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§1 Introduction 
A (left) pre-Hilbert A-module over a certail' c·-algebra A is an 
A-module~ equipped with an A-valued inner product, i.e., an A-va
lued nondegenerate sesquilinear mapping <,~ :ZxX_ A, <£.'> 
being A-linear at the first argument. The pre-Hilbert A-module ~ 
is H;Ubert if it is complete with respect to ~he norm n·JI.I/<:,·>II!/~ 
We suppose always that the linear structures on A and on~ are com
patible. For further basic facts concerning Htlbert C·-moduli we 
refer to [6]. A Hilbert A-module ~ over a C·yalgebra A is called 
self-dual if every bounded module map r:,;t(! _ A ie of the form
<-.i> for sOllie iE:K. In this paper we restrict our attention 
mainly to Hilbert w·-moduli. For them some more facts are known. We 
need the following ones: 

Definition 1.1.: [3.Def.~ 


Let A be a w·-algebra, ~ be a pre-Hilbert A-module and P be the set 

of all normal states on A. The topology induced on~ by the semi

norms 

f(<: .-:»1/2 , fe P, 

is denoted by T l' The topology induced on X by the linear functio
nals 

f(V ,i> ) • ftl! p. if!!:K, 

is denoted by 1C2 ' 

Throughout this paper we use the following notation. If~ is a sub
set of the Hilbert W·-module .;;t:". [)f::']; denotes the set {>....x: )..l!lR ,

t 
x €xol whereX 0 is the L 1-completion of the set {X EX: 11i.II;flJ. 

',l.tlihiif\i;.l.'ii HHmryi! 
..,. ......,.. ;,. ur ~ ~"" ""11.." .. ..,; \ 
llilUj .~,;1~n..ol\ l;:;.;.~" .H, .... '" KI.~II 
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Theorem 1.2.: [3,Th.9] 

Let A be e w·-algebra and #e be a Hilbert A-module. The following 

conditions are equivalent: 

(i) 	 Jr is self-dual. 
(ii) 	 The unit ball of ~ is complete with respect to the topology 


l1' i.e.,;:e' =[;t:J:;; 

(i11 ) The unit ball of ~ is complete with reepect to the topology 

"l"2 • 

Corollary 1.3.: [3.cor.11] 

If A is a w·-algebra and ~ is a self-dual Hilbert A-module the li 

near span of the range of the A-valued inner product on~ becomes 

both a w·-subalgebra and an idaal in A. 


Theorem 1.4.: [o,Prop.3.10.] 

Let A be a W·-algebra end~ be a self-dual Hilbert A-module. Then


J 

the set EndA(~) of all bounded A-linear operators on ~ is e W·-al
gebra. 

These facts make clear that in the case of ;;re being a self-dual Hilbert 
W·.module the spectral theorem ([9,Th.l.11.3J ' [5.Th.7,8,9]) is 
valid for each self-adjoint element of EndA(~) • Moreover, there 
exists a polar decomposition for each element of EndA(~) in 
EndA(;rj. This is of importance for the existence of certain opera
tors erising from some special real subspaces ~ of self-dual Hilbert 
w·-moduli~. as they were treated in [4]. 
We remark that for a given w·-algebra A any considered self-dual Hil
bert A-module~ can be assumed to have A as the linear span of the 
range of its A-valued inner product. (cf. Corollary 1.3.). Otherwise 
we would change A to this linear span of the range. a C A. and we 
would consider;;re as a Hilbert B-module. 

Let A be a W·-algebra and X be a self-dual Hilbert A-module. §2 of 
this paper investigatas (generalized) von Neumann algebras M on ~ 
possessing a cyclic-separating element x in;e • The definition of a 
cyclic element for M is modified in a nonobvious way. We show the 
relation between von Neumann algebras ori~ possessing a cyclic
separating element and such special real subspaces X of .:;Jf!" as they 
were investigated in [4]. In addition,a generalization of Kaplansky' s 
density theorem for .-algebras of bounded operators on ~is etated. 
Under the supposition that A is commutative,we consider the partial 
conjugate-linear involution J and the strongly continuous unitary 
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one-parameter group ("~it: te~l arising from that real subspace 
of ~ which corresponds to the pair (M.x) in §3. They would ful
fil the conditions of Tomita-Takesaki's theorem for M and M'. 
§4 deals with the natural coneJD~~ connected with the pair (M,x). 
We investigate the main properties of this cone. 

§2 Von Neumann algebras on self-dual Hilbert W·-moduli 
Let A be an arbitrary w·-algebra. We would like to show that von 
Neumann algebras of bounded A-linear operators on a self-dual Hil
bert A-module dit" • which possess a cyclic-separating element xeiif:', 
are closely related to certain special real subspaces~ of.il:"', as 
they were treated in [4]. The key point of this paragraph is Defi
nition 2.5. modifying the notion of a cyclic element for a von Neu
mann algebra over a self-dual Hilbert W·-module. Thus. new aspects 
are produced in the discussions. At the end of this paragraph we 
state a generalization of Kaplansky's density theorem for .-algebras 
of bounded A-linear operators on self-dual Hilbert W·-moduli over A. 

