

объединенный
ИНСТИTYT
ЯдерНых
исследований
дубна

II.A.I)uhrovin', I.M.Krichever,' T.G.Malanyuk,'
V.G.Makhankov

hXAc:T SOLUTIONS

TO A TIME DEPENDENT SCHRÖDINGER nquation
 WITH SELFCONSISTENT POTENTIAL

mumintitad to "ЭЧАЯ"

1 Moncom Stato University
RInargatical Institute, Moscow
1987

Introduction

A unified approach for describing integrable models associated with the non-stationary Schrödinger equation along with constructing their n-soliton formulae is given. Among such models there are, e.g., a vector version of NLS with various internal symmetry groups, an analogous extension for the Yajima-Oikawa model and so on. "Integrability" of some of these systems follows as a rule from the existence for them of commutation representations(i.e.associated linear problems based on the $I-A$ pair or $L-A-B$ triad). Now it is however known that for the models with noncompact symmetries where condensate boundary conditions are of physical sense the conventional inverse spectral technique is nonconstructive.

Our approach does not use commutation relations and arises in fact in the depths of the alcebrogeometrical theory of integrable systems. This theory is known to be used for constructing periodical and quasiperiodical solutions to such systems but what is less known the algebrogeometrical technique also allows us to obtain quite effectively all the known up to now their exact solutions (many-soliton and rational formulae and their combinations). We are going to show this in the form accessible for nonmathematicians taking as an example the models described by the Schrödinger equation with self-consistent potentials. The paper is organized as follows. In the first chapter we discuss the way how such models occur in physics, namely we consider a generalized version of the Heisenberg ferromagnet. The method for constructing and studying exact solutions for such models is given in the second chapter. Some specific examples are investigated in the third chapter and corresponding formulae are presented. In conclusion we discuss the results obtained.

> Chapter I

Physical models related to NLS with self-consistent

 potentialsSystems of differential equations for a number of interacting waves and wave-packets occur frequently when one considers non-linear wave phenomena in various physical systems. The scalar NLS (SNLS)

$$
\begin{equation*}
i \Psi_{t}+\Psi_{x x}+\varepsilon|\Psi|^{2} \Psi=0, \quad(\varepsilon= \pm 1) \tag{1}
\end{equation*}
$$

is the simplest mathematical model of this kind describing selfinteraction of the high-frequency wave packet (at $\mathcal{E}=-1$ it is the so-
called Gross-Pitaevskii oquation) in particular, the self-interaction of spin-waves (magnous) in forronagnota, oxcitons in molecular crystals, Langmuir waves in plaoman and oo on. Eq. (1) is now the most popular and studied (along with KdV) nonlinear model of mathematical physics integrable on both tho olacaloal and quantum levels. Moreover quantum (or quasiclassical) approach allows us to use the particle physics language in addition to tho wavo ono. The simplest physical - model described by (1) 1.a n 3000-gao with point-like pair interaction of particles at zero tomporaturo ($000,0.8 . / 14 /$). This model gives us a visual picture of tho robulio obtainod which up to the definitions and redenotationo may bo unod for other physical models.

A natural genoralization of (1) in the system describing interaction of a h.f. wave packat $\Psi(x, t)$ with a l.f. wave $U(x, t)$. In this case the complex function $\Psi(x, t)$ oboys as above SNLS

$$
\begin{equation*}
i \psi_{t}+\psi_{x x}+V \psi+\lambda|\psi|^{2} \psi=0 \tag{2}
\end{equation*}
$$

which contains a potential U - 1.f. wavo - described with one of the following equations (self-consistency)

$$
\begin{array}{ll}
\square U=-|\Psi|_{x x}^{2} \\
\left(\partial_{t}+\partial_{x}\right) U=|\Psi|_{x}^{2} & (\text { (Yakharov/16/) (3a) } \\
\left(\partial_{t}+\partial_{x}+\alpha \partial_{x}^{3}+\beta U \partial_{x}\right) U=|\Psi|_{x}^{2} & \text { (Nishikawa et al./4/) (3c) } \\
\left(\square+\alpha \partial_{x}^{4}\right) U+\beta \partial_{x}^{2} U^{2}=-|\Psi|_{x x}^{2} & \text { (Makhankov/5/) }
\end{array}
$$

Systems (2), (3) at $\lambda=0$ occured in plasma physics where they described the interaction of Langmuir and ion-sound waves. Analogous equations were later shown to appear when one investigates spin waves interacting with phonons in ferromagnets $/ 16 /$ and excitons interacting with phonons in molecular crystals 77 , here, however, $\lambda \neq 0$ in the general case.

Another natural generalization of (1) is a transition from the
 with simultaneous changing $|\mathcal{\psi}|^{2}$ by the inner product

$$
\begin{equation*}
(\psi, \psi) \stackrel{\operatorname{def}}{=} \sum_{i, j=1}^{n} g_{i j} \bar{\psi}_{i} \psi_{j} \tag{4}
\end{equation*}
$$

where $g_{i j}$ is the metric of the isotopic space.

The Hamiltonian of the system is often invariant under transformations of an internal symmetry group compact or not depending on the signature of the matrix $\quad g_{i j}=\lambda_{i} \delta_{i j}$. For Hermitian Hamiltonians this group is $U(p, q)$. Such models describe a Bose-gas with internal quasispin ("coloured") degrees of freedom, they also appear in describing the propagation of plane circular polarized h.f. wave in plasmas $/ 1 /$. Spin waves in ferromagnets with a multi-layered structure are related to a classical continuum analogue of the Hubbard model and so on. A part of these models are integrable $/ 2 /$ and may be studied completely. Finally, combining both the generalizations we come to vector versions of NIS with a self-consistent potential (I.f. mode) of one of the above forms (3) (although others are also possible) i.e.

$$
\begin{equation*}
i \psi_{t}+\psi_{x x}+U \psi+\lambda(\psi, \psi) \psi=0 \tag{5}
\end{equation*}
$$

plus one of $\mathbb{E q} .(3)$ in which the right-hand side contains the invariant form (ψ, ψ).

For all of these models there is an interpretation in terms of multi-component Bose-gas (with internal degrees of freedom) language and tho interaction between the gas particles may be various including the phonon mode. In other words (5) and (3) describe a mixture of gases with the attractive or repulsive interaction between particles if $\lambda \neq 0$ and

$$
\begin{equation*}
g_{i_{k}}=\operatorname{diag}(1,1, \ldots,-1,-1, \ldots)^{i, k=\overline{1, n}} \tag{6}
\end{equation*}
$$

The particles may also emit or absorb phonon waves and thereby interact. That is why we shall name models (5) the Bose-gas models abstracting from the statement and results interpretation of concrete physical problem.

At the same time since nowadays namely in condensed matter physics there appear and are studied models of type (5) the behaviour of such systems is of a growing interest in this area. Most of the crystals, as experimental studies show, have layered or multi-chain structures $/ 8 /$. More than that for the majority of them the interlayer or interchain interactions have a considerable effect on the general dynamics behaviour of crystals. Typical representatives of such systems are the salt crystals ${ }^{/ 8 /}$, however, analogous structures may al-
so be seen in organic compounds in the form of molecular chains/9/. Theoretical description of multilayer structures is based on the many component generalization of the Heisenberg spin model $/ 10 /$. The introduction of"colour" degrees of freedom for interacting spins in one-dimensional chains may also describe many layer quasi-two-dimensional magnetic systems with woak coupling. It is also well known/11/ that the one-dimensional Hubbard modol with a half-filled zone corresponds to the two-componont Hoisonborg apin chain with nontrivial intercomponent interactions. Many component apin chain which corres-

- ponds, consequently, to some gonoralizod Hubbard model may be used for describing collective excitationo (and also their statistical properties) in the system with difforont gorto of spins/12/.

In all the above cases wo como to Boco-gas models (5) which give a dynamical description of tho oorrooponding system, strictly speaking, at zero temperaturo. Evon in tho vory low temperature region some averaged charactoriotion aro only maasured experimentally such as static or dynamical otruoturo footoro. To calculate these theoretically the partition funotion givon by the Feinmann integral $\left(Z=\int D \phi_{t} D \phi \exp (-\beta H) \quad\right.$), $\beta=T^{-1}$ for real fields) is usually used. For the Doso-gan modolo (g) ouch an approach faced the difficulties ${ }^{14 /}$ and the $00-00110 d_{\text {phonomonological approach is wide- }}$ ly (often) applied aftor tho work by Krumhaual and Schrieffer ${ }^{131}$. They noticed that tho partition functluno obtained via the transfer matrix technique ao woll an In tho ddoal gad of kinks approximation are practically the gamo for tho 中 4 nodol. Later on the phenomenological approach io unod to ondoulato the atructural factors for various models (sco tho rovLow $/ 14 /$ and tho references cited therein). Notice that the stablility of oollona and the fact that they interact ellastically (or quad ollnotioally) juatifys mostly the way this approach may be usod. Suoh n oollton bohaviour used to be in the framework of integrabio modaln with a guffioiently small number of interacting fielde (wavos). If it io not a oose, the distribution function of solitons in volooltios and amplitudes (frequencies) have to be found via somo othor kind of thoory (for example in ref. ${ }^{1}$ an approximate kinotio oquation wao writton and solved for solitons in syatem (2)(3a) with $\lambda=0$ on tho groundo of computer experiments).

