C}$ can be interpreted as on operator on $\Gamma(\xi)$ leaving the fiores invariant. Now let $x$ be hyperstonian. Let $\mathcal{F}$ be a Hilbert bundle over $x$ with the fibre H. For our purpose the wilbert bundle $f$ must be "full" in that sense that $\mathcal{X}=\Gamma(\rho)$ has to be self-dual, cf. Theorea $1.2 .$. Let $\mathbb{K} \subseteq \mathscr{X}=\Gamma(\{ )$ be as in $\S 2$ of the present paper. If we fix some $x \in x$ and regard $\mathscr{X}_{x}=\{\bar{x}(x): \bar{x} \in \mathscr{X}\} \leqq H, \mathcal{X}_{x}=\{\bar{x}(x): \bar{x} \in \mathcal{K}\} \leqq H$, the classical Tomita-Takesaki theory on $H$ obtains the bounded operators $P_{x} \cdot Q_{x} \cdot R_{x} \cdot T_{x} \cdot J_{x} \cdot \Delta_{x}^{1 t}(t \in \mathbb{R})$ for the pair $\left(\mathcal{X}_{x}, \mathcal{K}_{x}\right)$. All these operatars can be continued to bounded operators on $H$. For the global operators defined by ( $\mathscr{X}, \mathcal{K}$ ) we get the following property:
(10) $(U(\bar{x}))(x)=U_{x}(\bar{x}(x))$ for any $x \in x$. $\bar{x} \in \mathcal{X}=\Gamma(f)$.

$$
\text { for } u=F, O, R, T, J, \Delta^{i t}(t \in \mathbb{O}) \text {. }
$$

Therefore, in our setting we could define these global bounded operators for the pair ( $\mathcal{C}, \mathcal{K}$ ) by the formula (10) only splitting the appropriate bounded operators for the pairs $\left(\mathcal{X}_{x}, \mathcal{K}_{x}\right), x \in x$. on $X$.
The natural question arising from this observation is whether or not this could be done if we merely suppose that $x$ is any campact space. $\mathcal{H}=\Gamma(\mathcal{G})$ is the set of continuous sections of any locally trivial Hilbert bundle $\mathcal{G}$ over $x$ and $\mathbb{K}$ is a Hilbert $G(x)_{h}$-module out of $\mathcal{H}$. satisfying the conditions (i) and (ii) at the beginning of s 2 ?
If both $\mathcal{X}$ and $\mathbb{K}$ are self-dual the global operators PsQ.R.T.J can be defined in this way. (10), by the appropriate local operators. For the strongly continuous unitary one-parameter groups $\left\{\Lambda_{x}^{\text {it }}: x \quad x\right.$. $t \in \mathbb{R}\}$ the splitted group $\left\{\mathcal{A}^{t}: t \in \mathbb{R}\right\}$ maps $\mathcal{X}=\Gamma(\xi)$ into a larger class of sections of the Hilbert bundle $\{$. in general. Therafore. this question must remain to be unanswered.

## 55 Remarke on the non commutative case

Let $A$ be a noncomatetive $W^{x}$-algebra and $\mathcal{Z C}$ be a self-dual Hilbert A-modula. Let $\mathbb{K}$ be as defined in $\S 2$ of the present paper. The following example shows the difficulties arising if we try to repeat our conception for the noncomatative case.
Example 5.1.: Let A=End $\left(l_{2}\right)$ where $1_{2}$ is the countably generated

Hilbert space. Let $\mathscr{X}=1_{2}(A)^{\circ}$ and $\mathbb{K}=1_{2}\left(A_{h}\right)^{\prime}$, (cf. [4]), de wunt to define the $\mathcal{Z}^{(A)} h^{-1 i n e a r}$ projections $P: \mathscr{C} \longrightarrow \mathcal{K}, ~!: \mathscr{X} \longrightarrow i \mathbb{K}$.
If $\left\{a_{i}: i=1, \ldots, n, a_{1} \in A\right\} \in \mathscr{X}$ is a sequence of finite length and if $a_{i}=a_{11}+a_{2 i} i,\left(a_{1 i}, a_{21} \in A_{h}\right)$, wa would define
$P:\left\{a_{1}: i \in \mathbb{N}\right\} \longrightarrow\left\{a_{11}: i \in \mathbb{O N}\right\}$
$\mathrm{n}:\left\{a_{i}: i \in \mathbb{D}\right\} \rightarrow\left\{a_{2 i}: 1 \in \mathbb{N}\right\}$
by analogy to the (unique) decomposition of each element $a_{i} \in \ldots$. How we take the elemont $\bar{b}=\left\{b_{1}: b_{1} \in A, i \in D\right\} \in 1_{2}(\ldots)^{*}$ where