Definition 2.1.: Let A be a W·-algebra and~ be a self-dual Hil
bert A-module. A C·-subalgebra M of EndA(~),(the set of all boun
ded A-linear operators on ~Jlcoinciding with its bicommutant M" 
is called a "generalized- von Neumann algebra. 

corollary 2.2.: Let A be a W·-algebra and~ be a self-dual Hilbert 
A-module. Any "generalized" von Neumann algebra on ~ is a w·-alge
bra. i.e •• the word "generalized" is superfluous in Definition 2.1 •• 

fL2.2!..:. Since EndA(X) is a w·-algebra [6,Prop.3.lOJ there exists a 
normal faithful representation 7T" of EndA(K), i.e., 77\EndA(~». 

= 7T{ EndA(X»" • Moreover. -u( M)' ~ 7T( EndA(X»" =7T( EndA(~» since 
7T(EndA(,;;;e) "~J'T(M)' holds for the commutants. By supposition 
M ..M", and hence. 7r(M)= 7T(M)" • Consequently. the representation 
7T is 	faithful and normal for M, too. 

We state now an important topological property of these von Neumann 
algebras. 

Definition 2.3.: (d. [3, Def.1{J) 
Let A be a W·-algebra, ~ be a Hilbert A-module and P be the set 
of all normal states on A. The bounded net {a",: Bo(t!i EndA(~)''''' EC 11 
converges to a~EndA(~) relative to the topology:7; if there exists 
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..·-lim <B....Pi) .1» • <e(i) ,j)
O(EI 

for any a.b£~. (For other topologies,cf. [3]). 

Proposition 2.4.: Let A be a w·-algebra and ~be a self-dual Hilbert 
A-module. Let M be a c·-subalgebra of EndA(~)' Then M is a von 
Neumann algebra if and only if the unit ball of M is complete with 
respect to the tOPology~. 

~ We take a bounded net with the follOWing properties: 
(i) {e... : q,.,eM.o( e I} converges to BEEndA(K) relative to the 

topology -::r;. 
(11) £tiC "CBQ( for any C EM", tJ( e I. 

Therefore, 

o .. w·-lim -(tEkC-C/k)(X) 'V> 
«<!I 

.. w·-lim «Ek(C(x)),V> - (Bo1I(X),c-(y») 
...n 

" «BC-CB)(X) ,V) 
for any x,V ~K. Thus, Be M....M. 

On the other hand. suppose that the unit ball of M is complete with 
respect to the topology ~. We consider a faithful normal represen
tation.,.,. of EndA(.;;r"), (cf •• Theorem 1.4.). It is also a faithful 
representation for M. By [p.Remark 3.9J the topology ~ coincides 
with the weak topology on EndA(~)' Therefore. the unit ball of 
TriM) is complete with respect to the weak- topology, and hence. by 
[1.Th.2.4.11.] 77(M)=mH)" • Consequently. MaM" since TT is a 
normal representation of EndA(.;r'"). 

By @.Remark 3.9J, [J..Th.9J we conclude that the topology:;;; 
coincides with the weak· topology on the unit ball of H. 
In further discussions we are especially interested in von Neumann 
algebras M on self-dual Hilbert W·-moduli ilt!" posseSSing somewhat 
like a cyclic-separating element XE~ similarly as dr-finite von 
Neumann algebras possess one in certain Hilbert spaces. 

Definition 2.5.: Let A be a W·-algebra, ~ be a self-dual Hilbert 
A-module and M be a von Neumann algebra on ~. An element xE~ is 
called to be cyclic for M iff [HX]~ e~. It is called to be sepa
rating for H iff B(x).5 for some BeM implies B.O. 
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Proposition 2.6.: Let A be a W·-Algebra.~ be a self-dual Hilbert 
A-module and H be a von Neumann algebra on;Je. If an element xe.1e is 
cyclic for M. it is separat ing for M'. If an element 'i € K is separa

ting for M' and A[M;g~€[HXJ;, it is cyclic for H. 

~ First. we conSider an element e'e M' such that B'(X)=O. Then. 
B'(B(X»"(B'B)(X)=(BB·)(X)=B(B'(~").~ for any BeH. If x is cyclic 
for H the element B' IE H' must be equal to zero. 

Secondly. there exists a projection p' e EndA(Z). p' :K~ [H>U; • 

(cf. Theorem 1.2.). The projection p' is contained in M·. Therefore. 
(id~-P" )(x)=O.and hence. P'''id~ since xE~ is supposed to be 
separating for H'. 

We know that a von Neumann algebra H posseSSes a cyclic-separating 
element in a certain Hilbert space if and only if H is .I-finite • 
[1,Prop.2.5.6J. In our setting this statement is not in all cases 
trl.!e. However. we can state the following 

Lemma 2.7.: Let A be a W·-algebra. ~be a self-dual Hilbert A-mo
dule and H be a von Neumann algebra on~ possessing a cyclic-sepa
rat ing element in K. Then: 
(i) If A is 3 -finite, H is 6-finite. 
(11) If M is 3-finite. the centre j-(A) of A is 8-finite. 
(iii) The von· Neumann algebra M is not necessarily 6-finite. 

