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§ 1. Introduction

In ref./1/ closed analytical expressions were obtained for a
number of useful sums and integrals involving Legendre functions.
The key point of the method used was in comparing of the wmagnetic
vector-potential components for the toroidal solenoid derived by
different methods (but for the same gauge and boundary conditions).
Their coincidence stems from the well-known theorem {see, e.g. 2/)
according to which a harmonic function {the difference of two solu-
tions of the same Poisson equation is just Function like that)
equal to zero at infinity (the vector-potentials of ref;/1/ patisfy
this condition) is identically .equal to zero. This trick (i.e, the
construction of new relations between special functions by comparing
the solutions of the Bame equation derived by different methods)
is not altogether new, A lot of examples of the same type may be
found in the well-known treatise on the Bessel functions

The present treatment proceeds along the same lines as ref./1/
and way be viewed as its continuation., It is organized as follows,
In §2 we consider three different integral representations for the
same function, By comparing them we obtain the integrals involving
Legendre functions in a closed form, In§ 3 we study how the eigen-
values of the Schroedinger equation change when the vector-potential
§\¢70 (but¥4 1peﬁ 0 ) ie switched on in the simply connected
space. According to the theory {see, e.g. /4/), in the simply con-
nected region the eigenvalues for ﬂ 0 should be the same as for
H 0. Evaluating the second order terms of the perturbation theory
(PT) explicitly and equating them to zero we get the sum rules for
zeroes of the Bessel functions of the integer and semi-integer or-
ders, The expressions obtained are lacking in mathematical handbooks,
tredtises and original publications (see, e.g., 13,5.6/)'

§ 2, Closed Expressions for Some Integrals Involving Legendre
Functions

In ret./7/ o function C{/ was used which connected the vector-
-potential of the toroidal solenoid in different gauges. It 1s de-
fined by the following double integral
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The integration in (2.1) is performed inside a circle of the radius
a lying in the 2:>0 plane: 2,20 |, DL P ta,0LY 225 | For
this function in 7 , the following three different integral repre-
sentations

P
= 5 (amper — 121 — WS%Q_\({J (2.2)
0 " 2L
- e N )
¥ (2.4)

= ey mge omm eosu B
(u- 4 xty p* e n nc’q:o&)
'LJ>3C Lax
were obtained. The variables Mi,e entering into (2.4) are toroidal
coordinates. They are connected with the cylindrical ones as follows:
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Q}A is the Legendre function of the 2-nd kind. The function q/h M)
is equal: to elop
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P is the Legendre functlon of the 1st kind.

. Now we try to express some integrals in a closed form, At first equate

(2.2) and (2.3) @
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Then, taking the limitsj!-*lff and 2+ angd differentiating the
expressions obtained we get explicif expressions for the following
integrals
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The change of variables permits one to traneform these integrals
into the known ones (Bee, e.g. > ).
Put P- & Z 0 in (2.7). This gives
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Now return to Egqs. (2.2)-(2.4). Set in (2'4)N:0 . In accordance
with (2.5) we should take p-0) in (2.2). Equating (2.2) and (2.4)
results in
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Substitute %= %—3&56 into (2.9), divide both sides by /1-cosf
and integrate over 0 i
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The integral in the r.h.s. of (2.10) is easily evaluated:
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In particular cases:
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Using the Whipple relation between the Legendre functions one may
transform (2.11) to the following form:
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PM
(A (X) is the associated Legendre function of the 1st kind).
These expressions are lacking in the mathematical literature.

§ 3. The Sum Rules for the Zeroes of the Bessgel functions

3.1. Consider an infinite cylinder C- of the radius R . Let
its axie coincides with the 2 axis:
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We are interested in the eigenvalues and eigenfunctions of the
Schroedinger equation inside the cylinder, The following boundary
condition is imposed on the eigenfunction:qﬁi'o for p= R (¢his
ie equivalent to the solution of the Schroedinger squation with the
potential Vi) = 0 for Pt R and Y= 0 . for £ > R ), The eigen-
functions and eigenvalues of the Schroedinger equation are equal
(oee, e.g.lB/) tos
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Heiej& is the mass of a particle moving inside C— , W ig its
ingulgr momentum, is the Planck constant, A "3 is an § =-th
root of the equation
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Finally, C*“S is the normalized constant
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For pimplicity (and without loss 6f generality ) we limited ourselves
in (3.1) to the motion in the %:-O plane.
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Fig. 1. Outside an infinite cylinder C there are two infinite
cylindrical solenoids (darkened) which produce inside
a magnetic field with {10, H: 106/ -C. According
to theory, the magnetic field does not change the ei-
genfrequencies of the cylindrical cavity.

