

объединенный
ИНСТИТут
Ядерных
исследований
дубна
$B 7 A$
E5-87-867
A.A.Bogolubskaya, I.L.Bogolubsky

ON TWO-DIMENSIONAL TOPOLOGICAL SOLITONS

IN ANISOTROPIC MAGNETS

Submitted to "Письма в ЖЭТФ"

Soon after the soliton solutions [1] for the two-dimensional isotropic Heisenberg magnet had been found numerous attempts were undertaken to generalize these solutions to the anisotropic versions of the Heisenberg model (see [2] and references cited therein). Difficulties of analytical obtaining of mentioned solutions stimulated their numerical search. By means of a computer the localized distributions having soliton-like shape have been obtained and their main parameters have been calculated [2]. But it is easy to demonstrate (see below), using scaling transformations [3],that the existence of static soliton solutions is forbidden within the framework of the discussed two-dimensional anisotropic models.

Consider two-dimensional anisotropic Heisenberg model having rather general form of the static Hamiltonian density:

$$
\begin{equation*}
\mathcal{H}=\alpha^{2}\left(\partial_{i} s^{a}\right)^{2}+\beta^{2} w_{a n}\left(s^{a}\left(x_{i}\right)\right)+\gamma^{2} F\left(\partial_{i} s^{a}\right)=\mathscr{H}_{1}+H_{2}+H_{s}, \tag{1}
\end{equation*}
$$

here the anisotropy energy density $W_{a n} \geqslant 0$, a non-negative addendum F is of the fourth order in differentiation with respect to x_{i}, $\partial_{1}=\partial_{x}, \partial_{2}=\partial_{y}, 5^{a} 5^{a}=1, \quad a=1,2,3, \alpha, \beta$ and γ are constants. Consider continuous localized distributions $s^{a}\left(x_{i}\right)$ with the topological charge $Q_{t} \geqslant 1$, here Q_{t} is the degree of map from R^{2} (with the condition $\vec{J}(\infty)=\vec{J}_{0}$ taken into account) to the sphere S^{2} [4,2]. The following inequalities are valid for such configurations

$$
\begin{equation*}
H_{K}=\int \mathscr{H}_{K} d^{2} x>0, \quad K=1,2,3, \quad H=H_{1}+H_{2}+H_{3}>0 \tag{2}
\end{equation*}
$$

- Under scaling transformations, $\vec{J}(\vec{x}) \rightarrow \vec{J}(a \vec{x}), H_{1}(a=1)$ is transformed to $H_{1}(1), \quad H_{2} \rightarrow a^{-2} H_{2}(1), \quad H_{3}(1) \rightarrow a^{2} H_{3}(1)$. Such transformations determine at $|a-1| \ll 1$ small variations of initial distributions. $\mathfrak{s}^{a}\left(x_{i}\right)$. It is nessesary for the soliton existence, that
$\frac{d H}{d a}(1)=0$, i.e.

$$
\begin{equation*}
H_{3}-H_{2}=0 \tag{3}
\end{equation*}
$$

One can see that Eq. 3 has no solutions at $F=0$, i.e. the functional H cannot reach even a local minimum,and,hence, static solitons cannot exist in the model (1) with $F=0$. When $F_{\neq 0}$, one can deduce from Eq. 3, that the existence of soliton solutions to the equation $\frac{\delta H}{\delta s^{a}}=0$ is not excluded a priori, and if they exist the relationship $H_{2}=H_{3}$ is valid for them.

As an example consider an easy-axis type anisotropy, $\omega_{a_{n}}=\sin ^{2} \theta$, here θ is the anglo between the vector s^{a} and the Z axis. Specify the addendum F as well choosing it in the Skyrme [5] form

$$
\begin{equation*}
F_{S}=\left[\left(\partial_{i} s^{a} \partial_{i} s^{a}\right)^{2}-\left(\partial_{i} s^{a} \partial_{j} s^{a}\right)^{2}\right] \tag{4}
\end{equation*}
$$

Such the F option is characterized by an absence of the soliton solutions of the form

$$
\begin{equation*}
s^{1}=\sin \theta, \quad s^{2}=0, \quad s^{3}=\cos \theta, \quad \theta=\theta(x, y) \tag{5}
\end{equation*}
$$

representing the $Q_{t}=0$ sector, since for the configurations defined by (5) we have : $F_{S}=0, H_{3}=0$ and therefore $\frac{d H}{d a}(1) \neq 0$. Now consider the distributions $s^{a}\left(x_{i}\right)$ having $Q_{t} \geqslant 1$.

Introduce the dimensionless variables X, Y, R :

$$
\begin{equation*}
x=\frac{\alpha}{\beta} I, \quad y=\frac{\alpha}{\beta} Y, \quad R=\sqrt{X^{2}+Y^{2}} \tag{6}
\end{equation*}
$$

Using the well-known ansa\%z,

$$
\begin{equation*}
s^{\prime}=\sin \theta \frac{X}{R}, \quad s^{2}=\sin \theta \frac{Y}{R}, \quad s^{3}=\cos \theta, \quad \theta=\theta(R) \tag{7}
\end{equation*}
$$

we find
$\beta^{-2} \mathscr{H}(R)=\left(\frac{d \theta}{d R}\right)^{2}+\frac{1}{R^{2}} \sin ^{2} \theta+\sin ^{2} \theta+\frac{2 \rho}{R^{2}} \sin ^{2} \theta\left(\frac{d \theta}{d R}\right)^{2}$,
where, $\rho=\boldsymbol{\beta}^{2} \boldsymbol{\gamma}^{2} \boldsymbol{\alpha}^{-4}$ is the dimensionless parameter. Calculating the variation $\frac{\delta H}{\delta \theta} \delta \theta$, when $\mathscr{H}(R)$ is given by (8),
we obtain the equation for the $\theta(R)$ function

$$
\begin{align*}
& \quad \frac{d^{2} \theta}{d R^{2}}+\frac{1}{R} \frac{d \theta}{d R}-\left(\frac{1}{R^{2}}+1\right) \sin \theta \cos \theta+ \\
& + \tag{9}\\
& +2 p\left[\frac{\sin ^{2} \theta}{R^{2}} \frac{d^{2} \theta}{d R^{2}}+\frac{\sin \theta \cos \theta}{R^{2}}\left(\frac{d \theta}{d R}\right)^{2}-\frac{\sin ^{2} \theta}{R^{3}} \frac{d \theta}{d R}\right]=0 .
\end{align*}
$$