Proof: If x eZ is a cyclic-separating element for M and if 
{E«: E"t t!i H. D('E Il is a set of mutually orthogonal nonzero projec
tions owe obtain 

<x .x) ~::;> :<E".-('S<)'E,. (x»
~/!d 

=L <E,..(X),E,..(X)> it o. 
o('EI 

Since A is ~-f1nite by assumption,there exists a faithful normal 
state f on A. Therefore. 

+....,,> f( <x,x» ~ L.: f( <E",(J<) .~(lq» > 0 
0<", I 

and +oo>f( <Ei..:(x) •I:,..: (x» )> 0 for any co( IE I. Thus, the set I must 
be countable and H is dr-finite. This proves (i). 
To show (ii) we remark that 
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{a'id;;t!: aE }-(A)]" S(EndA(;;t"» a j-(M) 

(cf. [7,Cor.7.10.,Prop.8.1.]). Consequently. if M is 4-finite. 
]-(A) has to be 6-finite, too. 
The third statement can be shown considering a non-4f-finite W--al
gebra A. first. as a self-dual Hilbert A-module ~ with A-valued 
inner product <!i',b>A:= ab-, a.bEA, and secondly. as a von Neu
mann algebra M on, itself (A=K) with cyclic-separating element l A<tfi'."A, 
where the elements of M are defined as multiplications of A with 
elements of A from the right. So • the Proposition is proved. 

Now we describe the relation between von Neumann algebras M on self 
dual Hilbert W·-moduli ~ possessing a cyclic-separating element 
x e<k': and tilose special real subspaces X of t1(' as they were treated 
in [4] under the supposition, that A 1S commutative. 

Proposition 2.8.: Let A be a commutative w·-algebra, ~ be a self 
dual Hilbert A-module and M be a von Neumann algebra on ~ possessing 
a cyclic-separating element x € Z. Let X:.. [MhX]';' Then X is a 
real subspace of ~ being invariant under the action of A 
satisfying the conditions: 
(i) X l'Ii:K={rij. 

(ii}X+iXiS norm-dense in~. 


r.,~7-c X..L
~10reover. LMhx.J-e = i • 

Proof: For any B6Mh , B'eo MhJthe following two equalities are valid: 

<6(x).B'(x» ,,<B'(X).B(X}> • 
0= <1B(X}.B'(x» + <S'(x).iB(X» 

Therefore. B'(X)fEiX.l.for any B'EMh• Now we obtain the relation 
[MhX]-~iX.Lby obvious computations, (cf. p., prop.2.2J). From 
M'X;r~+rg(Xn iX)..L we derive (Xl"liJ('}J.=X' since xE.l."'is 
cyclic for M' by Proposition 2.6. and since {JXJ"'I ix)"'1;' c~ 1J'::')..L 

by ~.Proof of Prop.2.2.]. Consequently, .:it' niX.. {O}. Moreover. 
MxgX+iX~ or" and we get that X+1K has to be norm-dense in.7e 
since xEtK is cyclic for M. The proposition is proved, 

If A is a commutative w·-algebra,we can apply the results of ~] to 

~-[Mhx]~. We will make use of this in §3 of this paper. 

At the end of the second paragraph we prove a generalization of 

Kaplansky's density theorem we need later. 


() 

Oefin1tion 2.9.: Let A be'a w·-algebra and {de. <E.::>1 be a Hilbert 
A-module. We say that a bounded net f B«: 0( e I, E\.ce- End:(X)] con
verges to BEEnd:(J'e) relative to the topology t:-sr-; iff there 

exists 
0<:> 

w--l1m 2: «e..(X ) .!i..c(x » + <~(Xn) ,a!(x }) ) .. 
""'Ii I n.. l n 

"t, (<S(X

n 

n}> 
n

+) ,B(X <6-(;(n) ,B-(Xn»)n 
..... 

for any sequence fY. n : XnEX, nE"LN. L: I/x_,2<+Oc:>J. 
n .. l 

Theorem 2.10.: Let A be a w·-algebra and (~. <;-";>1 be a self-dual 
Hilbert A-module. Let N be a self-adjoint algebra of bounded. A-li 
near operators on~. and let M be the von Neumann algebra arising 
as the linear hull of the ~-completion of the unit ball of N. 
Then.the unit ball of N is 6.:r:-dense in the unit ball of M. 