For the integrablo syotomo of typo (5) (with $n>1$) it is thus very important to know in an analytioal form not only the whole spectrum of one-soliton solutiono but alno two-soliton and sometimes three-soliton formulae (especially thoir aoymptotics) for the phenomenological approach may be applied.

1. Generalized Heisenberg chains and Bose-gas models

Consider a "colour" generalization of a spin chain with the Hamiltonian $/ 17 /$.

$$
\begin{equation*}
H=H_{S}+H_{L} \tag{7}
\end{equation*}
$$

$\begin{aligned} & \text { with } \\ & H_{s}\end{aligned}=-\frac{1}{2}\left\{\sum_{i, j, \alpha, \beta^{\prime}}\left[\frac{1}{2} J_{i j}^{\alpha \beta}\left(S_{i}^{+\alpha} S_{j}^{-\beta}+S_{i}^{\alpha} S_{j}^{+\beta}\right)+R_{i j}^{\alpha \beta} S_{i}^{z \alpha} S_{i}^{2 \beta}\right]\right\}$
$H_{L}=T+U_{0}, T=\frac{m}{2} \sum_{j} \dot{x}_{j}^{2}, U_{0}=\frac{m v_{0}^{2}}{2 a_{0}^{2}} \sum_{j}\left(x_{j+1}-x_{j}-a_{0}\right)^{2}$
describing the interaction of several "color" (types) spins ($\alpha=\overline{1, n}$). Neglecting the color-space interaction in the nearest neighbour approximation we have

$$
\begin{equation*}
J_{i j}^{\alpha \beta}=J_{j j+\sigma} \cdot K^{\alpha \beta}, R_{j j+\sigma}^{\alpha \beta} L_{1}^{\alpha} L_{2}^{\beta} \tag{8}
\end{equation*}
$$

where $J_{j i+\sigma} \equiv J\left(\left|x_{j}-x_{j+\sigma}\right|\right)$ is the exchange integral of the nearest neighbour spins, $S^{ \pm}=S^{x} \pm i S^{y}$ and S^{Z} are the spin operators.

When \mathcal{S}^{α} is sufficiently large, Hamiltonian (7) may be rewritten in terms of annihilation $a_{j}^{+\infty}$ and creation a_{j}^{α} Bose operators -via the generalized Holstein-Primakoff transformations

$$
\begin{aligned}
S_{j}^{+\alpha} & =\sqrt{2 S^{\alpha}}\left(1-\frac{n_{j}^{\alpha}}{2 s^{\alpha}}\right)^{1 / 2} a_{j}^{\alpha} ; S_{j}^{-\alpha}=\sqrt{2 s^{\alpha}} a_{j}^{+\alpha}\left(1-\frac{n_{j}^{\alpha}}{2 s^{\alpha}}\right)^{1 / 2} \\
n_{j}^{\alpha} & =a_{j}^{+\alpha} a_{i}^{\alpha}: \\
H_{s} & =\text { const }-\frac{1}{2} \sum_{j, \sigma}\left\{s J_{j j+\sigma} \sum_{\alpha \beta} K^{\alpha \beta}\left(a_{j}^{+\alpha} a_{j+\sigma}^{\beta}+a_{j+\sigma}^{+\beta} a_{j}^{\alpha}\right)-\right. \\
& -\tilde{J}_{3 j+\sigma}\left[s \sum_{\alpha}\left(l_{2} L_{1}^{\alpha} n_{j}^{\alpha}+l_{1} L_{2}^{\alpha} n_{j+\sigma}^{\alpha}\right)+\right. \\
& \left.\left.+\sum_{\alpha \beta} L_{1}^{\alpha} L_{2}^{\beta} n_{j}^{\alpha} n_{j+\sigma}^{\beta}\right]\right\} \\
\text { where } & l_{i}=\operatorname{Tr} L_{i}, s^{\alpha} \equiv S .
\end{aligned}
$$

Evolution of the operator $\alpha_{j}^{\alpha}(t)$ is given by the Heisenberg equation $i \hbar \dot{a}_{j}^{\alpha}(t)=\left[a_{j}^{\alpha}, H_{s}\right]$. To get a classical analog of the quantum Hamiltonian (9) we use the reduction procedure based on the coherent states of the Heisenberg-Weil group/17/

$$
\left|\varphi^{\alpha}\right\rangle=\prod_{j}\left|\varphi_{j}^{\alpha}\right\rangle=\prod_{j} e^{-\frac{1}{2}\left|\varphi_{j}^{\alpha}\right|^{2}} e^{\varphi_{j}^{\alpha} a_{j}^{+\alpha}}|0\rangle .
$$

These have the following important property: given an operator in the normal form

$$
\begin{align*}
& \hat{A}=\sum_{m, n} C_{m n}\left(a_{j}^{+\alpha}\right)^{m}\left(a_{j}^{\alpha}\right)^{n}, \\
& A \equiv\left\langle\varphi_{j}^{\alpha}\right| \hat{A}\left|\varphi_{j}^{\alpha}\right\rangle=\sum_{m, n} C_{m n}\left(\bar{\varphi}_{j}^{\alpha}\right)^{m}\left(\varphi_{j}^{\alpha}\right)^{n} . \tag{10}
\end{align*}
$$

We employ this relation and go to tho continuum limit by means of the well-known procedure: $\varphi^{\alpha}\left(r_{j}\right)=\varphi_{j}^{\alpha}$ and
$\varphi_{j+1}^{\alpha}=\varphi^{\alpha}(\xi)+a_{0} \varphi_{\xi}^{\alpha}(\gamma)+\frac{1}{2} a_{0}^{2} \varphi_{\pi}^{\alpha}(1)+\cdots \cdot$. Representing the exchange

we get the system

$$
\begin{align*}
& \ddot{x}=v_{0}^{2} x_{j}+\frac{s}{m} \sum_{\alpha \beta} \tilde{T}^{\alpha \beta}\left(\bar{\varphi}^{\alpha} \varphi^{\beta}\right)_{z}, \tag{11}\\
& i \varphi_{t}^{\alpha}=-b \sum_{\beta}\left(K_{(\alpha, \beta)} \varphi_{\Gamma}^{\beta}-s^{1} T_{\alpha \beta} \varphi^{\beta}+s \tilde{T}_{\alpha \beta} \varphi^{\beta}{x_{\xi}}^{\beta}\right)- \\
& -J_{0} \varphi^{\alpha} \sum_{\beta}\left(L_{1}^{\beta} L_{2}^{\alpha}+L_{2}^{\alpha} L_{1}^{\beta}\right)\left|\varphi^{\beta}\right|^{2}, \tag{12}
\end{align*}
$$

$$
\begin{aligned}
& T_{\alpha \beta}=J_{0} K_{(\alpha, \beta)}-\tilde{J}_{0}\left(l_{1} L_{2}^{\alpha}+l_{2} L_{1}^{\alpha}\right) \delta_{\alpha \beta} \quad b=J_{0} S / 2 \\
& \tilde{T}_{\alpha \beta}=J_{1} K_{(\alpha, \beta)}-\tilde{J}_{1}\left(l_{1} L_{2}^{\alpha}+l_{2} L_{1}^{\alpha}\right) \delta_{\alpha \beta}
\end{aligned}
$$

and (α, β) implios tho oymmotrization with respect to α and β indices. Further invoatigation of ayotom (11), (12) depends on the constraints we put on tho ooofficiont matrices T and L.

2. Some particular roduotiona

Example I. Lot tho oxchango intograls of colour degrees of freedom be diagonal and proportional to ouoh other

$$
K_{(\alpha, \beta)}=2 b_{1} L_{1}^{\beta} \delta_{\alpha \beta}=2 b_{\alpha} L_{\alpha}^{\beta} \delta_{\alpha \beta} \equiv \lambda_{\alpha} \delta_{\alpha \beta}
$$

then the system (11), (12) 10 roduood to the system of the form (5), (3a). In a quasisteady (inortionione) 21 mit when the second time derivative in (11) may bo droppod ono has

$$
\begin{equation*}
v^{\prime}(\xi, t) \equiv x_{\xi}=-\frac{s}{m v_{0}^{2}} \sum_{\alpha \beta} \tilde{T}_{\alpha \beta}\left(\bar{\varphi}^{\alpha} \varphi \beta\right)+C \tag{13}
\end{equation*}
$$

and (12) assumes the VNLS form given by the Hamiltonian

$$
H=\int d \xi\left[b\left(\varphi_{\xi}^{+} K \varphi_{\xi}\right)-d\left(\varphi^{+} K \varphi\right)^{2}-\tilde{\mu}\left(\varphi^{+} K \varphi\right)\right]
$$

in which

$$
\begin{aligned}
& \left(\varphi^{+} k \varphi\right) \equiv \sum_{\alpha \beta} \bar{\varphi}^{\alpha} K_{(\alpha, \beta)} \varphi^{\beta}=\sum_{\alpha} \lambda^{\alpha}\left|\varphi^{\alpha}\right|^{2} \\
& d=\frac{s^{2} \nu^{2}}{m v_{0}^{2}}+\frac{\tilde{J}_{0}}{2 b_{1} b_{2}}, \tilde{\mu}=s(\mu-c \nu) \\
& T_{\alpha \beta}=\mu \lambda^{\alpha} \delta_{\alpha \beta}, \tilde{T}_{\alpha \beta}=\nu \lambda^{\alpha} \Sigma_{\alpha \beta}, \\
& \mu=\left[J_{0}-\frac{\tilde{J}_{0}}{2 b_{1} b_{2}}\left(b_{1} l_{1}+b_{2} l_{2}\right)\right], \nu=\left[J_{1}-\frac{\tilde{J}_{1}}{2 b_{1} b_{2}}\left(b_{1} l_{1}+b_{2} l_{2}\right)\right]
\end{aligned}
$$

