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A (left) pre-Hilbert A-module over & certain C.-algsbra A is an
A-module & equipped with an A=valued inner product, i.8., an A=va=
lued nondegenarate sesquilinear mapping oD AT e A, T >
being A-linear at the first argument, The pre-Hilbert A-module &
is Hilbert if it is complete with respect to the norm JI*/} -”<fa;>ﬂg/g
We suyppose always that the linear structures on A and on & are com-
patible. For further basic facts concerning Hilbert c™-moduli we
refer to [B/. A Hilbert A-module ¢ over a C'valgebra A is called
self~dual if every bounded module map r: A —> A is of the form
<§.é> for some G€ ., In this paper we restrict our attention
mainly to Hilbert wh-moduli. For them some more facts are known. We
nged the following ones:

Definition 1.1.: [3.0ef.7]
Let A be a w'-algebra. # be a pre-Hilbert A-module and P be the set
of all normal states on A. The topology induced ond® by the semi-
norms

<, Y2, fep,
is denoted by 1?1. The topology induced on & by the linear functio=-
nals

(< E5>) . feP, Ged,
is denoted by Tpe

Throughout this paper we use the following notation. If K" is a sub~
set of the Hilbert WM-module 3, [Z"]_ denotes the set INF:AeR,,
® €XO} where X 1is the T -completion of the set freXx : I!'i”;_‘1§.

Bencanociiil WHCTETYT |

aR-pak BLC37A0BABER

BYSInGTERS |
Wﬁﬂ' RO

P




Theorem 1.2.: [3,Th.9]

Let A be a w'—algebra and & be 2 Hilbert A-module. The following

conditions are equivalent:

(1) A is self=-dusl.

(ii) The unit ball of /A is complete with respect to the topology
qu is0e, A =[FH]. .

(111) The unit bell of #¥ is complete with respect to the topology
Ty

Corollary 1.3,.: [E.Cor.ii]

If A is & w'»algebra and & is 2 self~dual Hilbert A-module the li-
near span of the range of the A-valued inner product on & becomes
both a w‘-subalgebra and an ideal in A,

Theorem 1.4.: [6,Prop.3.10.]

Let A be & wﬂnalgebra and & be a self-dual Hilbert A-module. Then,
the set EndA(Jr) of all bounded A=linear operators on & is a W'=al~
gebra.,

These facts make clear that in the case of & being a self-dual Hilbert

w¥-module the spectral theorem (f9,That.11.3] , [5,Th.7.8,9]) is
valid for each self~adjoint element of EndA(Jfﬁ « Moreover, there
exists a polar decomposition for sach element of EndAQZ?) in
EndA(3E7. This is of importance for the existence of certain opera-
tors arising from some specisl real subspaces &K of self-dual Hilbert
whemoduli A, as they were treated in [a]. '

we remark that for a given w.-algebra A any congidered self-dual Hil-
bert A~module & can be assumed to have A as the linear epan of the
range of its A~valued inner product, (cf. Corollary 1.3,). Otherwise
we would change A to this linear span of the range, BCA, and we
would consider ¢* as a Hilbert Bemodule,

Let A be a w‘~algebra and & be a self-dual Hilbert A-module. §2 of
this paper investigates (generalized) von Neumann algebras M on A
possessing a cyclic~separating element X ind¢ , The definition of a
cyclic element for M is modified in a nonobvious way. We show the
relation betwean von Neumann algebras on J possessing a cyclice
separating element and such special real subspaces X of A as they
were investigated in [l]. In addition,a generalization of Keplansky's
density theorem for m-algebras of bounded operators on A is stated.
Under the supposition that A is commutative,we consider the partial
conjugate~linear involution J and the strongly continuous unitary

ong-parameter group iljit: telR} arising from that real subspace

of € whieh corresponds to the pair (M,X) in §3. They would ful-
fil the conditions of Tomite-Takesaki’s theorem for M and M,

§4 deals with the natural cone FSA connected with the pair (M,X).
We investigate the main properties of this cone.