Proof: First. suppose A to be ~-finite. Let f be a normal faith
ful state on A. Considering the extensions of the operator algebras 
Nand M from EndA(~) to EndC(;Ff)' cf. [6.Th.2.8~(wher~ ~ denotes 
the closure of;;e with respect to the norm f(<:,·»1/2). we can 
apply Kaplansky's density theorem to N§'Endq;(Xf ). Therefore. the 
unit ball of N 5"End (Zf) is 6' -at rong-.dense in the unit ball of 

t 
M"§iEndt{~f)' the bicommutant of M in EndC(~f)' Consequently, the 
same is true if we change M" to MJ;; M" • Since the state f is faith
ful and normal we get the deSired statement in the case of A being 

6' -finite. 
Secondly. let A be non-a-finite. Than,by /J.,p.164] there exists a 
directed increasing net {PrK: o{EIJ of projections of A such that 
!\tAp.. is ~-finite for any o(E"I and that there exists w--lim t:\ot .. 1A• 
As it has been shown.the unit ball of PdN isa-~-dense in the unit 
ball of p.M for any oC€I. Hence, the sought statement can be deri 

ved easily since o(t!: I is arbitrary and w·-lim p.,.c=lA• 

§3 A Tomita-Takesaki type theorem 
Throughout this paragraph A is assumed to be a commutative w·-algebra. 
We want to show that the Tomita-Takesaki theorem is valid for von 

Neumann algebras M on self-dual Hilbert A-moduli ~ possessing a 
cyclic-separating element i €~ Jfor its commutants and for the 
derived from the pair (M.x) modular operators J and rr~it: tE~} on 
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x, ( cf. Prop.2.9., [4,Prop.2.10.,Def.3.1;]). We rernark that this 

theorem was stated in [2,§3] for the special case MzEndA(~)' 

Theorem 3.1.: Let A be a commutative w·-algebra, Je be a self-dual 

Hilbert A-module and M be a von Neumann algebra on ~ possessing a 

cyclic-separating element x: eX'. If X is defined in terms of the 

pair (M,x) as at Proposition 2.8., and if J and [LJ it: t",{R1 are 

defined by X, ( [4,Prop.2.10.,Def.3.1J), there hold: 

( i) :JM:J co M', 

(ti) LJ.itMLt"it "M for any tE{R. 


First, we prove the theorem under the assumption that A is 6-finite. 

There are two ways to do that. The first one is to use the construc

tions from [7,§4U looking always for modifications needed in the 

proofs sinCe, in general, norm-completeness of ~is changed to 

~1-completeness of the unit ball of~. This can be done, but we 

will not do so in this paper. From the proof in [7,§17 we give only 

the generalization of the key Lemma 4.3. at the end of this paragraph 

because it seems to be of more general interest. The second way of 

proving Theorem 3.1. basas on the following lemma: 

Lemma 3.2.: Let A be a commutative ~-finite w·-algebra and let 4C 
be a self-dual Hilbert A-module. Let M~EndA(.;;i!:"') be a von Neumann 

algebra possessing a cyclic-separating element x tfilf!'. Let f be a 

faithful normal state on A and denote bY~f the norm-closure of ~ 
with respect to f(<:,~)1/2. Then,any bounded A-linear operator on 

~ can be continued to a (unique) bounded linear operator on ~ 

with the same norm,and moreover, 

(i) M'~EndA(£) is identical with M'5End (O'e ),t f 
(ii) M-M" in Endt(~f)' 

Proof: Because of ~,Th.2.8~ we have only to prove (i) and (ii). 

For a fixed faithful normal state f on A we consider a projection 

Z€EndC(~f) commuting with any B€MgEndA(Z)gEndc(dIe'f)' ThenJwe 

get 

( 1 ) ZB ( x) " BZ ( x) for any BE M. 

If X=X +X is the unique decomposition of x in ~ with respect to1 2 
the subspaces Z.:Mf, E'Z~. and (id-Z)~ we draw from (1) 

B(X1 ) = Z(S(x1 ) + B(x2 » for any Be M, 

i.e., B(X1 )E" Z4Pf and B(X2 )E (id-Z)Kf for any BE"M. 

} 


Since Z is the identical operator on (Z~f" or) and since Z commutes 


by assumption with any (a.i~: aEAJ~M,the projection ZiI!!'Endt(dt"f) 


is the extension of a (unique) projection ZEM'.:fEndA(.iiIe'). Thus. 


M'; EndA(d'e) is identical with M'; End,,(c;rf)' The second statement 


above is now obViOUS. 


Lemma 3.3.: If A is ~ -finite the statement of Theorem 3.1. is true. 

Proof: If f is a faithful normal state on A we consider MgEnd,,(~) 
and xe~gZf ' (cf. Lemma 3.2.). The appropriate operatl>rs :J f and 

{.di t : tE:fR} are the extensions of the operators :J and f4it: tEeR} 

from ;;e to JI1:. (cf. [!., Prop.2.11 •• 3.a.] ). By [j.Th.4.2J we get 

• .A it A- it f (R .......
:JfM:J f "M '~f M~f • M or any tE on ~f 

for M.M·~ End~(~f)' Applying Lemma 3.2. the desired lemma yields. 

Now there remains to prove Theorem 3.1. in the case of A being 

non-6 -finite. 

Lemma 3.4.: If A is not a-finite the statement of Theorem 3.1. is 

true. too. 