Functions $\varphi^{\alpha}(\xi, t)$ and $\bar{\varphi}^{\alpha}(\xi, t)$ are the conjugate variables

$$
\begin{aligned}
& \left\{\varphi^{\alpha}(x), \bar{\varphi} \beta^{\prime}(y)\right\}=i \delta^{\alpha \beta} \delta^{\prime}(x-y) \\
& \text { th the conventional Poisson brackets. }
\end{aligned}
$$

$$
\{A, B\}=i \sum_{\alpha=1}^{n} \int d \xi\left(\frac{\delta A}{\delta \varphi \alpha} \frac{\delta B}{\delta \bar{\varphi}^{\alpha}}-\frac{\delta B}{\delta \varphi^{\alpha}} \frac{\delta A}{\delta \bar{\varphi}^{\alpha}}\right) \text {. }
$$ symmetry group transformations. Then we have $\lambda^{\alpha}=\varepsilon_{\alpha}$:

$$
\varepsilon_{\alpha}=\left\{\begin{array}{l}
1, \alpha=1, \ldots, p \\
-1, \alpha=p+1, \ldots, p+q
\end{array} \quad(p+q=n)\right.
$$

$$
\begin{aligned}
& \text { Denoting } \\
& \qquad \psi_{\alpha}(x, t)=\left\{\begin{array}{l}
\varphi^{\alpha}(\xi, t), \alpha=1, \ldots, p \\
\varepsilon_{\alpha} \varphi^{\alpha}(\xi, t), \alpha=p+1, \ldots, h
\end{array}\right. \\
& \left(\Gamma_{0}\right)_{\alpha \beta} \equiv K_{(\alpha, \beta)}=\varepsilon_{\alpha} \delta_{\alpha \beta,} \frac{d}{b}=x, \frac{\mu^{\prime}}{b}=\rho, H \rightarrow H / b,
\end{aligned}
$$

$$
H=\int d \xi\left[(\psi ;, \Psi)-\mathscr{F}(\psi, \psi)^{2}-\rho(\psi, \psi)\right]
$$

$$
\left\{\psi^{\alpha}(\xi) \Psi^{*}(\eta)\right\}=i \delta^{\alpha \beta} \delta(\xi-\eta)
$$

where

$$
\stackrel{*}{\psi}=\psi+\Gamma_{0} \quad, \quad \Gamma_{0}=\left(\begin{array}{cc}
I_{P} & 0 \\
0 & -I_{p}
\end{array}\right)
$$

and

$$
\begin{aligned}
& (\Psi, \psi)=\sum_{\alpha=1}^{p}\left|\Psi^{\alpha}\right|^{2}-\sum_{\alpha=p+1}^{n}\left|\Psi^{\alpha}\right|^{2} \equiv\left(\psi+\Gamma_{0} \psi\right) \\
& \text { a } U(p, q) \text { intermal product. Equations of motion }
\end{aligned}
$$

$$
\begin{equation*}
i \psi_{t}+\psi_{\xi}+2 x(\psi, \psi) \psi+\rho \psi=0 \tag{15}
\end{equation*}
$$

is now the $U(p, q)$ vNLS, the integrable system ${ }^{12 / .}$
The same reduction applied to system (11), (12) gives system (5) $+(3 a)$ that is in dimensionless variables

$$
\begin{equation*}
\partial_{t}^{2} v-\partial_{\xi}^{2} v-(\psi, \psi)_{x x}=0 \tag{16a}
\end{equation*}
$$

$i \psi_{t}+\psi_{\xi \xi}-U \psi+\lambda(\psi, \psi) \psi=0$.

It is worth to noto that tho last term in eq...(16b) is generated by the term $\left(S^{z}\right)^{2}$ of on indtial opin Hamiltonian written in Hol-stein-Primakofe reprosontation. It is proportional to an anisotrophy magnitude (relation \mathcal{J}_{0} / J_{0}) and ourvivos when the magnon-phonon interaction vanishes. Gonoralizod Yajima-Oikawa system may be obtained from(16) via the conventional procoduro of getting a unidirectional wave equation

$$
\begin{equation*}
\partial_{t}^{2}-\partial_{\xi}^{2} \simeq-2 \partial_{\xi}\left(\partial_{t}+\partial_{\xi}\right) \tag{17}
\end{equation*}
$$

and integrating over ξ.
Example 2. For taking into ocoount a woak interaction between "colour" components in a chain droppod abovo suppose the nearest neibour interaction to be prominont adoo in the colour space. Then we have

$$
\begin{align*}
& R_{i j}^{\alpha \beta}=\rho J_{i j}^{\alpha \beta}, \quad J_{i j}^{\alpha \beta}=\left(J_{j i+\sigma} M^{\alpha \beta}+J^{1} V_{i j}^{\alpha \beta}\right) \tag{18}\\
& M^{\alpha \beta}=\delta^{\alpha \beta}+\varepsilon \delta^{\beta, \alpha+\delta}, V_{i j}^{\alpha \beta}=\delta_{i j} \delta^{\beta, \alpha+\delta},
\end{align*}
$$

where $J^{1} J \ll 1$, and J, J^{1} are the intorooll and intorchain exchange integrals respectively. Making use of (23) ono can got equations of type (5) and (8) with small terms aldowing for the fact that the intercolour interaction matrix is nondiagonal. Tho offect of these on the system dynamics may be investigatod by moans of the "standard" soliton perturbation theory, otherwiso by direct methode or by me-

thods using the inverse transform $1 / 18 /$.

The above procedure when applied to the Hubbard model (more prècise to its multichain spin analog) gives also under definite assumptions systems of type (5)+(3) now with the $U\left(\frac{n}{2}, \frac{n}{2}\right)$ inter-
nal symmetry group for an antiferromagnetic ground state and $U(n, 0)$ for a ferromagnetic one (see $/ 17 /$).

Example 3. Allowance for anharmonizm in the Hamiltonian H_{L}

$$
U_{u n g}=\frac{U_{\text {II }}}{3!} \sum_{j}\left(x_{j+1}-x_{j}-a_{0}\right)^{3}
$$

and the phonon dispersion

$$
x_{j \pm 1}=x \pm a_{0} x_{3}+\frac{1}{2} a_{0}^{2} x_{33} \pm \frac{1}{6} a_{0}^{3} x_{33}+\frac{1}{4!} a_{0}^{4} x_{3 j 3}+\cdots
$$

changes wave equation (11) by an inhomogeneous Boussinesq equation

$$
\begin{equation*}
\partial_{t}^{2} x-\partial_{\xi}^{2}\left(v_{0}^{2}-\alpha \partial_{\xi}^{2}-\beta x\right) x=g \partial_{\xi}^{2}(\psi, \psi) \tag{19}
\end{equation*}
$$

with α, β and g being defined by the initial system parameters. Scale transformations of ξ, t, x and ψ give rise to system (5)+(3a). The unidirectional version of (19) is given by (5) + (3c).

We have considered a multicomponent spin system and found that under some assumptions (the long wave approximation and so on) it may be reduced to field models with internal ("colour") symmetries. A part of these turns out to be integrable, among them there are $U(p, q)$ VNLS (obtained in the quasistatic limit), the colour generalization of the Yajima-Oikawa system (obtained in the near-sound limit), finally system (5) $+(3 \mathrm{~d}$) at $\lambda=0$. Other nonintegrable versions may be often considered as nearly integrable systems. All the above equations have in addition to linear (phonon and magnon) solutions also essentially nonlinear (soliton) ones. The properties of these nonlinear solutions (solitons) we discuss in what follows. Just these solutions along with linear modes describe elementary, excitations of the corresponding systens at low temperatures ${ }^{\text {/20 }}$.

In conclusion we notice that the models considered occur in many branches of physics, in particular, a part of them arises apparantly for the first time in plasma physics (see e.g. reviews ${ }^{121 / \text {). }}$

Chapter II

The general scheme of the method

In this chapter we shall describe the method of the eimultaneous construction of the integrable models which are associated with nonstationary Schrbdinger equation and their exact soliton-like solutions.

This method is a particular case of the general algebro-geometrical (or finite-gap) scheme, but its description can be presented in the closed form without using the results of the algebraic geometry. The authors assume that the "algebro-geometrical" approach to the construction of the multisoliton solutions is one of the most simple and elementary methods which can be used even in situations with no complete solutions of the direct and inverge spectral problems of the auxiliary linear problems.

It should be noted that our way of constructing the solutions of the non-stationary Schrbdinger equation with the self-consistent conditions differs from the standard inverse transform method. All these equations have the Lar representations or the so-called $L, A, B-r e p r e-$ sentations. The corresponding auxiliary linear problems are notably different in each cases. In our construotion the solutions of all these equations would be obtained in one general scheme using only one linear operator

$$
L=i \partial_{y}-\partial_{x}^{2}+u(x, y)
$$

but not a few operators as in the inverso transform method. It is noteworthy that L is not only an auriliary operator, but enters the initial systems of the equations.