§2 von Neumann algebras on self~dual Hilbert wh-moduli

Let A be an arbitrary w'-algebra. We would like to show that von
Neumann algebras of bounded A=linear operators on a self=dual Hil~
bert A=module #A” , which possess a cyclic-separating element X <ot
are closely related to certain specisl real subspaces & ofe® , as
they were treated in [&]. The key point of this paragraph is Defi-
nition 2.5. modifying the notion of a cyclic element for a von Neu=
mann algebra over a self-dual Hilbert w™-module. Thus, new aspects
are produced in the discussions., At the end of this paragraph we
state a generalization of Kaplansky’s density theorem for m-algebras
of bounded A-linear operators on self-dual Hilbert w*-moduli over A.

Definition 2,1.: Let A be a W.-algebra and A be a self-dual Hil~
bert A-module. A C'-subalgebra M of EndAGZ?).(the set of all boun=-
ded A=linear operators on de,coinciding with its bicommutant M™°
is called a “generalized” von Neumann algebra.

Corollary 2.2.: Let A be a wh«algebra and & be a self-dual Hilbert
A-module. Any "generalized” von Neumann algebra on <& is a w’-alge—
bra, i.e., the word “generalized” is superfluous in Definition 2.1,.

Proof: Since EndALRf) is a w’-algebra [B.Prop.3.10;} there exiats a
normal faithful representation 7 of EndA(JEﬁ. 1.84, ndEndA(E?))n
=7r(EndA(;L’})". Moreover, w(M)"'gMEndA(;?’))"=77-(EndA(5t’)) since
7r(EndAﬁ9€))'§§rr(M)' holds for the commutants. By supposition

M =M’ and hence, Tr(M)aTr(M)°°. Consequently, the representation
77 is faithful and nermal for M, too.

We state now an important topological property of these von Neumann
algebras.

Definition 2.3.: (cf.[ 3, Def.15])
Let A be a W*~algebra, & be a Hilbert A-module and P be the set
of all normal states on A. The bounded net {B,‘: B & EndA(Ee).« < I}

converges to Betnd,(#C) relative to the topologyf]E 1f there exists
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ﬂ“'liﬂ <B‘,((3) 'B> = <B(3)|E>
K€l
for any a,be X, (For other topologies,cf, BJ).

Proposition 2.4.: Let A be a w’-algebra and A be a self-dual Hilbert
A-module, Let M be a C'-subelgebra of EndA(?(’). Then M is a von
Neumann algebra if and only if the unit ball of M is complete with
raspect to the topology 7:,:.

Proof: we take a bounded net with the following properties:
(1) {8,‘3 B.€M,x € 1} converges to BEENd, (@) relative to the
topology <7 ..
{11) §,C =CB, for any CeM ,xe1l.
Therefore,

- ’-1 - X l—
0 = wh-lin ((80-CR ) (%) y>
« whlin {<§,‘(C(f))v'\7> - <Bof(—i) X D)

&L
= (8C=CB) (X), 7>

for any X,y €€, Thus, Be M "=M.
On the other hand,suppose that the unit ball of M is complete with
respect to the topology ‘.7—'. We consider a faithful normal represen=-
tation ¥7 of EndA(af’). (cferTheorem 1.4.). It is also a faithful
representation for M, By EG,Remark 3.9,] the topology 9'; coincides
with the weak topology on EndA(&?). Thersfore, the unit ball of
Tr(M) is complete with respect to the weak™ topology, and hence, by
[1.Th.2.4.11.j THM)=7r({M)"° . Consequently, MaM"’ since 7 is a
normal representation of EndA(&").

By @.Remark 3.9.]. B.Th.gJ we conclude that the topology 57;
coincides with the weak™ topology on the unit ball of M.

In further discussions we are especially interested in von Neumann
algebras M on self~dual Hilbert w®-noduli A possessing somewhat
like a cyclic-separating element X e similarly as &~-finite von
Neumann slgebras possess one in certain Hilbert spaces.

Definition 2,5.: Let A be a w‘-algebra. A be a self-dual Hilbert
A-module and M be a von Neumann algebra on o¥. An element Y& is
called to be cyclic for M iff fM'i}; =& . It is called to be sepa-
rating for M iff 8(X)=0 for some Be M implies B=0.

Proposition 2.6.: Let A be & W’-Algebra.?[ be a self~dual Hilbert
A-module and M be a von Neumann algebra on # . If an element X €& is
cyclic for M, it is separating for M. If an element X€X 1is separa-
ting for M and A[MY_g[MX]_, it is cyclic for M.

Proof: First, we consider an element B € M° such that 8°(X)=0. Then:
B’ (B(X))=(8'B)(X)=(8B" )(X)=B(B"(X))=0 for any BeM. If X is cyclic
for M the slement B« M must be equal to zero.