Proof: Let X be defined in terms of (M,i() as at Proposition 2,$•• 

The operators :J and f4it: toe /R] are defined for X as in ~.§§2.3J. 
By [i.P .16.g there exists an increasing directed net {Pol: 0< Ii: 13 of 

projections of A such that ~Ap~ is a ~-finite w·-algebra for any 

P( <E I and that w·-lim p",=lA• Investigating for a fixed ()( £ I the 

linear spaces ;:;Je'= {Po(~. p",r<f,?'p,,,,j and X.., "'[R.cX, R.!('<.:;>.p.,J.we 
G( it 

obtain operators~, Llo< (tE"lR) on~. The bounded operator:J.... 

satisfjes the conditions of {!l,cor.2.9.] with respect to p",X. The 

same conditions are valid for the bounded operator ~:J. Consequently, 

by {}t ,Prop. ?11 J 
polJ" J", on.i1l':r for any (>(EI. 

Similarly, the operators p.,...ait and Ll;t (t €lR) both satisfy the 

generalized K.M.S. condition with respect to~= p",,~and moreover, 

p"",dt(pc(.K) :;Ll!;.t(po(Xr= p"...k for any t<!'lR. Therefore, by 

[4 .ProP.3.8.J 

I p",.ait 
2 .Ll~t on ~ for any 0([ If! I. any til!!'{R. 

it -' tSince Ll", BL1....~ <£ EndA(~) for any B If! M. any tEiR. since the unit 

ball of M is "J3-complete by Proposition 2.4. and eince for any BeM. 

any YE'~ there exists 

H I) 
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r -l1m L)itsL):it (po(y) " L)itSLl-it(y} , te:~,
1

«ItI '" 

we obtain 

it
(2) c:J;-l1m .td!tsL):.it " L) s6it 

£ M, tE'l:R,
"'IE I 

for any SE'M. Therefore, L1itMLf"'it =M, teeR, since t ElR can be 


changed to (-t}eeR in the relation (2). 


Similarly,we prove the relation JMJ=M' using the ~completeness of 


the unit ball of M and M', respectively. 


The Theorem 3.1. is proved. 

Corollary 3.5.: [M'hX]';" iK. 

~ From Theorem 3.1. we draw Mh(x)"JMhJ(x}.J~h(x}. Sy @,Cor. 

2.9J the relation J(X)=ik.lholds. Since [MhX]-r:-,,:ifi::by definition 

and since J is injective, [Mhx};;'=iX~. 

In addition we like to state the lemma (j,Lemma 4.3J in a generali 

zed form. 

Lemma 3.6.: Suppose the situation given at Theorem 3.1 •• Let S'E' Mh • 

Then for any ). E II: with Re('\'} > 0 there exists a unique S E Mh such 

that 

2- <C(x) ,B' (x}) .. ).. <CPt) ,B( x}> + .5\. <BO<)'C( x}> 

for any CE Mh • 

Proof: First. let A be g -finite. We assume Re(A}=1 and 0 :fs':::; 1 

since the sought equality is real linear. Let f be a fixed faithful 

normal positive state on A existing by [1,Prop.2.5.6;]. Define two 

normal functionals rand rs on M(for any given B 411'M h }by the formula 

r(C} "f(2.<C(x),S'(x»} 


rs(C) " f()"'<C(i<).S(x» + ~.<S(x).C(x»). for CEMh • 


Secause of ~,Remark 3.9.J, [:s,cor.17], Proposition 2.4. and Corolla

ry 2.2., the functionals rand are in the self-adjoint part ofr B 
the predual of M. Let 

V:= {rB : 9 t! Mh , 1/ S /I -; 1 ] • 

This set is obviously convex. Since the map S ~ rS is continuous 

with respect to both the w·-topology on M and the weak topology on 

the predual of M, the set V is weakly compact. 

Assume ~V. Then by the Hahn-Banach separation theorem 

there exists an element OEMh such that 

( 3) rs(O) < reo) for any S~M ... , "S"~l. 
., 

Let O.. U.'O' be the polar decomposition of DE Mh existing since .7i! is 

self-dual, (cf. Prop, 1.4.), U is self-adjoint and 

since 0 is self-adjoint. Taking B=U we draw from.. 
1/2'f( A'<O(x),upq> + );.- <upq.O(x») < 

<" f( <O(x) ,B' (><» ) 
" f( <0(9' )1/2(X)'(B' )1/2(x») 

~ f ( <'0"( B' ) 1/2( x) • (S' ) 1/2( x» ) 

= f«'O'B'(x),x» 

~ f( <'0' (x) ,x» 
.. f( <O(x) ,U( x» ) 

commutes with ,0/ 
(3): 

.. 1/2·f( )"·<O(x).U(x» + • <U(x).opC) ). 

This is a contradiction. Consequently, rE V. i.e •• there exists an 

element SfEMh • IIBfll ~1, for which 

(4) 2' f( <C(x) ,B' (x» )=f( ). • (C( i)'Sf( x» +.>. '<Bffx),C( i» ) 

for any C E • We define 

0:.. (2'<C(x).B'(X» - A'<C(X),Bf(X» - >"'<Sf(x),C(X» ).C. 