To find the soliton solutions of Eq. (9) with $Q_{t}=1$ one should solve this equation with the following boundary conditions : $\theta(0)=\pi$, $\theta(\infty)=0$ (we assume that $f^{\boldsymbol{a}}(\infty)=\delta_{3 a}$. From the $\mathbb{E q}$. (9) we find that $\theta(R)=\pi-C R+O\left(R^{2}\right.$ when $R \rightarrow 0$. Using this expansion, we solve (9) numerically, to get boundary condition $\theta(\infty)=0$ satisfied we vary "the shooting parameter" C.
The numerical studies have been made in the wide region of the p parameter: from $p_{\min }=10^{-6}$ to $p_{\max }=500$. These investigations demonstrate, that at least the local minimum of the functional $h[\theta(R)]$, $h=\alpha^{-2} \int \mathscr{H} d^{2} x$, is reached on the obtained solutions $\theta_{s}(R ; p)$. We shall prove in a separate paper, that these solutions give the absolute minima of the energy $h(\rho)$ in the sector $Q_{t}=1$.

The radial functions $\theta_{J}(R)$ are displayed in Fig. 1. , The soliton half-width R_{s} monotonously increases with the increase of the parameter p; when $p \rightarrow 0 \quad R_{s} \rightarrow 0 \quad\left(R_{s} \approx 4.10^{-2}\right.$ at $p=10^{-6}, R_{s} \approx 0.4$ at $p=10^{-2}$, so when $p \rightarrow 0$ the half-width R_{j} is proportional to p^{ν}, here $\nu=\frac{1}{4}$). The soliton energy $h_{s}(p)$ is the monotonously
increasing function of the parameter P too(see Fig.2), the curve $\begin{aligned} h_{s}(p) \text { is described at } p \ll 1 & \text { by the formula } \\ h_{s}(p)=8 \pi+B p_{\infty}, & B \approx 37, \quad x \approx 0.4 .\end{aligned}$
$h_{s}(p)=8 \pi+B p_{x} \quad B \approx 37, \quad x \approx 0.4$.
The soliton solutions $\theta_{3}(R)$ found numerically in this paper may be investigated analytically at small values of P by means of the perturbation theory in the parameter P, and the localized solutions of the zero approximation equation are the Belavin-Polyakov solitons in the isotropic Heisenberg ferromagnet [1].

In conclusion we note, that in the course of the sector $Q_{t}=2$ investigation the soliton-type distributions have been found at all P having the energy less than the double energy of the $Q_{t}=1$ soliton; this circumstance proves the existence of the bound state of two solitons with $Q_{t}=1$ within the frameworks of the model under consideration.

The authors are grateful to Profs. E. P. Zhidkov, V. G. Makhankov and the participants of the LCTA seminar on the nonlinear mathematical physics for their interest in this investigation.

References

1. A.A. Belavin, A.M. Polyakov, Pis'ma v Zh. E.T.F., (1975), 22, 503 (in Russian).
2. A.M. Kosevich, B.A.Ivanov, A.S.Kovalyov, The nonlinear magnetization waves. Dynamical and topological solitons. "Naukova dumka", Kiev, 1983 (in Russian).
'3. G.H.Derrick, Jorn. Math. Phys. 5 (1964), 1252.
3. B.A. Dubrovin, S.P. Novikov, A.T. Fomenko, The contemporary geometry"Nauka", Moscow, 1979 (in Russian).
4. T. H. R. Skyrme, Proc.Roy. Soc. A260 (1961). 127.

Боголюбская А.А., Боголюбский И.Л.
E5-87-867
0 двумерных топологических солитонах
в анизотропных магнетиках
Показано, что в двумерных моделях магнетиков гейзенберговского типа с различными видами анизотропии не может быть статических солитонных решений, описывающих локализованные распределения трехкомпонентного поля $s^{a}(x)$, $a=1$, $2,3, \mathrm{~s}^{\mathrm{a}} \mathrm{s}^{\mathrm{a}}=1$. Включение в гамильтониан модели скирмовского слагаемого делает возможным существование устойчивых топологических солитонов. С помощью ЭВМ исследуются статические солитоны с топологическим зарядом $Q_{t}=1$ в двумерном легкоосном магнетике.

Работа выполнена в Лаборатории вычислительной техники и автоматизации ОИяИ.

Препринт Объединенного института ядерных исследований. Дубна 1987

Bogolubskaya A.A., Bogolubsky I.L.

E5-87-867

On Two-Dimensional Topological Solitons

in Anisotropic Magnets
It is shown that in two-dimensional Heisenberg-type magnets with various anisotropy forms static solitons, describing localized distributions of the three-component field $s^{a}(x), a=1,2,3, s^{a_{s}}=1$, cannot exist. Inclusion of the Skyrme addendum into the Hamiltonian of the model makes the existence of the stable topological solitons possible. By means of the computer we investigate the static solitons having the topological charge $Q_{t}=1$ in the easy-axis two-dimensional magnet.

The investigation has been performed at the Laboratory of Computing Techniques and Automation, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1987