Secondly, there exists a projection P’e End,(H#"), P* : & —> mz_ .
{cf. Theorem 1.2.}, The projectiocn P is contained in M’ , Therefore,
{1dx-P')(§)=6.and hence, P':idx since X € is supposed to be
separating for M",

we know that a von Neumann algebra M possesses a cyclic-sepsrating
element in a certain Hilbert space if and only if M is &~finite,
[1.Prop.2.5.6.]. In our setting this statement is not in all cases
true. However, we can state the following

Lemma 2.7,: Let A be & w--algebra. A& be a self-dual Hilbert A-mo=
dule and M be a von Neumann algebra on & possessing a cyclic~sepa-
rating element in & . Then:

(1) If A is & =finite, M 1s S-finite.

(1i) If M is F-finite, the centre 2(A) of A is B-finite.

(iil) The von. Neumann algebra M is not necessarily &-finite.

Proof: If X €& is a cyclic-separating element for M and if
{E“: ExeM, ot I} is a2 set of mutually orthogonal nonzero projec-
tions swe obtain

<> :ge () 55 (XD
- ;I<g(x).a<(x) >

Since A is & =finite by assumption,thers exists a faithful normal
state f on A. Therefore,

1> HRED) 2 ;Z FICE(R) B (R)D>) >0

el

iy

C.

and +oo> f( (E,((E).E_((Y)>)> 0 for any & € 1. Thus, the set I must
be countable and M is & =finite. This proves {i).
To show (ii) we remark that
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{a-idX: 2e }(A)} = F(End,(2)) £ 2(M)

(efs [7.Cor.7.10..Prop.8.1.J). Consequently, if M is & -finite,

(A) has to be &-finite, too.
The third statement can be shown considering a non-& ~-finite w*-a1-
gebra A, first, as a self=-dual Hilbert A-module & with A-valued
inner product 6.b>A.= ap™ , a,b €A, and secondly, as a von Neu-
mann algebra M on itself (A=d) with c¢yclic-separating element lAqEA,
where the elements of M are defined as multiplications of A with
elements of A from the right. So , the Proposition is proved.

Now we describe the relation between van Neumann algebras M on self-
dual Hilbert W*-moduli & possessing & cyclic-separating element

X €& and those special real subspaces &K of & as they were treated
in [4] under the supposition, that A is commutativa.

Proposition 2,8,: Let A be a commutative W’-algebra. # be 8 self=
dusl Hilbert A=module and M be & von Neumann algebra on K possessing
a cyclic-separating slement X ¢ . Lot K= [Mhi'];. Then & is a

real subspace of J being invariant under the action of A
satisfying the conditions:

(1) KaiX={],

(i1) Z+1 X is norm-dense in o,

Moreover, [M;‘i']tﬁg 1xt,

Proof: For any Be&M., B e M;”the following two equalities are valid:

<B(X) B (> = <B'(R).B(X)> .

o= <B(X).B* (%> + <B'(X).1B(X)> .
Therefore, B’(i’)éiXJfor any B € M;‘. Now we obtain the relation
[M;i]_;giyi by obvious computations, (¢f. J4, Prop.2.2.]). From
M X Ei +1"§(Xn 1K) we derive (A n XY =R since Xeis
cyclic for M by Proposition 2.6, and since [(-;(n iX)"l].; =& ix )t
by E.Proof of Prop.2.2.]. Consequently, K ~iX'={0}. Moreover,
MXEX+1 X & oA and we get that K'+i& has to be norm-dense inoC
since X € & is cyclic for M. The proposition is proved,

If A is a commutative w“-algebra.we can apply the results of [i] to
ka-[ﬁﬁi};;. We will make use of this in 83 of this paper.

At the end of the second paragraph we prove a generalization of
Kaplansky’s density theorem we need later.