If C "" Mh , the element a belongs to 11h • Putt ing ° to (4) we obtain 

(5) f(/2'<C(X).B'(X» -)...·<CPq.Sf(x» -~'<.Bf(x).C(xi>r) ..o 
for any C GMh , Since f is faithful and positive we get the desired 

equality in the case of A being ,&'-finite. Sy the way we have shown 

that BfeMh does not depend on f. 

We remark that the only place is (4) where the dr-finiteness of A is 

needed, because we did not know whether or not Sf depends on f. 

Now the restriction on A to be (?-finite can be dropped in an obvious 

way using [i'P.16~. The lemma is proved. 

§4 Natural positive cones in self-dual Hilbert W·-moduli 

Throughout this paragraph A is assumed to be commutative. Let d( 
be a self-dual Hilbert W·-module over A. We consider von Neumann 

algebras M on;;;flt' possessIng a cyclic-separating element 'X.;;;ze'. The 

modular involution. the modular operator and the appropriate modular 

group of automorphisms assooiated with the pair (M,x) are denoted by 

J. L1 an,d {LIlt: t E'IR}. respectively. For details see [4] and 

Proposition 2.8 •• The aim of this paragraph is to show the geometri-
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cal properties of the natural positive cone ~ arising from the 

pair (M,x) in some sense similarly as in tne case ~~, cf. [1]. 

Definition 4.1.: (cf. [i,Def.2.5.25J) .. 
For a pair (M,x) we consider the set ~, the Z-l-completion of the 

set fB:JB:J{X') : Bt! M, I/B:JB:J(x) 1/ ~ lJ. Then,the natural positive cone 

Yassociated with the pair (M,x) is defined as :P lK . [7 ].; • 
0 

Proposition 4.2.: The closed set J>Jji.;r'has the following properties: 

(i) 	 ::P .. [L11/4M+X);= [A 1/4[M+X]; J; 
"' [!j. -1/4M:;;:]~ .. [L1-1/ 

4 lJ1:xJ; J; 
where M+ and M: are the self-adjoint positive parts of M and M; 

respectively. Therefore, ~is a convex cone. 

(ii) LJitp .. ? for any telR. 

(iii) For any y/lliJ> the equality :J(y)='1 holds. 

( iv) If 	B II M we get B:JB:J(J") 3i.? 

!:.!:.!!.2.!..! (cf. [1 ,Prop.2.5 .26 J) 
Let Mo ~ M be the _-algebra of the ent ire analyt 1c element s of the 

group {,Ljit: t<FlR}. For any B<!"Mo there holds 

(6) 	 ~1/4BB·(X) ~ ~1/4B~1/~1/4B·~1/4(x) 

.. L11/4BL1-1/4(L1-1/4BL11/4)·(x) 

a L11/4B~1/4:J~/2(~-1/4B~/4)(x) 

"' (L11/4B~-1/4) :J (L11/4B~1/4) :J (x). 

Since L11/4MoL1-1/4"Mo and because of Theorem 2.10.,the relet ion (6) 

yields 

?;; [L11/4M+X]~ ~ [..c11/4[M+~-1;]: 
On the other ~and, [Mo+X];" [M+X]~ by Theorem 2.10. For an arbi

trary y/ll![M+xlT" we take such a bounded net [B.): ""'eI, B"" E Mo+r that 

T1-lim ILx"y, Then,the equality (6) implies Ll1/ 4E1.tX € P. But 

" r l-lim :Jd/2
B""X 

oU1 

.. r l-lim ~x 
0(,,1 

.. y :JL:F2y• 

Therefore. 

<'L11/4( Y-E\.:x) ,.L:jl/4( y-B... x) > = <J( y-Bo<x) ,:Jd/2( 'i-E\., x» 

Al/4- -n rL1 1/ 4 [r -] - ] - C Dan d .£...l 	 y E..r-, i.e., l" M+X t" r = J • Finally. 

4p", [L.11
/ M+X]: ,,{Al/4[M+X];J-r; 

If r denotes the natural cone assoc iated wi th (M' ,x), the re 

holds 

B':JB':J(X)" :J(:JB'Jl:J(:JB":J)(x) .. (:JB":J):J(:JB'J):J(X) 

for any B"E'M'since :JB':JEM, i.e.,?',,? SinceL1-1 is the modular 

operator with respect to the pair (M' ,x)Jwe obtain 

;p _p' 	.. [..c:l-1/4M:X]: .. fL1-1/4[~xJ;J: 
The first statement is proved. 


To prove the second one we keep in mind that 


,L1it,.d/4M+X .. .L11/':d.itM+X .. .d/~itM't,61tX .. ...c::l1/4M+X. 

If B,e 6 M the third statement follOWS from the equality 

:J(BJB:J(x»" (:JB:J)B:J(x) .. B(:JB:J):J(x) B:JB:J(i), 

whereas (iv) can be derived from 

(B:JB:J)(C:JC:J)(i) .. 	 BC(:JB:J)(:JC:J)(i) .. BC:J(BC)J(x). 