The aimilar approach to the constructions of the finite-gap solutions of the non-linear Schrbdinger equation and its vector generalizations has been first used in $/ 22 /$. The periodic and quasi-periodic solutions of the equations with other self-consistent conditions have been constructed in paper $/ 23 /$ which has stimulatod our work.

1. The construction of the "integrable" potentials of the non-stationary Schr8dinger equation associated with the rational algebraic curve.
The potential $u(x, t)$ of the non-stationary Schrbdinger equation would be called the "integrable" potential, associated with the rational algebraic curve if the equation

$$
\begin{equation*}
\left[i \partial_{t}-\partial_{x}^{2}+u(x, t)\right] \psi(x, t, k)=0 \tag{2.1}
\end{equation*}
$$

has the solution of the form

$$
Y(x, t, k)=Q_{N}(x, t, k) e^{i k x+i k^{2} t}
$$

$$
Q_{N}(x, t, k)=k^{N}+a_{1}(x, t) k^{N-1}+\cdots+a_{N}(x, t)
$$

-is the polynomial of some degree N.
It is possible that the construction of such potentials which would be given below is not most general. But it contains as its particular cases, the multisoliton and rational solutions of the non-linear equations under consideration.

To begin with we shall construct the complex integrable potentials. Let's present the different complex of numbers x_{1}, \ldots, x_{m},

$$
\left(\alpha_{i j}^{S}\right) \text {, where } 1=1, \ldots, N ; f=1, \ldots, M ; s=0, \ldots, m_{j} \text { with }
$$

$m_{1}+\ldots+m_{M}+R^{R} \geqslant N$. They are free parameters of our construction. For any get of these parameters we shall uniquely determine the function $Y(x, t, k)$ of the form (2.2) with the help of the following system of the linear conditions

$$
\begin{equation*}
\left.\sum_{i=1}^{M} \sum_{s=0}^{m_{i}} \alpha_{i j}^{s} \partial_{k}^{S} \Psi(x, t, k)\right|_{k=x_{j}}=0, i=\overline{1, N} \tag{2.3}
\end{equation*}
$$

Conditions (2.3) are equivalent to the ayatem of N Iinear equations on the coefficients a_{1}, \ldots, a_{N}. Let's introduce the polynomials

$$
\begin{align*}
& P_{r, s}(x, t, k)=e^{-i k x-i k^{2} t} \partial_{k}^{s}\left(k^{r} e^{i k x+i k^{2} t}\right)= \\
& =e^{-i k x-i k^{2} t}\left(\frac{1}{i} \partial_{x}\right)^{r} \partial_{k}^{s} e^{i k x+i k^{2} t}=\left(\partial_{k}+i x+2 i k t\right)^{s} k^{r} \tag{2.4}
\end{align*}
$$

and linear functions $\omega_{j}=\omega_{j}(x, t)$

$$
\begin{equation*}
\omega_{j}(x, t)=x_{j} x+x_{j}^{2} t \quad, j=1, \ldots, M \tag{2.5}
\end{equation*}
$$

Then the equation (2.3) can be written in the following form

$$
\begin{align*}
& \sum_{k=1}^{N} a_{k}(x, t) \sum_{j=1}^{M} \sum_{s=0}^{m_{i}} \alpha_{i j}^{s} P_{N-k, s}\left(x, t, x_{j}\right) e^{i \omega_{j}}= \tag{2.6}\\
& =-\sum_{j=1}^{M} \sum_{s=0}^{m} \alpha_{i j}^{s} P_{N, s}\left(x, t, x_{j}\right) e^{i \omega_{j}}, \quad i=\overline{1, N}
\end{align*}
$$

Let's denote the ($N \times \frac{H}{H}$) matrix of the coefficienta at a_{k} in the -quations $(2,6)$ by $A(x, t)=\left(A_{i k}(x, t)\right)$ and denote the $((K+1) x(K+1))$ atrix $\hat{A}(x, t, k)$

$$
\hat{A}(x, t, k)=\left(\begin{array}{ccc}
k^{N} \\
-\sum_{j=1}^{M} \sum_{s=0}^{m_{j}} \alpha_{1 j}^{s} P_{N, s}\left(x, t, x_{j}\right) e^{i \omega_{j}} & k^{N-1} \ldots \ldots .1 \\
\vdots & & \ldots \ldots \\
\hat{A}(x, t, k) . & A(x, t) & \vdots \\
-\sum_{j=1}^{M} \sum_{s=0}^{m} \alpha_{N j}^{s} P_{N, s}\left(x, t, x_{j}\right) e^{i \omega_{j}} & 1 & \ldots \ldots(27)
\end{array}\right)
$$

Theorem 1. Let the matrix $A(x, t)$ of the system be not identically (in x, t) singular. Then the function $\psi(x, t, k)$ of the form (2.2) which is determined by conditions (2.3) satisfies equation (2.1) with its potential equal to

$$
\begin{equation*}
u(x, t)=2 i \partial_{x} a_{1}(x, t)=2 \partial_{x}^{2} \ln \operatorname{det} A(x, t) \tag{2.8}
\end{equation*}
$$

The proof of this theorem is standard in the theory of the finite -gap integration and can be obtained using only the form of ψ and conditions (2.3).

If we take $u(x, t)=2 i \partial_{x} a_{1}(x, t)$ the substitution of (2.2) in (2.1) provides that the left side of this equality is the function $\tilde{\Psi}(x, t, k)$ of the form

$$
\begin{equation*}
\tilde{\psi}(x, t, k)=\left(\tilde{a}_{1}(x, t) k^{N-1}+\cdots+\tilde{a}_{N}(x, t)\right) e^{i k x+i k^{2} t} \tag{2.9}
\end{equation*}
$$

which is similar to (2.2), but has not the term k^{N} in the pre-expo. nential factor. The conditions (2.3) are ifnear and do not depend on x, t, therefore for any linear operator $\Lambda=\Lambda\left(\partial_{x}, \partial_{t}\right)$ the function $\widetilde{\psi}(x, t, k)=\Lambda \psi(x, t, k)$ satisfies conditions (2.3). Due to this $\tilde{a}_{1}, \ldots, \widetilde{a}_{\mathbb{N}}$ satisfy the system of linear equations with the same coefficients as in the system for a_{1}, \ldots, a_{N}. Unlise the latter system the system for a_{1}, \ldots, a_{N} is homogeneous. Consequently $\tilde{a}_{1}=\ldots=0$, and the equality (2.1) is proved.

The proof of the second formula (2.8) follows from the Cramer's formula for the solution a_{1} of the aystom (2.6) and from the evident relation

$$
\frac{1}{i} \partial_{x}\left[P_{N-1, s}(x, t, k) e^{i k x+i k^{2} t}\right]=P_{N, s}(x, t, k) e^{i k x+i k^{2} t}
$$

The theorem is proved now.
Remark. Beilow we shall assume that the rank of the matrix $\left(\alpha_{i j}^{s}\right)$ is equal to N. This condition is necessary for non-singularity of the matrix $A(x, t)$. It must be mentioned also that the function $\psi(x, t, k)$ would not change if we multiply the matrix ($\alpha_{i j}^{5}$) from the left by an arbitrary constant non-singular ($N \times \mathbb{N}$)-matrix.

As it was mentioned bepore the potentials $u(x, t)$ corresponding to the arbitrary parameters $x_{j},\left(\alpha_{i j}^{5}\right)$ are the complex and meromorphic functions of x, t. Now we shall describe the restrictions which are sufficient for reality and regularity (for real x, t) of the corresponding potentials $u(x, t)$.

Here we shall consider the case $m_{1}=\ldots=m_{M}=0$ only. (The example, in which the rational solutions of the scalar non-linear Schrbdinger equation have been obtained with the help of our construction with $\mathrm{N}=2, \mathrm{~m}_{\mathrm{j}} \neq 0$, has been considered $\mathrm{In}^{/ 24 /}$). In this case we shall assume that $M=2 N$ and that the values $x_{1}, \ldots, x_{2 N}$ have non-zero imaginary parts and are subdivided into complex conjugated pairs

$$
\begin{equation*}
x_{N+i}=\bar{x}_{i}, \quad i=\overline{1, N} \tag{2.10}
\end{equation*}
$$

We can assume without losing generality that the minor of the matrix $\left(\alpha_{i_{j}}\right) \equiv\left(\alpha_{i_{j}}^{c}\right)$ consisting of the columns with the numbers $j=\mathbb{N}+1, \ldots, 2 N$ is non-singular. As it follows from the previous re mark the general case can be reduced to the case where this minor equals the unit matrix. In this case conditions (2.3) have the form

$$
\begin{equation*}
\psi\left(\bar{x}_{i}\right)=-\sum_{j=1}^{N} \alpha_{i j} \psi\left(x_{j}\right), \quad i=\overline{1, N}, \tag{2.11}
\end{equation*}
$$

where $\left(\alpha_{i j}\right)$ is the constant matrix of the dimension $\mathbb{N} \times N$. It is convenient to renormalize the function $\psi(x, t, k)$ in the following way

$$
\begin{equation*}
\psi(x, t, k)=\frac{\psi(x, t, k)}{\left(k-x_{1}\right) \cdots\left(k-x_{N}\right)} \equiv\left(1+\sum_{j=1}^{N} \frac{r_{j}(x, t)}{k-x_{j}}\right) e^{i k x+i k^{2} t} \tag{2.12}
\end{equation*}
$$

The conditions (2.11) for this renormalized function ψ will take the form

$$
\begin{equation*}
\Psi\left(x, t, \bar{x}_{i}\right)=-\sum_{j=1}^{N} e_{i j} \operatorname{res}_{k=x_{i}} \Psi(x, t, k), \tag{2,13}
\end{equation*}
$$

where the constant matrix $\left(C_{i j}\right)$ equals to

$$
\begin{equation*}
c_{i j}=\left[R\left(\bar{x}_{i}\right)\right]^{-1} \alpha_{i j} R^{\prime}\left(\mathscr{x}_{j}\right), \quad i, j=\overline{1, N} \tag{2.14}
\end{equation*}
$$

$R(k)=\left(k-x_{1}\right) \cdots\left(k-x_{N}\right)$, and the prime denotes the derivative with respect to k.