1]

gefinition 2.9.: Let A be'a w"-algebra and {X. <, '>} be a Hilbert

|
A=-module. We say that a bounded net {8,(: xeIl, Be& EndA(JC’)} con-
verges to BéEnd:(Je) relative to the topology 3-'-‘7': iff there

exists
o>

wWherin D (<B(%) oBe(% >+ SBN(R,)BEE D) =
=€l n=1
DN <B(R,) (%> + <BYF B >)
n=1

i~_Z4
for any sequence {;?n: §n€k. neN, Zl J}ini?z(** oof .
n=

Theorem 2,10.: Let A be a w’—algebra and {x. ’.'>} be a self-dual
Hilbert A-module. Let N be a self-adjoint algebra of bounded, A=~li-
near operators on X, and let M be the von Neumann algebra arising
as the linear hull of the g;-completion of the unit ball of N.
Then,the unit ball of N is Z—"T;-'dense in the unit ball of M.

Proof: First, suppose A to be & ~finite., Let f be a normal faith=
ful state on A. Considering the extensions of the operator algebras
N and M from End, (&) to Endg (). of. [6.Th.2.8,(whare A denotes
the closure of € with respect to the norm f(<.>)1/2). we can
apply Kaplansky”s density theorem to NEEndc(xf). Therefore, the
unit ball of N%’Endc(xf) is & ~strong®-dense in the unit ball of
M** S Endg (o), the bicommutant of M in Endc (A¢). Consequently, the
same is trus if we change M'° to MEM'", Since the state f is faith-
ful and normal we get the desired statement in the case of A being
& -finite.,

Secondly, let A be non-&-finite. Then,by {1,p.164] thers exists a
directed increasing net fp,,: a(el} of projections of A such that
AAD. 18 S ~finite for any < €1 and that there exists wh=1im Rx=1y e
As it has been shown,the unit ball of p N is Z-J'éudense in the unit
ball of pM for any «e€1. Hence, the sought statement can be deri-
ved easily since oC€1 is arbitrary and wh=lim =i,

§3 A Tomita-Takesaki type theorem

Throughout this paragraph A is assumed to be a commutative w‘-algebra.

We want to show that the Tomita-Takesaki theorem is valid for von
Neumann algebras M on self-dual Hilbert A-~moduld FJE  possessing a

cyclic-separating element X GJC')for its commutants and for the
derived from the pair (M,X) modular operators J and {231t= te(R} on

~1
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PCs ( cfe Prope2.9., B.Prop.z.lo..oef.li.i,]). We remark that this
theorem was stated in [Ez.gs] for the special case M=EndA(X).

Theorem 3.1.: Let A be a commutative w*-algebra. H be a self=-dual
Hilbert A-module and M be a von Neumann algebra on & possessing a
cyclic-separating element X € X, If X is defined in terms of the
pair (M,X) as at Proposition 2.8., and if J and A% : teRr}? are
defined by X, ( [4,Prop.2.10.,0ef.3.1.]), there hold:

(1) IM3 = M,

(ii) AYMA 3 = M for any teR.

First, we prove the theorem under the assumption that A is &-finite,
There are two ways to do that. The first one is to use the construc-
tions fronm {7.&4] looking always for modifications needed in the
proofs since, in general, norm-completeness of X is changed to
‘fa~conpleteness of the unit ball of-& , This can be done, but we
will not do so in this paper, From the proof in [3,§{] we give only
the generalization of the key Lemma 4.3. at the end of this paragraph
because it seems to be of more general interest. The second way of
proving Theorem 3.1. basas on thes following lemma:

Lemma 3.2,: Let A be a commutstive & =finite w‘-algebra and let g€
be a self-dual Hilbert A-module. Let MgEndA(Z’) be a von Neumann
algebra possessing a cyclic-separating element X €, Let f be a
faithful normal state on A and denote byR’ the norm-closure of J&
with respect to f(«é -;>)1 2. Then,any bounded A~linear operator on
#€ can be continued to @ {(unique) bounded linear operator on Eff
with the same norm,and moreover,

{1} M"EEnd&(E\f’) is identical with M'$Endm(9€f).

(ii) M=M"" in sndm(xf).

Proof : Because of (6,Th.2.8./ we have only to prove (i) and (ii).
For a fixed faithful normal state f on A we consider a projection
ZeEndc(Jf'f) commuting with any BeMSEnd, () S Ende (A7)« Then, we
get

(1) ZB(X) = BZ(X) for any BeM,

If §=i1+§2 is the unique decomposition of X in J&‘," with respect to

the subspaces ZJ(, b3 €Z£¢°}. and (1d-Z) & we draw from (1)

B()Tl) = Z(8(X,) + B(X,)) for any BemM,
i.e., B(S<'1)€ Z2#&; and B(X,)« (1d-2) A% for any BeM,

Since Z is the identical operator on (Zél'fn #) and since Z commutes
by assumption with any {aoidx: aeA}.‘éM.the projection za*Enda:(xf)
is the extension of a {(unique) projection ZeM & EndA(X). Thus,
M"E End, (HF) is identical with ME Endg(#;). The second statement
above is now obvious.