So the 	proposition is proved.I 

Proposition 4.3.: The following relations are valid: 

[M+xJ; = [VtE.:Je: <y,z>~ 0 for any zE [M:X]~ 1 , 

[M:xJ; = [Y'l.!<e: <'YIZ>~ 0 for any zt! [M+xJ';} • 


Proof: First, suppose A to be 6-finite and let f be any normal 

faithful state on A. We denote by [M+x]f the closure of [M+X]; with 

respect to the norm f(<-,.»1/2 onX. The set [M:X]f is defined 

analogously. Than,by [1.prop.2.5.27.] the following set identities 

are valid on the Hilbert space Jrf. the closure of K with raspect 

to the norm f(<1._»1/2: 

[M+X]f =fY€~: f«y.z»~O for any Z€[M:x]fJ. 

[M:x]f "{Y~<Kf: f«V.z»~O for any Z€[M+X]fL 

Since f is an arbitrary normal faithful statelwe obtain 

[M+X]; = {y E~: f( <V,z» 5'0 for any z eCM:-xJ; I any t.e p} • 
[M:X]~ "{YE;;e': f«y.z»~O for any Z£(M+x]:; • any fo;; p} • 

Thus. we get the sought relations above. 

Secondly, let A be non- Z-finite now. There exists a directed increa

sing net {p",,: o(E 11 of projections of A with the properties that 

12 I ;~ 
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R,(AR,., is I-finite for any 0.( E I and that w--lim R,.,=lA" From the 

first part of the present proof ona derives 

Pp<'[M+X);_ [YCP...cX<,"V;z>=-O for any zcp..'[M:xl';}. 
R,.,.[~x]~ .. fY€p",~~.z>~o for any Z4ip,,,':[M+X]) " 

for any to( £ I. if J:kM on P...Z is considered. Since "" til I is arbitra

rily chosen we get the desired relations. 

Pr~position 4.4,,: 

(i) 	 The cone JD is self.adjoint, i"e •• 
p .. p .... :. {'1eX: <y,,!>~O fllr any zeP}. 

(U) J> n(-P) = (oj. 

(i:/.1) If J(y)='9 for a certain '1 edt? th\llre exists a unique decompo


sition '1='11-'12 with Y1'Y2eP,and Y1.l. Y2' 
(iV) The linear hull of.;p is;re. 

Proof I (i) First, suppose A to be 6 -f:Lnite and let f be an arbitra

ry faithful normal state on A. If we consider the Hilbert space ~ 

and the cone &~, (the closures of ~ and P, respectively.Pf 
with respect to 	the norm f(<f••»1/2), there turns out (by 

that 	 Yf .. Pfv-.. (Y~ ~ If( <V,z» ~O for any z e';:; ]. 
Since f is arbitrarily chosen,we obtain 

y .. {V€£I f«Y.z»~O for any zeP. any flOP} 

.. ['iEK: <Y"z>~O for any Z fOP} 
=]>"" 

as deSired" Secondly. if A is non-t?-finite there exists a 

increasing net [Pol: <X IF I} such that J:kAJk is 6-finite for 

'" IE I and that w--lim P",,-lA• Considering pw:P:fi Po< £we get 

for any ex C I. That implies P". 
(11) 	If yeJD,., (-p) we draw from (i) that <'1.9> =O/and 

y=o. 
(iii) 	Assume J(y)=y. The cone P is a closed convex subset 

[i.2.3.2SJ) 

directed 

any 

J:k:P=RxYv 

hence, 

in the 

self-dual Hilbert A-module ~having the property that the subset 

Po..[ve.P: 11'1//'$1] is Ti-comPlete. Therefore. there exists a 
unique element '11 E.P such that 

(7) <'9-'11'Y-Y1>" inf[<'Y-z.y-z): ZEP]. 

Let us denote Y2:= 9-91 , For any Z E"?' ,'>.,.>0 the inequality 

<V-Y1 .Y-91> ~ 	<Y-(Y1+.Az) ,9-(91+ Az» 

II 

holds 	since (V 1 +). %) ti'P. The ref ore, 

o~ ~'(<"V2'Z> 	+ <z'Y2» + >3<z.z> • 
Since 	 >->0 is arbitrarily chosen the inequality <92 ,Z> + <z..V? ;;; 0 .. 
has to be valid. But, since ze.P there holds J('12).Y2' J(z).Z:.and 

hence. <'12'Z>- <:J(Y2).J(zl> =<Y2 ,Z>-" Thus. we get '12EP since 
zti'.Pwas arbitrarily chosen and (i) is valid. Consequently, 

Y='11-'12 where'11,'12EP. 