Theorem 2. Let the parameters $x_{1}, \ldots, x_{N},\left(c_{i j}\right)$ which determine the function $\psi(x, t, k)$ of the form (2.12) with the help of the conditions (2.13) satisfy the following requirements:
a) the matrix $C_{i j}$ is skew-hermitian $C_{i j}=-\bar{C}_{i j}$;
b) if the points x_{1}, \ldots, x_{N} are numerated in such a way that
$\operatorname{Im}_{\mathrm{m}} \mathscr{X}_{i} 0, i=1, \ldots, p ; \operatorname{Im} \mathscr{X}_{i}<0, i=p+1, \ldots, N$,
then the hermitian matrix

$$
\left(\frac{1}{i} C_{k l}\right), \quad 1 \leqslant k, l \leq p
$$

must be positively defined and hermitian matrix

$$
\left(\frac{1}{i} C_{k \ell}\right), \quad p+1 \leq k, \ell \leq N
$$

must be negatively defined (these matrices can be non-negative as well).

If those conditions on the parameters are fulfilled, the function
$\Psi(x, t, k)$ is the smoath function of real x, t for all $k \neq \mathscr{X}_{j}$ and satisfies the equation (2.1) with a real mooth potential $u(x, t)$. For these functions we have

$$
\begin{align*}
\Psi(x, t, k) & =\frac{\operatorname{det} \hat{M}(x, t, k)}{\operatorname{det} M(x, t)} e^{i k x+i k^{2} t} \tag{2.15}\\
u(x, t) & =2 \partial_{x}^{2} \ln \operatorname{det} M(x, t) \tag{2.16}
\end{align*}
$$

where

$$
\begin{align*}
& M_{i j}(x, t)=c_{i j}+\frac{e^{i\left(\bar{\omega}_{i}-\omega_{j}\right)}}{\bar{x}_{i}-x_{j}}, \quad \omega_{i}=x_{i} x+x_{i}^{2} t \tag{2;17}\\
& \hat{M}_{i j}=M_{i j}: i, j=\overline{1}, \overline{1, N} ; \hat{M}_{00}=1, \hat{M}_{i o}=e^{i \omega_{i}} \tag{2.18}\\
& \hat{M}_{0 i}=\left(k-x_{i}\right)^{-1} e^{-i \omega_{i}} \quad i=\overline{1, N}
\end{align*}
$$

The proof. Let's consider the function

$$
\begin{equation*}
\Omega(x, t, k)=\Psi(x, t, k) \overline{\psi(x, t, \sqrt{k}}) \tag{2.19}
\end{equation*}
$$

The residue of this function in $k=\infty$ equals $\left(a_{1}(x, t)+\overline{a_{1}(x, t)}\right)$. This function has simple polea in the pointa $k=\mathscr{X}_{i}$, $k=\overline{\mathscr{X}}_{i}$ with the residuea

$$
\begin{align*}
& \underset{\mathscr{x}_{i}}{\operatorname{res}} \Omega(x, t, k)=\underset{\mathscr{e}_{i}}{\operatorname{res}} \Psi(x, t, k) \Psi(x, t, \bar{k})=-\sum_{j=1}^{N} \bar{C}_{i j} \Psi_{i} \bar{\Psi}_{j},(2.20) \tag{2.26}\\
& \text { where } \\
& \quad \Psi_{i}=\Psi_{i}(x, t)=\underset{\mathscr{L}_{i}}{\operatorname{res}} \Psi(x, t, k)=r_{i}(x, t) e^{i \omega_{i}}, i=\overline{1, N} . \text { (2.21) }
\end{align*}
$$

Similarly,

The sum of the residues of Ω in all points x_{i} is equal to zero because the matrix $C_{1 j}$ is a skew-hermitian. Consequently, the residue Ω in the infinity is equal to zero, i.e. $\bar{a}_{1}=-a_{1}$. The relation $u(x, t)=2 i \partial_{x} a_{1}$ provides that potential $u(x, t)$ is real.

The regularity of u and $\Psi(x, t, k), k \neq x_{j}$ is equivalent to the non-singularity of the matrix $M(x, t)$. This matrix is the matrix of

- the coefficients at Ψ_{j} in the system (2.23) which is equivalent to the system (2.13). Let's prove that the system (2.13) has the unique solution for all the real x, t. This system can be re-written in the form

$$
\begin{equation*}
\sum_{j=1}^{N}\left(c_{i j}+\frac{e^{i\left(\bar{\omega}_{i}-\omega_{j}\right)}}{\bar{x}_{i}-x_{i}}\right) \Psi_{j}=-e^{i \bar{\omega}_{i}}, \quad i=\overline{1, N} \tag{2.23}
\end{equation*}
$$

where Ψ_{j} is determined in (2.21).
The matrix of the coefficients of this system is degenerated if there exists the solution of the corresponding homogeneous system. The latter is equivalent to the existence of the non-zero function

$$
r e
$$

$$
\Psi^{\prime}(x, t, k) \text { of the form }
$$

$$
\begin{equation*}
\Psi^{\prime}(x, t, k)=\sum_{j=1}^{N} \frac{\tilde{r}_{j}(x, t)}{k-x_{i}} e^{i k x+i k^{2} t} \tag{2.24}
\end{equation*}
$$

satisfying the conditions (2.13). Let's show that this is impoasible.

> Consider the integral over the real axis

$$
\begin{equation*}
0<\int_{-\infty}^{\infty}\left|\Psi^{\prime}(x, t, k)\right|^{2} d k=\int_{-\infty}^{\infty} \Omega^{\prime}(x, t, k) d k=I \tag{2.25}
\end{equation*}
$$

where $\Omega^{\prime}(x, t, k)$ is constructed from $\Psi^{\prime}(x, t, k)$ with the help of the (2.19). This integral can be expressed in terms of the residues of Ω^{\prime} in the upper half-plane. The residues Ω are given by formulae (2.20) and (2.22) where we must substitute Ψ_{i} by $\Psi_{i}^{\prime}=\operatorname{res} \Psi^{\prime}$

$$
\begin{aligned}
& \text { of this } \\
& \begin{aligned}
I & =2 \bar{u} i\left(\sum_{i=1}^{p} \sum_{j=1}^{N} C_{j i} \Psi_{i}^{\prime} \bar{\Psi}_{j}^{\prime}-\sum_{i=p+1}^{N} \sum_{j=1}^{N} C_{i j} \Psi_{j}^{\prime} \bar{\Psi}_{i}^{\prime}\right)= \\
& =2 \bar{u} i\left(\sum_{i=1}^{p} C_{j i} \Psi_{i}^{\prime} \bar{\Psi}_{j}^{\prime}-\sum_{i j=p+1}^{N} C_{i j} \Psi_{j}^{\prime} \bar{\Psi}_{i}^{\prime}+\right. \\
& \left.+\sum_{i=1}^{P} \sum_{j=p+1}^{N} C_{j i} \Psi_{i}^{\prime} \bar{\Psi}_{j}^{\prime}-\sum_{i=p+1}^{N} \sum_{j=1}^{p} C_{i j} \Psi_{j}^{\prime} \bar{\Psi}_{i}^{\prime}\right)
\end{aligned} .
\end{aligned}
$$

From this we obtain

$$
I=2 \pi i\left(\sum_{i j=1}^{P} \Psi_{i}^{\prime} C_{-i j} \Psi_{j}^{\prime \prime}-\sum_{i, j=p+1}^{N} \Psi_{i}^{\prime} C_{i j} \Psi_{j}^{\prime}\right) \leqslant 0
$$

using the condition b) of the theorem. This contradiction proves the regularity of $\Psi(x, t, k)$ and $u(x, t)$ for all real x, t. The formulae (2.15) and (2.16) can be obtained aimilarly to the formulae (2.7) and (2.8). The theorem is proved.

Definition 1. We shall call the integrable potential $u(x, t)$ which is given by our construction with N parameters $\mathscr{R}_{1}, \ldots, \mathscr{X}_{N}$ and $\mathrm{N} \times \mathrm{N}$ matrix $\mathrm{C}_{i j}$ the N -soliton potential.
This definition coincides with the ordinary one for the scalar non-linear Schrödinger equation. In the vector case our definition of the number of solitons does not always agree with the intuitive definition $/ 25 /$.