Lemma 3.3.: If A is & =finite the statement of Theorem 3.1. is trus.

Proof: If f is a faithful normal states on A we consider MgEndc(?C’f)

and XeX £ 2’ s (cfs Lomma 3.2.). The appropriate operatora Jf and

[Alt’ tem} are the extensions of the operetors J and {Aﬂ . te[R}

from # to Jff. (cf. [4, Prop.2,12.,3,8.] ). By [7.7h .4.2.] we gst
IMI = M, A%t A;“ = M for any t€R on

for M,M° & Endm(at’f). Applying Lemma 3,2, the desired lemma yields,

Now there remains to prove Theorem 3,1. in the case of A being
non-8& -finite.

Lemma 3.4.: If A is not S~finite the statement of Theorem 3.1, is

true, too.

Proof: Let X be defined in terms of {M,X) as at Proposition 2.8..

The oparators J and [Au: te Rf are defined for KA as in [a,582,3].
By @..p.lé{[ there exists an increasing directed net {pn(: xel} of
projections of A such that p Ap, is a &-~finite W‘-algebra for any
o &I and that w®~lim Px=1,+ Investigating for a fixed o« €I the
linear spaces = {r 4 0 <eD>p, Jand Ky = SR Ko e <o Pl we
obtain operators Jy. ﬁut (teR) on r?\@ The bounded operator Je
satisfies the conditions of [4,Cor.2.9.] with respect to pwJX . The
same conditions are valid for the bounded operator p,J. Consequently,
by [4,Frop. ?.11.]

p.J = I on F for any x€ I,
Similarly, the operators p“A“ and Ajt (t€R) both satisfy the
generalized K.M.S5. condition with respect to K = p,Xiand moreover,
pu(‘ﬁj‘t(pd.}’() sﬁi‘{an):: Poc < for any te[R. Therefore, by
[4,Prop.3.8.]

pxﬁn = Ait on K, for any e €I, any te&R.
Since ﬁ;tBA;itéEndA(aﬂ for any Be€M, any t€R, since the unit

ball of M is U’;-complete by Proposition 2.4. and since for any BeM,
any ¥ € H there exists
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Ty-lin A“BA“” (V) = A8 AT 4 teR,
€

we obtain

(2)  Ti-1ie AL - AMe g e m, ter,
. el

for any Be M. Therefore, ditMJitSM. tefR, since teilR can be
changed to (~t)e[R in the relation (2). '
similarly,we prove the relation IMJ=M" using the fjg:completeness of
the unit ball of M and M", respectively.

The Theorem 3,1. is proved.

Corollary 3.5.: [MpX[ = LK.

Proof: From Theorem 3,1. we draw Mh(x)aaMhJ(x)-JMh(x). By E-Cor.
2.9.] the relation 3(X)=1.%“holds. since [Mx]_=K by definition
and since J is injective, [ﬁhx]traiikf

In addition we like to state the lemma [}.Lemma 4.3;7 in a generali-
zed form.

Lemma 3.6.: Suppose the situation given at Theorem 3.,1.. Let B*€ ML.
Then for any A€C with Re(\)>D there exists a unique BeM, such
that

2- CC(R) .87 (R)> = X-<C(X)B(XD> + X « <B(X).C(X>

for any Ce€ Mh.

Proof: First, let A be & =finite. We assume Re{X)=1 and 058" % 1
since the sought equality is real linear. Let f be a fixed faithful
normal positive state on A existing by {i.Prop.Z.S.ﬁi]. Define two

normal functionals r and rg on M{for any given Bntmh)by the formula

r(c) = f(2-<CT(%).8°(X)>)

rg(C) = F( X+ <C(X):B(X)> + X+ <B(X).C(X)> ), for CeMy .
Because of [B,Remark 3.9.], [}.Cor.17]. Proposition 2.4. and Corolla~
ry 2.2., the functionals r and rg are in the self-adjoint part of
the predual of M. Let

Vi= {rB H Bth.”Bl’él}.