Now install, outside C , two infinite cylindrical solenoids of

the radius O with opposite magnetic fluxes (¢lf—05=>@,J (see
fig. 1). Let their axes be parallel to the ? axis and pass through
the points 3Zd£ZR+“> of the Y axis. Outside both the solenoids

the strength H of gpe magnetic field equals zero while the magnetic
vector-potential f (H=rof H) differs from zero:
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Does the presence of a nonzero ﬂ inside C- change the energy levels
E:s ? We note that the space accessible for particles (the interior
ofC ) is simply connected. Theory (see, e.g./4/) says that the exis-
tence of curlless nonzero vector-potentials could not lead to the
observable effects in a simply-connected space. This means, in par-
ticular, that eigenvalues of the Schroedinger equation

(3.2)
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with a nonzero f} given by Egs.(3.2) should coincide with Eks
determined by Eqs. (3.1)., The invariance of eigenvalues takes place
for any value of the dimensionless parameter ¥-= e® . This means
that in the perturbation expansion in Y
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the corrections to E?M« should separately vanish in each order
in ?{ In the first-order PT one has:
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is satisfied automatically (due to the angular dependence of 4 V ),
Nevertheleas, the eigenfunctions are modified in the same order:
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In the second-order %T one obtains for the eigenvalues
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It follows from (3.7) that E'&} does not vanish trivially. The
substitution of the unperturbed eigenfunctions (3.1) and vector-
-potentials (3.5) into (3.7) leads to cumbersome relations between
the radial integrals. Fortunately, they are simplified for Reed
(i.e. when the radius of the available cylindrical cavity is small).
Then inside ¢
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Insert these expressions into (3.7)
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The requirement for fihs to vanish suggests the following sum
rule for the zeroes of the Bessel functions:
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This expression is simplified for hc= 0
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3.2, Let the space available for particles be a sphere. of the
radius Qo> (i.e. inside the sphere the eigen-function satisfies the
free Schroedinger equation with the boundary conditionlw(TiR°]:7O ).

Fig. 2.
Outside the spherical
cavity, there is a

toroidal solenoid
(darkened). The mag-
netic field of the
solenoid does not change
the eigenfrequencies

of the spherical

cavity.




Inatalling outside the sphere a toroidal solen01d (fig. 2) we create
inslderg a magnetic field witht =0 , but ﬂiF(J . The space ac-
cesgsible fQr particles is gimply connected. Thus, the existence of

a nonzero\ﬂ inside should not change the energy levels. Using
the vector-potentials of the toroidal solenoid given in ref. , We
solve the Schroedinger equation with f]i() and require the energy
shift to vanish in each order of PT in the parameterﬁ' o

The corrections of the first order vanish automatically. In the
gecond order one arrives at the following two nontrivial sum rules
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. 4, Review of the Results Obtained

Here we shall collect the formulas obtained. As we mentioned
earlier, they are absent in mathematical references:
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Here OJQS is an S —th root of the equation
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For { - 1 Eqs. (4. 5) and (4.6) reduce to
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3aMKHYTble BbIpaXKeHUA I HEKOTOPLIX MONe3HbIX:

HHTErpajioB, comepxkaiinx GyHKUME JlexxaHnpa .

u npaBwia cymm nfia Hynei dynxumi Beccens

IIyTem cpaBHeHMA pa3IMUHBIX HMHTErPAJIbHBIX - IPeMICTABICHHI
OIMHOK M TOMH e (YHKIMH HalleHbl SBHble BbIPa)XXeHHS IUIA MHTET-
panos, cojepxamnx yHxuuu JlexxaHapa. U3 tpeGopanna HeusMe-
HAeMOCTH COOCTBEHHBIX YacTOT LWIMHAPHYECKOH HIM cdepuyecKoi
MOJOCTH NpH BKIIIOYEHNHM O0E3BUXPEBOrCc BEKTOPHOIO MAarHHTHOTO
MOTEeHIHANIa NMOJIYUEHbl [IpaBKiIa CyMM JUIA Hyne# dyuakuuii Beccens.

Pabora BrinonHeHa B JlaGopaTopHM TeOpeTHUECKOH (HUIMKH
OHuAH. -

Tpenpunt O6BenNHEHHOr0 MHCTHTYTA ANEPHBIX HecnexoBaHut. y6Ha 1987

Afanasiev G.N. E5-87-801
Closed Expressions for Some Useful Integrals o
Involving Legendre Functions and Sum Rules
for Zeroes of Bessel Functions

Comparing different integral representations of the same -func-
tion we find closed expressions for a number of useful integrals in-
volving Legendre functions. Switching on the curlless vector magne-
tic potential inside the cylindrical or spherical cavities and requiring
the nonvariance of their eigenvalues we obtain the sum rules for zeroes
of Bessel functions.

The investigation has been performed at the Laboratory of ri‘heo-
retical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1987