Let's find out in which case the two sets of the "spectral data" $X_{i}, C_{i j}$ and $X_{i}^{\prime}, C_{i j}$ detcrmine the same Schrödinger operator and the same function $\mathcal{\Psi}(x, t, k)$. Consider the relation (2.11). Let's represent the matrix $\left(\alpha_{i j}\right)$, which is related to $C_{i, j}$ with the help of (2.14) in the block form

$$
\left(\alpha_{i j}\right)=\left(\begin{array}{c:c}
\alpha_{+}+ & \beta \\
\hdashline \gamma & \frac{\beta}{-}
\end{array}\right)
$$

where matrices α_{+}and $\alpha_{\text {_ }}$ have the dimensions $p \times p$ and ($\left.N-p\right) \times(N-p)$, respectively. Assume that the matrix α. is invertible. Then the transformation $\left(\partial e_{i},\left(\alpha_{i j}\right)\right) \Rightarrow\left(\mathcal{R}_{1}^{\prime},\left(\alpha_{i j}^{\prime}\right)\right)$, where

$$
\begin{align*}
& x_{i}^{\prime}=\left\{\begin{array}{l}
x_{i}, \quad i=\overline{1, p} \\
\mathscr{x}_{i}, i=\overline{p+1, N} \\
\left(\alpha_{i j}^{\prime}\right)=\binom{\alpha_{ \pm}-\beta \alpha^{-1} \gamma}{\alpha_{-}^{-1} \gamma-\frac{\beta}{-1}}
\end{array}, \begin{array}{l}
-1-\frac{\alpha_{-}^{-1}}{-1}
\end{array}\right)
\end{align*}
$$

does not change the relations (2.11), which determine the function $\Psi^{\top}(x, t, k)$. Hence, for the invertible minor α_{-}the points $\mathscr{X}_{p+1}, \cdot, \mathscr{X}_{N}$ may be tranaformed from the lower to the upper half-plane without changing the Schrödinger operator and his eigenfunctions.

It must be mentioned, that if for some i_{0}

$$
\begin{equation*}
C_{i_{o} j}=C_{j i_{o}}=0, j=1 \ldots N \tag{2.28}
\end{equation*}
$$

then the corresponding function $\Psi(\pi, t, k)$ has the form

$$
\begin{equation*}
\Psi(x, t, k)=\frac{k-\bar{x}_{i_{0}}}{k-x_{i 0}} \tilde{\Psi}(x, t, k) \tag{2.29}
\end{equation*}
$$

where $\widetilde{\Psi^{-}}$does not depend on $\mathscr{X}_{i o}$ and is determined by the system (2.13) with $i \neq i_{0}$. The potential $u(x, t)$ does not depend on x_{i} either.

We shall present now the transformations of the spectral data which are corresponding to the Galilei, scale and other simplest transformations of the Schrödinger operator:
a) The Galilei transformation

$$
\begin{equation*}
x^{\prime}=x+v t \quad, t^{\prime}=t \tag{2.30}
\end{equation*}
$$

In this case

$$
\begin{align*}
& x_{i}^{\prime}=x_{i}-\frac{v}{2}, \quad i=\overline{1, N} \\
& \left(c_{i j}^{\prime}\right)=\left(c_{i j}\right) . \tag{2.31}
\end{align*}
$$

The corresponding potential and eigenfunctions are equal to

$$
\begin{align*}
& u(x, t)=u^{\prime}\left(x^{\prime}, t^{\prime}\right) \\
& \Psi^{\prime}\left(x^{\prime}, t^{\prime}, k^{\prime}\right)=\Psi^{-i}(x, t, k) e^{-i \frac{v}{2}\left(x+\frac{v}{2} t\right)}, k^{\prime}=k-\frac{v}{2} \tag{2.32}
\end{align*}
$$

b) Translations

$$
\begin{equation*}
x^{\prime}=x+x_{0}, \quad t^{\prime}=t+t_{0} \tag{2.33}
\end{equation*}
$$

In this case

$$
\begin{equation*}
x_{i}^{\prime}=x_{i}, \quad i=\overline{1, N} \tag{2.34}
\end{equation*}
$$

and

$$
c_{i j}^{\prime}=c_{i j} \exp \left\{i\left[\left(\bar{x}_{i}-x_{j}\right) x_{0}+\left(\vec{x}_{i}^{2}-x_{j}^{2}\right) t_{0}\right]\right\}, i, j=\overline{1, N}
$$

$$
\begin{align*}
& u^{\prime}\left(x^{\prime}, t^{\prime}\right)=u(x, t) \\
& \Psi^{\prime}\left(x^{\prime}, t^{\prime}, k^{\prime}\right)=\Psi(x, t, k) e^{i k\left(x_{0}+k t_{0}\right)} \tag{2.35}
\end{align*}
$$

c) The scaling transformations

$$
\begin{equation*}
x^{\prime}=\lambda x \quad, \quad t^{\prime}=\lambda^{2} t \tag{2.36}
\end{equation*}
$$

The corresponding transformation of the spectral data has the form

$$
\begin{align*}
& x_{i}^{\prime}=\lambda^{-1} x_{i} \quad, \quad i=\overline{1, N} \\
& \left(c_{i j}^{\prime}\right)=\left(c_{i j}\right) . \tag{2.37}
\end{align*}
$$

For the potential and eigenfunction we have

$$
\begin{align*}
& u^{\prime}\left(x^{\prime}, t^{\prime}\right)=\lambda^{-2} u(x, t) \\
& \Psi^{\prime}\left(x^{\prime}, t^{\prime}, k^{\prime}\right)=\Psi(x, t, k), k^{\prime}=\lambda^{-1} k \tag{2.38}
\end{align*}
$$

d) The space and time reflection

$$
\begin{equation*}
\dot{x}^{\prime}=-x, \quad t^{\prime}=-t \tag{2.39}
\end{equation*}
$$

Then

$$
\begin{gathered}
x_{i}^{\prime}=\bar{x}_{i}, \quad i=\overline{1, N} \\
C_{i j}^{\prime}=\bar{C}_{i j}, i, j=\overline{1, N}
\end{gathered}
$$

As this takes place

$$
\begin{equation*}
u^{\prime}\left(x^{\prime}, t^{\prime}\right)=u(x, t), \Psi^{\prime}\left(x^{\prime}, t^{\prime}, k^{\prime}\right)=\overline{\Psi(x, t, k)}, k^{\prime}=\bar{k} \tag{2.40b}
\end{equation*}
$$

2. The asymptotic properties of the constructed potentials and eigenfunctions.
At the begining we shall consider the case $N=1$. The system (2.23) is reduced to the equation

$$
\begin{equation*}
\left(c+\frac{e^{i(\bar{\omega}-\omega)}}{\bar{x}-x}\right) \Psi_{1}(x, t)=-e^{i \bar{\omega}} \tag{2.41}
\end{equation*}
$$

Here $\mathscr{P} \equiv \mathscr{C}_{1}($ let $\operatorname{Im} x>0), \mathrm{CaC}_{11}, \operatorname{Re} \mathrm{C}_{11}=0$, Im $C>0$, (the case $\mathrm{C}=0$ is trivial), $\omega=x x+x^{2}$

$$
\begin{equation*}
\Psi_{1}(x, t)=-e^{i \bar{\omega}}\left(e+\frac{e^{i(\bar{\omega}-\omega)}}{\sqrt{x}-\mathscr{x}}\right)^{-1} \tag{2.42}
\end{equation*}
$$

$$
\text { Let's denote } x=\alpha+i \beta \quad \text {. Then }
$$

$$
\begin{equation*}
\Psi_{1}(x, t)=\frac{i \beta}{\sqrt{(\bar{x}-\partial e) c}} \cdot \frac{e^{i \alpha x+i\left(\alpha^{2}-\beta^{2}\right) t}}{c h\left[\beta\left(x-x_{0}\right)+2 \alpha \beta t\right]} \tag{2.43}
\end{equation*}
$$

where

$$
\begin{equation*}
x_{0}=\frac{1}{\beta} \ln \sqrt{(\bar{x}-x) c} \tag{2.44}
\end{equation*}
$$

For $r=r_{1}(x, t)$ we have the formula

$$
\begin{align*}
& r=r_{1}(x, t) \text { we have the formula } \tag{2.45}\\
& r(x, t)=i \beta\left\{1+\text { th }\left[\beta\left(x-x_{0}\right)+2 \alpha \beta t\right]\right\} .
\end{align*}
$$

Therefore, for the case Nal it corresponds to the well-known one-soliton, potential of the Sohrödinger equation which is decreasing in all directions except xa-2 α + const :

$$
\left.u(x, t)=2 i \partial_{x} r(x, t)=-2 \beta^{2} c h^{-2}\left[\beta\left(x-x_{0}\right)+2 \alpha \beta t\right] \text {. } 2.46\right)
$$

The eigenfunction of the corresponding Schrödinger operator has the form

$$
\begin{equation*}
\Psi(x, t, k)=\left[1+i \beta \frac{1+\operatorname{th}\left[\beta\left(x-x_{0}\right)+2 \alpha \beta t\right]}{k-z}\right] e^{i k(x+k t)} \tag{2.47}
\end{equation*}
$$

Consider now the case $N>1$. The asymptotic behavior of $\Psi(x, t, k)$ for the general (x_{i}), $\left(c_{i j}\right)$ is too complicated to be analysed. Here we shall consider only the simplest case, when $\operatorname{Im} x_{i}>0, i=1, \ldots, N$ and

$$
\begin{equation*}
\operatorname{det}\left(C_{i j}\right) \neq 0 \tag{2.48}
\end{equation*}
$$

Some wother examples would be considered in sec. 4 .