This set is obviously convex. Since the map B — r, is continuous

B8
with respect to both the w“-topology on M and the weak topology on

the predual of M, the set Vv is weakly compact.

16

Assume ng V. Then by the Hahn=Banach separation theorem
there exists an element De?Mh such that

(3) rg(D) < r(D) for any BeM, BN <1,

Let D=UJO] be the polar decomposition of De M, existing since A is
self~dual, (cf. Prop. 1.4.). U is self-adjoint and commutes with |D]
since U is self-adjoint. Taking B=U we draw from (3):

1726 A <D(R)U(R)D> + X <U(X)D(X)>) <
<f(<o(“i).a (x)>)
= f(<b(e’)Y (x) o8 )1’2(x)>)
£ £( <loke ) V3(x).(8)Y2()>)
= f(<lo1B" (%) ,%>)
£ (<o) (%) 3D
= F(<D(X)U(X)>) _
= 1/2-F( N <D(X) (%) > + XN-<U(R)D(RDD ).
This is e contrediction. Consequently, r&V, i,e,, there exists an
element BoeM , liBell S1, for which

(4) 2+ <CIR)B (R )=F( N+ SE(R)BH(R)D> + N-<B(R)WC(X)D>)
for any CeM . We define

D= (2 <CC(R).B (R = Nr<C(X)B(R)> = X <B(X),C(XD> )oC
If CeMm, the element D belongs to M. Putting D to (4) we obtain
(5)  f(f2r <C(x) B (R> = A <E(R) BRI = N<Be(X)WC(XD> f2)=0
for any CeM, . Since f is faithful and positive we get the desired
equality in the case of A being &-finite., By the way we have shown
that Bfth does not depend on f.
We remark that the only place is (4) where the & -finiteness of A is
needed, because we did not know whether or not B depends on f.

Now the restriction on A to be & ~finite can be dropped in an obvious
way using [1.p.16{7. The lemma is proved.

84 Natural positive cones in self~dual Hilbert wh-moduli

Throughout this péragraph A 1is assumed to be commutative. Let #H
be a self-dual Hilbert W"-module over A. We consider von Neumann
algebras M onél?possessing a cyclic-separating element x € 7€, The
modular inwvolution, the modular operator and the appropriate modular
group of automerphisms associated with the pair (M,X) are denoted by
A it

3,4 ang LA : teRrY, respectively. For details see [a] and
Proposition 2.8., The aim of this paragraph is to show the geometri-

H
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cal properties of the natural positive cone ?g;(f’ arising from the
pair (M,X) in some sense similarly as in the case A=C, cf, fi].

Definition 4.1.: (cf. [1.0ef.2.5.25.])

For a pair (M,x) we consider the set ..7’;. the Z'i-completion of the
set {B:)B:)(‘i) : BeM, ||BIBI(X) || £ 1}. Then,the natural positive_cone
P associated with the pair (M,%X) is defined as 7:#[}’0 ]ro

Proposition 4.2.: The closed set P SH has the following properties:
____p_. i74, - 7° /40, =7~ T~
(1) P = [A M¢x]t= [:d [M+x]t jm‘
“1/4,. 7" -1/A e T 7
= I,—A M+x_]~p = [A ﬁqﬂrx]r,]r * .
where M_ and Mi are the self-adjoint positive parts of M and M),
respectively. Therefore, Pis a convex cone.

(i) AP = P for sny teR.
(111) For any ¥ € P the equality J(¥)=¥ holds.
(iv) If B€M we get BIBU(P) & P .

Proof: (cf. E.Prop,2.5.26:])
Let M €M be the m~algebra of the entire analytic elements of the
group A3t te{}?}. For any Be M, there holds

(6) AV 4%(x) = AV gV AN Se* A A (%)
M A 1A g1 Ay S8R 3y
. AV % 4V 49 A2 A %8 A4 (%)
= (A gAY 3 (A AV 5 (3.
since A M A'l/daM and because of Theorem 2.10.,the relation (6)
o o 7

yields
/4, =77 < 1/4 o i
P s [AVoID LA RFIITT -
On the other hand, [Mo*i]‘_ a[l‘ki]; by Theorem 2.10. For an arbi-
trary VG'{M*EJT we take such a bounded net {BJ = eI, B,eM | that
T,~lim g, X=¥. Then,the equality {6) implies Al/"a“i e P. sut