$$
\begin{aligned}
& b_{i}: \bar{e}_{1} \longrightarrow \bar{e}_{i} \\
& \overline{\bar{e}}_{j} \longrightarrow \delta^{\prime} \\
& b_{i}^{*}: \bar{e}_{1} \longrightarrow \bar{e}_{1}: \\
& \bar{e}_{j} \longrightarrow \bar{e}^{\prime}, 1 \neq 1
\end{aligned}
$$

(if $\left\{\bar{e}_{i}: i \in \mathbb{N}\right\}$ denotes the standard orthonormal basis of $1_{2}(A)$ ). Therefore,

$$
P:\left\{b_{i}: i \in \mathbb{N}\right\} \longrightarrow\left\{1 / 2 \cdot\left(b_{i}+b_{i}^{*}\right): 1 \in \mathbb{N}\right\}
$$

by definition. But the sequence $\left\{1 / 2 \cdot\left(b_{i}+b_{i}^{*}\right): 1 \in \mathbb{N}\right\}$ does not belong to $1_{2}(A)^{\prime}$. To see this we look at

$$
1 / 4 \cdot\left[\sum_{i=1}^{N}\left(b_{i}+b_{i}^{*}\right)^{2}\right]\left(\bar{e}_{1}\right)=(N+3) / 4 \cdot \bar{e}_{1}, N \in \mathbb{D} .
$$

Obviously the sequence above diverges and, hence, $P(\bar{b})$ does not belong to $1_{2}(A)^{\prime}$. The condition being equivalent to $P(\bar{a}) \in 1_{2}(A)^{\prime}$ for a certain $\bar{a} \in l_{2}(A)^{\circ}$ is

$$
\left\{a_{11}: i \in \mathbb{N}, a_{1}=a_{11}+a_{21} 1, a_{11}, a_{21} \in A_{h}\right\} \in 1_{2}(A)^{*}
$$

The set $U(P)$ of all such elements $\tilde{a} \in 1_{2}(A)^{\circ}$ yields $[D(P)]_{\tau}^{-}=\mathcal{X}$. but $O(P)$ is not norm-dense in $\mathscr{H}$.
If we sum up our results we obtain that $P$ and $Q$ are unbounded $\mathcal{Z}^{(A)} h^{\text {-linear }}$ operators on $\mathcal{X}$ with not norm-dense, different ranges of definition $O(p), O(Q)$ for which $\mathcal{X}=[口(p)]_{\tau}^{-}=[\cup(Q)]_{\tau}^{-}=$ $=[\mathcal{P}(P) \cap \cup(Q)]_{\tau}^{-}$. The operator $R \pm P+Q$ is the identity operator on Ze being i-linear. The operator $J$ is unbounded conjugate-a-linear and it is defined on $Q(P) \cap O(Q)$. J acts there by the formula

$$
J: \vec{a}=\left\{a_{1}: i \in \mathbb{N}\right\} \longrightarrow\left\{a_{i}^{*} ; i \in \mathbb{N}\right\} \quad .
$$

I.e.. if A is an infinite-dimensional nonsomatative $W^{\prime \prime}$-algebra we can not repeat the bounded operator approach of this paper! the main reason is the unequivalence of the convergence of the series

$$
\sum_{i=1}^{\infty} a_{i} a_{i}^{*} \quad \text { and } \quad \sum_{i=1}^{\infty} a_{i}^{m} a_{i}
$$

for sequancos $\left\{a_{1}: a_{1} \in A\right\} \in 1_{2}(A)$ in $A$. in general.
Now wo discuss the case of $A$ being noncomatative and finitedimensional. In this case $A$ can be assumed to be a complex uutrix algzora of finite dimension. The main phanomena will be shown by the following example.
Example 5.2.: Let $A$ be a finite-dimensional $C^{*}$-algebra and let $X=A$ with tho $A$-valued inner product $\langle a, B\rangle=a b^{*}, a, b \in \mathbb{X}$. Let $X=A_{h}$. Since $A$ is fintte-diaensional the norm induced on $A=X$ by the conplex-valuel tnner product $f(<, \gg)$ is equivalent to the given Hillert norm on $\mathcal{X}$ for any faithful positive (normal) state $f$ on $A$. By [4,Th.2] for the positive faithful state f,there exists a boundod linear operator $c$ on $\mathcal{X}$ such tiat
(i) $f(\langle a, b\rangle)=\operatorname{tr}(\langle a, a(b)\rangle)$ for any $a, b \in \mathcal{X}$.
(ii) $0 \leqq c=c$ respectively to $t r(<\cdot>)$ and to $f(<,>)$. (ii1) There exists $\mathrm{C}^{-1}$ being bounded and linear.
By the equality