For the fixed t and $x \rightarrow-\infty$ we have

$$
\begin{array}{r}
e^{i \bar{\omega}_{j}}=e^{i \bar{x}_{j} x+i \bar{x}_{j}^{2} t} \rightarrow 0 \\
e^{-i \omega_{j}} \rightarrow 0, j=j, ~ \tag{2.49}
\end{array}
$$

Because of this the system (2.23) would be reduced to the form

$$
\begin{equation*}
\sum_{j=1}^{N} C_{i j} \Psi_{j}=0, \quad i=\overline{1, N} \tag{2.50}
\end{equation*}
$$

Consequentiy, $\Psi_{j} \rightarrow 0$ for all j. It is easy to see that this decrease has the exponential form, i.e. for $x \rightarrow-\infty$

$$
\begin{equation*}
\Psi_{j}(x, t)=\Psi_{j}^{0}(t) e^{\beta x}, \xi=\overline{1, N} \tag{2.51}
\end{equation*}
$$

where $\Psi_{j}^{0}(t)$ are some functions depending on t and

$$
\begin{equation*}
\beta=m_{i}|n| \operatorname{Im} x_{j} \mid \tag{2.52}
\end{equation*}
$$

Since $r_{j}=\Psi_{j} e^{-i \omega_{j}^{j}}$ we have

$$
\begin{equation*}
r_{j}(x, t) \rightarrow 0, j=\overline{1, N} \tag{2.53}
\end{equation*}
$$

and

$$
\begin{equation*}
M(x, t)=O\left(e^{2 \beta x}\right), x \rightarrow-\infty \tag{2.54a}
\end{equation*}
$$

As follows from (2.53)

$$
\begin{equation*}
\Psi(x, t, k) \rightarrow e^{i k x+i k^{2} t}, x \rightarrow-\infty \tag{2.54b}
\end{equation*}
$$

The case $x \rightarrow+\infty$ is a bit more difficult. The system (2.23) can be re-written as the system for $\quad r_{j}=\Psi_{j} \exp \left(-i \omega_{j}\right)$ in the form

$$
\sum_{j=1}^{N}\left(e_{i j} e^{-i \bar{\omega}_{j}}+\frac{1}{\bar{x}_{i}-e_{j}}\right) r_{j}=-1, \quad i=\overline{1, N}
$$

For $x \rightarrow+\infty$ this system turns into

$$
\begin{equation*}
1+\sum_{j=1}^{N} \frac{r_{j}^{0}}{\bar{ண}_{i}-æ_{j}}=0, \quad i=\overline{1, N} \tag{2.55}
\end{equation*}
$$

where r_{i}^{0} is the limit of r_{i}.
The rational function

$$
f=1+\sum \frac{r_{i}^{0}}{k-x_{i}}
$$

can be represented in the form

$$
f=\frac{P(k)}{\Pi\left(k-x_{i}\right)}
$$

where $P(k)$ is the polynomial of the degree N the highest coefficient of which equals 1. From (2.55) it follows that $f\left(\bar{x}_{i}\right)=0$. Hence, $P(k)=\Pi\left(k-\bar{x}_{1}\right)$ and

$$
\begin{equation*}
\Psi(x, t, k) \rightarrow \prod_{j=1}^{N} \frac{k-\overline{x_{j}}}{k-x_{i}} e^{i k x+i k^{2} t}, x \rightarrow+\infty \tag{2.56}
\end{equation*}
$$

The functions Ψ_{j} are exponentially decreasing

$$
\begin{equation*}
\Psi_{j}(x, t) \rightarrow r_{j}^{0} e^{i \omega_{j}}, x \rightarrow+\infty, j=\overline{1, N} \tag{2.57}
\end{equation*}
$$

It may be shown that

$$
\begin{equation*}
u(x, t)=O\left(e^{-2 \beta x}\right), x \rightarrow+\infty \tag{2.58}
\end{equation*}
$$

where β is given with the help of (2.52).
For the singular matrix $C_{i j}$ the asymptotics are more complica-

- ted. It must be mentioned that if $\operatorname{Im} \mathscr{X}_{i}>0, \operatorname{Im} \mathscr{X}_{i} \neq \operatorname{Im} \mathscr{X}_{j}$ and $\operatorname{det}\left(C_{1 j}\right)=0$, at least one of the Punctions $\Psi_{1}(x, t), \ldots, \Psi_{N}(x, t)$ tends to infinity for $x \rightarrow-\infty$. Actually, let λ_{i} be the non-zero solution of the equations

$$
\sum_{i=1}^{N} \lambda_{i} C_{i j}=0, \quad j=\overline{1, N}
$$

If we multiply the $i-t h$ equation of (2.23) by λ_{i}, and take their sum we shall obtain

$$
\sum_{i, j=1}^{N} \lambda_{i} \frac{e^{i\left(\bar{\omega}_{i}-\omega_{j}\right)}}{\bar{x}_{i}-\mathscr{x}_{j}} \Psi_{j}=-\sum_{i=1}^{N} \lambda_{i} e^{i \vec{\omega}_{i}}
$$

If the functions Ψ_{j} are bounded, it follows for $x \rightarrow-\infty$ that all λ_{i} must equal to zero. This contradiction proves that functions Ψ_{j} are unbounded. It can be noted also that for special selection of the spectral data $x_{i},\left(C_{i j}\right)$ the corresponding potentials are periodic or quasi-periodic functions of x. The periodic potentials with their period equal to T correspond to such data that

$$
\begin{equation*}
c_{i j} \exp i\left[\left(\bar{x}_{i}-x_{j}\right) T\right]=C_{i j}, i, j=\overline{1, N} \tag{2.59}
\end{equation*}
$$

If $\quad x_{j}=\alpha_{j}+i \beta_{j}$, then from (2.59) it follows for $c_{i j} \neq 0$

$$
\left\{\begin{array}{l}
\alpha_{i}-\alpha_{j}=\frac{2 \pi n_{i j}}{T} \tag{2.60}\\
\beta_{i}+\beta_{j}=0
\end{array}\right.
$$

where $n_{i j}$ - integers.
The conditions

$$
\begin{equation*}
\beta_{i}+\beta_{j}=0 \quad, \quad \text { if } \quad c_{i j} \neq 0 \tag{2.61}
\end{equation*}
$$

lead us to the quasi-periodic $u(x, t)$ (with respect to x).
These conditions can be fulfilled if the matrix, $C_{i j}$ satisfies the following relations

$$
\begin{equation*}
C_{i i}=0, c_{i j} \cdot C_{j k} \cdot C_{k i}=0, i, j, k=1, \ldots, N \tag{2.62}
\end{equation*}
$$

The conditions of the quasi-periodicity of $u(x, t)$ with respect to t have the similar form.

Let's consider now the asymptotics for the large t and fixed π. We shall assume again that $\operatorname{Im}_{i}>0, i=1, \ldots, N$, $\operatorname{det} C_{i j} \neq 0$. There exist two different cases. The first one is the case when $\operatorname{Im} x_{j}^{2} \neq 0$ for all $j=1, \ldots, N$. Then it can be shown that all functions $\Psi_{1}(x, t), \ldots$., $\Psi_{N}(x, t)$ are exponentially decreasing for $|t| \rightarrow \infty$ and the rate of their decrease is determined by the number min $\left[\operatorname{Im} \mathscr{X}_{j}^{2}\right]$.

In the second case we shall consider only ${ }^{j}$ the simpliest situation when

$$
\begin{equation*}
I_{m} x_{1}^{2}>\ldots>I_{m} x_{N-1}^{2}>I_{m} x_{N}^{2}=0 \tag{2.63}
\end{equation*}
$$

For $t \rightarrow-\infty$, the system (2.23) has the asymptotic form:

$$
\begin{gather*}
\sum_{j=1}^{N} c_{i j} \Psi_{j}=0, i=\overline{1, N-1} \\
\sum_{j=1}^{N-1} C_{N j} \Psi_{j}+\left(C_{N N}+\frac{e^{i\left(\bar{\omega}_{N}-\omega_{N}\right)}}{\bar{B}_{N}-\varepsilon_{N}}\right) \Psi_{N}=-e^{i \bar{\omega}_{N}} \tag{2.64}
\end{gather*}
$$

Let's denote by ($C^{i j}$) the matrix which is inverse to ($C_{i j}$).
Changing variables in (2.64) which are determined in (2.65)
give us

$$
\begin{equation*}
\Psi_{j}=\sum_{\ell=1}^{N} c^{j \ell} \Phi_{l}, j=\overline{1, N} \tag{2.65}
\end{equation*}
$$

$$
\Phi_{1}=\cdots=\Phi_{N-1}=0
$$

$$
\begin{align*}
& \cdots=\Phi_{N-1}=0, \tag{2.66}\\
& \Phi_{N}=-e^{i \bar{\omega}_{N}}\left[1+\frac{e^{i\left(\bar{\omega}_{N}-\omega_{N}\right)}}{\bar{x}_{N}-x_{N}} C_{N N}\right]^{-1}
\end{align*}
$$

Consequentiy for $t \rightarrow-\infty$
$\Psi_{j} \rightarrow-\frac{c^{j N}}{c^{N N}} \cdot \frac{e^{i \bar{\omega}_{N}}}{\frac{1}{c^{N N}+\frac{e^{i\left(\bar{\omega}_{N}-\omega_{N}\right)}}{\bar{x}_{N}-x_{N}}}=\frac{c^{j N}}{e^{N N}} \sqrt{\frac{c^{N N}}{x_{N}-x_{N}}} i \beta_{N} \frac{e^{-i \beta_{N}^{2} t}}{c h\left[\beta_{N}\left(x-x_{0}^{-}\right)\right]}}$,
$j=\overline{1, N}$,
where $\quad x_{N}=i \beta_{N}$,

$$
\begin{equation*}
x_{0}^{-}=\frac{1}{\beta_{N}} \ln \sqrt{\frac{\partial \dot{e}_{N}-x_{N}}{C^{N N}}} \tag{2.68}
\end{equation*}
$$