= T -lin 3.4Y% %
(€]

= T,-lim B %
el

=y = 24Y%,
Therefore,
A A G-8 %) A A T85> = <(Y-8K) DA R(7ma %) >
- 1/4 =T =
and A]"My e P, i.e., [A / [M"xjt ]r < P . Finally,

iz

1/4, -1~ /45, <171~
P=lamx]_ =[ax] 1. .
If P* denotes the natural cone associated with (M' +X), there
holds

B 3B J(X) = J(IB"I)I(IB"I)(X) = (IB*I)I(IB Y X)
for any B°€M’since JB"J €M, i.0., P =P . Since A-l is the modular
operator with respect to the pair (M'.i))we obtain
R 1/ 4 =77 "amifAfe sl T T
Pept=lathz]] AV sl T .
The first statement is proved.
To prove the second one we keep in mind that

A A x e AV AR .AIMA“M,,A-uf =A1/am*)_(.
If 8,0&M the third statement follows from the equality
(B3BI(X)) = (IBI)BI(X) = B{IBI)I(X) = BIBI(X),
whereas (iv) can be derived from
(838I)(CICII(X) = BC(IBIY(ICII{(K) = BCI{BCIIHX).

S0 , the proposition is proved,

Proposition 4.3.: The following relations are valid:

[M*i_?;: {ved: (7.‘z“>2;0 for any EE{M;EJ_;.} ,
[Mz]7 = {Vea: <V,2>20 for any z€ [M X[ } .

Proof: First, suppose A to be & ~finite and let f be any normal
faithful state on A. We denote by [Mj]f the closure of [M i] with

1/2 T T
respect to the norm f(<&,>) onJ ., The set fM+x]f is defined
analogously. Then,by @..Prop.Z.S.Z?J the following set identities
are valid on the Hilbert space Jt’f. the closure of S with respect
to the norm f(<._/'.°>)1/2:

[M+i]f = {"\/’6’3‘?: (<Y, 2120 for any ‘z’é’[M:i]f}n
[W,%]; = {7 €;: F(<V.2>)20 for any ze[M,x], f.
Since f is an arbitrary normal faithfel state we obtain

[n;s:];: {v € #: f(<7.2>)20 for any Z&[M,%]_ . any feP},
['M'.._z]; ={yeX: F(<V+Z>)Z0 for any Eefn*i]: , any fe P} .
Thus, we get the sought relations above.
Secondly, let A be non= B-finite now. There exists a directed increa-
sing net {p,‘: o £ I} of projections of A with the properties that
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. [ ]
RARc is d-finite for any oc & I and that w"-lim Re=1lye From the
first part of the present proof cne derives

pﬂv[ﬂ{_i}; = {7 P XF,ZD> 20 for any ‘z‘e‘“p.(-[M:i‘];}.
gx'[N:fc]; = f?e PZEXTZ2> 20 for any Zap, [M‘_ijf} .
for any X €I, if p M on p & is considered. Since e eI is arbitra-
rily chosen we get the desired relations.,

Proposition 4.4,

{1i) The cone P is self-adjoint, i.6.s
P=PFP = {V eFC: <GESZO for any Te FF.

(11) P A(-P) = [0}, ‘

(iii) If J(¥)=y for a certain y €& there exists s unique decompow
sition ¥ay, -y, with ¥,,7,€F.and ¥,L7,.

(iv) The linear hull of J° is & .

Proof: (1) First, suppose A to be & ~finite and let f be an arbitra-
ry faithful normal state on A. If we consider the Hilbert space 9¥‘~9f
and the cone ]jf gz. (the closures of & and &, respectively,

with respect to the norm f{ :.'>)1/2). there turns out (by @.2.3.28.])

that ])f - _va= {§cf 5&:: F(<TV.ZD)20 for any 2‘5}?}.
Since f is arbitrarily chosen,we obtain

P {FeH: £(<7.2>)20 for any 2€P, any fc P}

= fye A <§E> 20 for any £ € P}

= "PV
as desired. Secondly, if A is non-Z-finite there exists a directed
increasing net {p,,,: MG‘I} such that p,Ap. is B-finite for any
«e I and that w'-lim Re=1,e Considering pdpgp,‘fwe get p,,(P=p,,.PV
for any o €1, That implies P= PV,
(1) If ?’e-pm (=) we draw from (i) that \/7.?>=0,and hance,
y=0.
(iii) Assume J(¥)=¥. The cone P is a closed convex subset in the
self~dual Hilbert A-module <& having the property that the subset
?Oa{Ve.P: <1t is T, -complete. Therefore, there exists a
unique element 715~P such that