$$
\begin{aligned}
\operatorname{tr}\left(\left\langle a, o\left(1_{A}\right) b\right\rangle\right) & =\operatorname{tr}(\langle a b, c(1,)\rangle)=f\left(\left\langle a b, 1_{A}\right\rangle\right) \\
& =f(\langle a, b\rangle)=\operatorname{tr}(\langle a, c(b)\rangle)
\end{aligned}
$$

for any $a \in \mathbb{X}, b \in \mathbb{K}$ there turnc out that

$$
\begin{aligned}
& c(b)=c\left(1_{A}\right) b \text { for any } b \in \mathbb{X} \text { (and by complex linearity for } \\
& \text { any } b \in \mathbb{X}) .
\end{aligned}
$$

Therefora,

$$
f(\langle a, b\rangle)=\operatorname{tr}\left(\langle a, b\rangle \cdot c\left(1_{A}\right)\right) \text { for any } a, b \in \mathscr{X}
$$

and $\mathrm{c}\left(\mathbf{1}_{A}\right)$ is a selfadjoint positive element of $\mathcal{X}_{=A}$, the eigenvalues of which are all greater then zero.
Since we can not ragard $\mathbb{K}$ as a real (self-dual) Hilbert subnodule of $\mathcal{X}$ and since the Hilbert norm is equivalent to the norm
$f(\ll .>)^{1 / 2}$ for any faithful positive state $f$ on A, we would like to deftine the projection $P: \mathcal{C} \longrightarrow \mathbb{K}$ as the projection $P_{f}$ gapping the real Hilbert space $\{\mathcal{X}$, Re $f(<, \cdot\rangle)\}$ onto the real Hilbert subspace $\left\{\mathcal{K}_{0}\right.$ Re $\left.f(<, \cdot>)\right\}$. But, unfortunately, such a projection $P_{f}$ depends on the choice of $f$ I if fatr we get $P_{t r}: a \in \mathcal{X} \longrightarrow 1 / 2\left(a+a^{*}\right) \in \mathbb{K}$. This projection is $\mathcal{Z}(A)_{h}{ }^{-1 i n e a r}$ and bounded by one. If $f$ is now an arbitrary fatthful positive state on $A$ and if wo suppose $P_{f}=f_{t r}$
by (i) we obtain the equality (if $a=a_{1}+a_{2} i \in \mathcal{X} . a_{1}: a_{2} \in a_{n}$ )

$$
\begin{aligned}
\operatorname{tr}\left(\left(a_{1} b+b a_{1}\right) \cdot c_{f}\left(\boldsymbol{1}_{A}\right)\right) & =f\left(a_{1} b+b a_{1}\right) \\
& =f(a b+b a) \\
& =\operatorname{tr}\left(\left(a_{1} b+b a_{1}+i\left(a_{2} b-b a_{2}\right)\right) \cdot c_{f}\left(1_{A}\right)\right)
\end{aligned}
$$

for any $a \in \mathscr{X}, \quad$ b $\mathcal{K}$ * (cf. Proposition 2.4..(1)). Therefore.

$$
\begin{aligned}
0 & =\operatorname{tr}\left(\left(a_{2} b-b a_{2}\right) \cdot c_{f}\left(\mathbf{1}_{A}\right)\right) \\
& =\operatorname{tr}\left(b \cdot c_{f}\left(\mathbf{1}_{A}\right) \cdot a_{2}-a_{2} \cdot c_{f}\left(\mathbf{1}_{A}\right) \cdot b\right)
\end{aligned}
$$

for any $a_{2}, b \in \mathcal{K}=A_{h}$. This is true if and only if $C_{f}\left(\mathbb{1}_{A}\right)$ is a diagonal matrix. But, since $f$ is arbitrerily chosen, tie matrix $C_{f}\left(1_{A}\right)$ can be any aelfadjoint positive matrix with strictly positive eigenvalues.
This is a contradiction to our supposition $\mathrm{P}_{\mathrm{f}}=\mathrm{P}_{\mathrm{t}} \mathrm{r}$ *
Therefore. $P_{f}=P_{t r}$ if and only if $C_{f}\left(\mathcal{L}_{A}\right)$ is a selfadjoint positive diagonal matrix with strictly positive elenents.
summing up we have to ask whether for each finite $C^{\text {malaboba }}$ a and for any given $\mathcal{L}$ and $\mathcal{K}$ axists a faithful positive state $f$ on $A$ such that the induced projection $P_{f}: X \longrightarrow K$ is $\mathcal{Z}(A) h^{-1 i n e a r}$ and bounded by one with respect to the lliluert norm on $\mathcal{X}$. Unfortunatoly, we are not able to answer this quection at present.