Let us show that V ..LV2 • Since (1-;>,)'11 (;<P for any O~ A~l we get
1

<Y2'Y2) ~ <V2-).,·'11·Y2-).''11> 
because of (7). This is eqUivalent to 

)"'<;<Y1 'Y? -A'«V1 ,Y2> + <Y2'V1» ~O. 
Finally, <'11 ,'12'> ~ 0, and since Y1'Y2EP= Y V" , we obtain 

<'9\'Y2>=0. 
To show the uniqueness of such a 

ce of two decompositions 

Y='11-Y2 ' Y1'Y2 IEP, Y11.. 92 
y=zl-z2 ' zl,z2 e p, zl ...L z2 

decomposition we assume the existen

• 
• 

Then 	Y1-z1=Y2-z2,and furthermore, 

Gl-z1'Y1-Z~ 	" <y1- 1 ''12-z2> 

• - 4 1

z

,92> - <y1 ,zz'> 0"
L 

Therefore. y1=zl' '12=z2 and such a decomposition is unique. 

(iv) If an element '1 E.]Ie is orthogonal to t he linear huH of ?, 
there must be <Y.y> cO ,and hence, Y=O. There only remains to re

mark that the unit ball of the linear hull of JD is "l-complete by 

construction. 

Corollary 4.5.: 

(i) 	 If Y fEY, Y is cyclic for M if and only if y is separatin\!l 

for M. 

(11) 	If yeP is cyclic (and hence, separating) for MJfor the 

modular involution J y and fo~ the natural positive cone ~ 
associated with the pair (M,y) J=J ' 'P.. hold.

V 

The proof of this corollary is analogous to that of [j,Prop.2.3.30J, 

and thus, will be omitted. 

15 

http:J('12).Y2
http:Y-(Y1+.Az


References 
[1] 	 O.Bratteli. D.W.Robinson. "Operator algebras and quantum stati 

stical mechanics.I", Texts and Monographs in Physics. Springer
Verlag. New York-Heidelberg-Berlin. 1979. 

[2] 	 F·.Combes.H.Zettl, "Order structures, traces and weights on Mori.. 
ta equivalent C·-algebras", Math,Ann. ~(1983), no.l,67-81. 

[:sJ M.Frank, "Self-duality and C"-reflel<ivity of HUbert C·-modules". 
preprint ,KMU-CLG Leipzig (G.O.R.) ,1986. 

~] 	 M.Frank. "One-parameter groups arising from some real subspaces 
of self-dual Hilbert W"·moduli". preprint, ~INR, E5-87-95, Dubna. 
1987. submitted to Math. Nachr. 

[51 	 R.M.Loynes, "Linear operators in VH~spaces". Trans. Amer.Math. 
Soc •• v.166(1965), 167-180. 

~1 W.L.Paschke. "Inner product modules over B·-algebras", Trans. 
Amer.Math.Soc •• v.~(1973).443-468. 

[~ M.A.Rieffel.A. van Oaele, "A bounded operator approach to Tomita
Takeeaki theory". Pacific J.Math •• v.69(1977). no.l,187-221. 

~] M.A.Rieffel. "Morita equivalence for c·.algebras and W·.algebras". 
~.Pure and Appl.Alg., v.5(1974).51-96. 

[9] 	 S.Sakai. "C·-algebras and W·.algebras". Springer -Verlag, Berlin
Heidelberg-New York,1971. 

\llpaHK M. E5-87-94 
lIpep,CTaBJIeHH.fI q,oH HeHMaHa B aBTOP,YaJIbHhIX 
rHJIb6epTOBh~ W*-MOP,YJI.fIX 

PaCCMaTpHBaIOTC.fI aJIre6phi q,OH HeHMaHa H-OrpaHHqeHHh~ one
paTOpOB B aBTOp,YaJIbHhIX rHJIb6epTOBhlX W*-MOP,YJI.fIX H, HMelOIII.He 
I.\HKJIHqHO OTp,eJI.fIIOIII.HH 9JIeMeHT X B H. 06HapYJKeHhi TeCHbie CB.fI
3H MeJK,D,Y HHMH H HeKOTOpblMH CneQRaJIbHhlMH Be~eCTBeHHhIMH 
nOp,npOCTpaHCTBaMH B H. lIPH npep,nOJIO*eHHH, 'ITO JIe*a~a.fI B 
OCHOBe W*- aJIre6pa KOMMYTaTHBHa, TeopeMa THna TOMHTw-TaHe
caKH p,OKa3hlBaeTC.fI. HCCJIeP,YCTC.fI eCTeCTBeHHhlH KOHYC B H, 
CB.fI3aHHhIH C rrapoH 1M, xl. OnHcaHbl ero CBoHcTBa. 

Pa60Ta BhlIIOJIHeHa B J1a6opaTopHH TeOpeTHqeCKOH q,H3HKH 
OH5IH. 

npenpHHT 061>e}lHHeHHoro HHCTHTyra .fI}lepHblx Hccne}lOB8HHH. ,lly6Ha 1987 

Frank M. E5-87-94 
Von Neumann Representations on Self-Dual 
Hilbert W*-Moduli 

Von Neumann algebras M of bounded operators on self
dual Hilbert W*-moduli H possessing a cyclic-separating 
element x in H are considered. The close relation of them 
to certain real subspaces of H is established. Under the 
supposition that the underlying W*-algebra is commutative, 
a Tomita-Takesaki type theorem is stated. The natural conel 
in H arising from the pair (M,x) is investigated and its 
properties are obtained. 
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