() <F9,.9-7,> = inf {<G-2.,52> : 2 PF.
Let us denote \72:-« 7-?1. For any % e, A>0 the inequality
<F-91:7-91> £ <T=(Fy+ A2) T~ (Fy+ X2) >

11

holds since ("714-) ¥) e P . Therefore,

0€ M(<CHHeED> + <EFD) + NI
Since A>0 is arbitrarily chosen the inequality (72.2>+ (‘i,v? 20
has to be valid. But, since F €.~ there holds 3(V,)=T,4 I(F)=Z, and
hance, (’92.“2>~ <J(?2}.:l(il> =<?2.2>'. Thus, we get Vze‘f’ since
ZeJP wes arbitrarily chosen and (i) is wvalid. Consequently,
¥=¥,~¥, where ?1,725_7;'.
Let us show that ¥,.1V,. Since (1->\)V1€P for any 0 A£1 we get

(Vz '?2> g <V2')“‘?‘1'?2'>"—V.1>
because of (7). This is equivalent to

XD A (KT, > + <§p9> ) 2o

K A\l

Finally, <'\71.V2\>;.§ O,and since ?1.726.P= P, we obtain
<9449, =0.
To show the uniqueness of such a decomposition we asssume the existen=-
ce of two decompositions

~<1

=917V + V1T €5 Ty,
=Z,~Z, » zl.zze}’, zlJ_z2 .
Then yinziuyz-zz.and furthermore,
<V -F¥yoE> s <5oE9,E>
= - <E > -<‘71.‘z‘2> = 0.

Therefore, 71=2'1. ’\72=§2 and such a decomposition is unique.

(iv) If an element ¥ €J€ is orthogonal to the linear hull of .
there must be (?‘.7>=0.and hence, ¥=0. There only remains to re-

mark that the unit ball of the linear hull of JF 1is T1~complete by

~

construction,

Corollary 4,5,

(1) If y €, ¥ is cyclic for M if and only if ¥ is separating
for M.

(1i) I1f Y€ P is cyclic (and hence, separating) for M, for the
modular involution J- and for the natural positive cone F

associated with the pair (M,¥) 3=JV' ?‘}?Y' hold.

The proof of this corollary is analogous to that of ﬁ.Prop.2.3.30J.
and thus, will be omitted.
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Ppank M. ) E5-87-94
Ipencrapnenus don Heifimana B aBTONVAabHBIX
rene0epTOBLIX W¥-monmynsax

PaccemarpuBawTces anrebps don HefiMmana M~orpaHudyeHHHX one-
paTopoB B aBTOAYANBHLIX I'MNbOepTOBHX W¥-Mmogynsx H, wuMermue
HUKJIMYHO OTAensawmuit sieMeHT X B H. OO6HapyxeHn TecCHble CBA—
34 MeXOy HHMH M HEeKOTODHMH CIHelHalibHbMH BeneCTBeHHLIMH
noanpocTpadcTBamMy B H. llpy npepnonoxeHuH, UTO Jjexamas B
ocHoBe W¥- anrefpa KoMMyTaTHBHA, TeopeMa Tuna Tomure—TaHe~
caxku pokasmsBaertrcsa. Hccnenyercs ecrecTBeHHH! KoHyc B H,
cBAsaHuel ¢ mapoi /M, x/. Onucans ero csoiicTsa.

PaboTa BeonHexHa B JlaGopaTopHH TeopeTHYeCKoH GH3IuKH
OuAu.

Hpenpurt OGbeIMHEHHOTO HHCTHTYTA ANEPHBIX Uconedosanwi. Jy6ua 1987

Frank M. E5—-87-94
Von Neumann Representations on Self-Dual
Hilbert W*-Moduli

Von Neumann algebras M of bounded operators on self-
dual Hilbert W*-moduli H possessing a cyclic-separating
element X in H are considered. The close relation of them
to certain real subspaces of H is established. Under the
supposition that the underlying W¥-algebra is commutative,
a Tomita-Takesaki type theorem is stated. The natural cone
in H arising from the pair (M,X) is investigated and its
properties are obtained.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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