## Qeferences

1 O.brattoli, W.i.Robinson, "Operator algebras and quantum statistical nechanics.I". Texts and honographs in Physics. Springer Verlag, New York-Haidalberg-ilerlin, 1979.
2 F.Combes,ll.Zettl, "Order structuras, traces and weights on Horita equivalent $C^{*-a l y e b r a s ", ~ H a t h . m n n . ~ 265(1903), ~ n o .1 . ~}$ 67-61.
3 J.oixaier, i. Douady, "Shamps conti.zus d"espace hilbertiens ot de $C^{*}$-algebres". Bull.Soc.Math.France 91(1963). 227-283.
4 H.Frank, "Self-duality and $c^{m}$-reflexivity of Hilbert $C^{*}$-inodules", proprint, $\mathrm{F}, \mathrm{U}-\mathrm{LLG}$, Leipzig. 1986.
E A.frank. "von iveuabn representitions on ielf-dual inilbert -nodules". preprint. JINR, E5-87-94, Dubna, 1987, submitted to Math. Nachrichten.
6 K.H.Hofmann, "،epresentation of aljubras by continuous suctions; jull.maer.tiath.soc.. 7e(1972). 291-373.
7 A.L.paschke, "Inner product modules over is-alyebras". Trans. .mer.llath.soc. 182(1973). 443-468.

6 M.t.rieffel,A.van Daele, "A bounded operator approach to Tomita-Takesaki theory". Pacific J.Math. $\underline{69(1977), ~ n o .1 . ~}$ 187-221.
9 M.A.Rleffel. "Norita equivalence for $c^{*}$-algebras and $w^{*}$-algebras*: J.Pure and Applied Alg. 5(1974). 51-96.
10 S.Sakai, "C"-algebras and w"-algebras", Springer-verlag. berlin-Heidelberg-New York, 1971.
11 R.G.Swan, "vector bundles and projective modules", Trans.Amer. nath.60c.. 105(1962). 264-277.
12 A.O.Takahashi. "Fields of Hilbert modules", Ifissertation. Tulane University, New Orleans, La.. 1971.

Однопарамєтрические групиы, возникающие
в вещественном подпространстве автодуальных
гильбертовых модулей
Обобщаются результаты М.А.Рифеля и А. фан Дэля пля гильбертовых $C^{*}$-модулей над коммутативньми $W^{*}$-алгебрами. Мзучаются некоторье специальные вещественные подпространст ва таких гильбертовых $W^{*}$-модулей и относлщиеся к ним операторы. В частности, установлено соотнопение между сильнонепрерывными унитарными однопараметрическими группами операторов, связанными с ними, и обобщенным условием КМII. Все главние определения сформулированы без предпосылки коммутативности подлежашей $\mathrm{W}^{*}$-алгебры. Дается интерпретация этих результатов для множеств непрерывных сечений "автодуальных" локально тривиальных гильбертовых расслоений над компактны ми пространствами.

Работа выпопнена в Лаборатории теоретической физики ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1987

```
Frank M.
E5-87-95
One-Parameter Groups Arising from Real
Subspaces of Self-Dual Hilbert W*-Moduli
    The paper generalizes the results of M.A.Rieffel and
A. van Daele for Hilbert C*-moduli over conmutative W*-al-
gebras. Some special real subspaces of such Hilbert W*-mo-
duli and the related operators are investigated. Particular
1y, the relation is established between strongly continuous
unitary one-parameter groups of operators arising from them
and the generalized K.M.S. condition. All key definitions
are formulated without any commutativity supposition for
the underlying W*-algebra. The interpretation of these re-
sults is given for sets of continuous sections of "self-
dual" locally trivial Hilbert bundles over compact spaces.
    The investigation has been performed at the Laboratory
of Theoretical Physics. IINR.
```

Preprint of the Joint Institute for Nuclear Research. Dubna 1987