The corresponding potential $u(x, t)$ has the soliton asymptotic (stationary soliton) of the form

$$
\begin{equation*}
u(x, t) \rightarrow-2 \beta_{N}^{2} c h^{-2}\left[\beta_{N}\left(x-x_{0}^{-}\right)\right], t \rightarrow-\infty \tag{2.69}
\end{equation*}
$$

For the calculation of the asymptotics for $t \rightarrow+\infty$ it is convenient to consider the system: for $r_{1}(x, t), \ldots, r_{N}(x, t)$. The system (2.23) has the asymptotic form:

$$
\begin{aligned}
& 1+\sum_{j=1}^{N} \frac{r_{j}}{\bar{x}_{i}-x_{j}}=0, \quad i=\overline{1, N-1} \\
& \sum_{j=1}^{N-1}\left(c_{N j} e^{-i \bar{\omega}_{N}}+\frac{1}{x_{N}-x_{j}}\right) r_{j}+\left(e^{-i\left(\bar{\omega}_{N}-\omega_{N}\right)}+\frac{1}{\bar{x}_{N}-x_{N}}\right) r_{N}=-1
\end{aligned}
$$

The first equations show that ($N-1$) zeros of the rational function

$$
\begin{equation*}
R(k)=1+\sum_{j=1}^{N} \frac{r_{j}}{\frac{1}{x}-x_{j}} \tag{2.71}
\end{equation*}
$$

dre the points ${ }^{j=1} \bar{x}_{1}, \ldots \bar{x}_{N-1}$. Therefore, this function can be written in the form:

$$
\begin{equation*}
R(k)=(k-a) \prod_{i=1}^{N-1}\left(k-\bar{x}_{i}\right)\left(\prod_{i=1}^{N}\left(k-x_{i}\right)\right)^{-1} \tag{2.72}
\end{equation*}
$$

In the terms of the ${ }_{N-1}$ ninown function $a(x, t)$ we have from (2.72) that

$$
\begin{equation*}
r_{j}=\frac{\left(x_{j}-a\right) \prod_{i=1}^{N-1}\left(x_{j}-\bar{x}_{i}\right)}{\prod_{i \neq j}\left(x_{j}-x_{i}\right)}, j=\overline{1, N} . \tag{2.73}
\end{equation*}
$$

The function $a(x, t)$ can be found now from the last equation (2.70). Finally, we obtain that for $t \rightarrow \infty$

$$
\begin{equation*}
\Psi_{N}(x, t) \rightarrow \frac{i \beta_{N}}{\sqrt{C_{N N}\left(\mathscr{x}_{N}-x_{N}\right)}} \frac{e^{-i \beta_{N}^{2} t+i \varphi_{0}^{+}}}{\operatorname{ch}\left[\beta_{N}\left(x-x_{0}^{+}\right)\right]} \tag{2.74}
\end{equation*}
$$

where

$$
\begin{align*}
& \varphi_{0}^{+}=\arg Z_{N}, x_{0}^{+}=\frac{1}{\beta_{N}} \ln \left[\sqrt{C_{N N}\left(\bar{x}_{N}-x_{N}\right)}\left|Z_{N}\right|\right] \tag{2.75}\\
& Z_{N}=\prod_{i \neq N} \frac{x_{N}-x_{i}}{x_{N}-x_{i}}
\end{align*}
$$

The esymptotics of $\Psi(x, t, k)$ has the form

$$
\begin{equation*}
\Psi(x, t, k) \rightarrow \prod_{j=1}^{N-1} \frac{k-\bar{x}_{j}}{k-x_{j}}\left\{1+\frac{1}{2} \frac{x_{N}-\bar{x}_{N}}{k-x_{N}}\left[1+\operatorname{th} \beta_{N}\left(x-x_{0}^{+}\right)\right]\right\} e^{i k(x+k t)} \tag{2.76}
\end{equation*}
$$

The potential has the soliton asymptotic

$$
\begin{equation*}
u(x, t) \rightarrow-2 \beta_{N}^{2} c h^{-2}\left[\beta_{N}\left(x-x_{0}^{+}\right)\right], t \rightarrow+\infty \tag{2.77}
\end{equation*}
$$

again.
The corresponding ahift of the phase of the stationary soliton is equal to

$$
\begin{equation*}
x_{0}^{+}-x_{0}^{-}=\frac{1}{\beta_{N}} \ln \left(\sqrt{C_{N N} e^{N N}} \left\lvert\, \prod_{i \neq N} \frac{x_{N}-\bar{x}_{i}}{x_{N}-x_{i}}\right.\right) \tag{2.78}
\end{equation*}
$$

Similarly the asymptotics for $t \rightarrow \pm \infty$ along the lines $x=v t+x_{0}$ can be determined (using the formulae (2.31), (2.32) for the Galileo's tranaformation). In doing so we obtain that the potential would decay into solitons of the form (2.46) moving with the speeds
$V_{j}=-\operatorname{Im} \gtrless_{j}^{2} / \operatorname{Im} X_{j}, j=1 \ldots, N$. The shifts of their phases are given by formulee of the form (2.78). It must be mentioned that the interactions are not reduced to the pairwise interaction because of the term
$\frac{1}{\beta_{N}} \ln \sqrt{C_{N N} c^{N N}}$ it should be (2.78).

It should be particularly emphasized that the asymptotic falling of the potential into solitons which were described above holds only for the solutions corresponding to the parameters with the different values $\operatorname{Im} \mathscr{X}_{1}^{2}, \ldots, \operatorname{Im} \mathscr{X}_{N}^{2}$. If some of these values coincide the bound states of the solitons would occur. Consider as an example the case when

$$
I_{m} x_{1}^{2} \geqslant I_{m} x_{2}^{2} \geqslant \cdots>I_{m} x_{N-m+1}^{2}=\ldots=\operatorname{Im} x_{N}^{2}=0
$$

and $\operatorname{Im} x_{j}>0, \operatorname{det}\left(C_{i j}\right) \neq 0, j=\overline{1, N}$.
a) Let $t \rightarrow-\infty$. The matrix which is inverse to ($C_{i j}$) would be denoted as $C^{i j}$. Through $\left(C_{i j}^{-}\right)_{N-m+1 \leq i, j \leq N}$
we denote the matrix which is inverse to

$$
\begin{equation*}
\sum_{s=1}^{N} C_{i s}^{-} c^{s j}=\delta_{i}^{j}, \quad i, j=\overline{N-m+1}, N \tag{2.79}
\end{equation*}
$$

For $t \rightarrow-\infty$ the function $\Psi(x, t, k)$ has the oscillating asymptotic (i.e. the quasiperiodic for real k) of the form

$$
\begin{equation*}
\Psi(x, t, k) \rightarrow \Psi^{-}(x, t, k) \tag{2.80}
\end{equation*}
$$

where the function

$$
\Psi^{-}(x, t, k)=\left(1+\sum_{j=N-m+1}^{N} \frac{r_{j}^{-}}{k-x_{j}}\right) e^{i k(x+k t)}
$$

is determined according to our main construction with the help of the matrix $C_{i j}^{-}$. Let

$$
\begin{equation*}
\Psi_{j}^{-}(x, t)=r_{j} e^{i \omega_{j}}, j=\overline{N-m+1, N} \tag{2.81}
\end{equation*}
$$

be the residues of this function. For $t \rightarrow-\infty$ the residues $\Psi_{1}(x, t), \ldots$ $\Psi_{N}(x, t)$ of the function (x, t, k) have the oscillating asymptotic of the form

$$
\Psi_{j}(x, t) \rightarrow \Psi_{j}^{-}(x, t), j=\overline{N-m+1, N},
$$

$$
\Psi_{j}(x, t) \rightarrow \sum_{\ell, s=N-m+1}^{N} e^{j \ell} e_{\ell s}^{-} \Psi_{S}(x, t), j=\overline{1, N-m}
$$

The corresponding asymptotics of the potential $u(x, t) \rightarrow u^{-}(x, t)$ is the m-soliton one corresponding in our construction to the set of data $x_{N-m+1}, \cdots, x_{N}, C_{i j}$. The function $u^{-}(x, t)$ is the quasiperiodic function of the variable t.
b) $t \rightarrow+\infty$. Let $R(k)$ denote the rational function

$$
\begin{equation*}
R(k)=\prod_{i=1}^{N-m} \frac{k-\bar{x}_{i}}{k-x_{i}} \tag{2.83}
\end{equation*}
$$

- and $C_{i j}^{+}$denote $m \times m$-matrix

$$
\begin{equation*}
C_{i j}^{+}=R^{-1}\left(\bar{x}_{i}\right) e_{i j} R\left(x_{j}\right), \quad i_{i j}=\overline{N-m+1, N} \tag{2.84}
\end{equation*}
$$

Then for $t \rightarrow+\infty$ the asymptotic of the function $\Psi^{F}(x, t, k)$ has the form

$$
\begin{equation*}
\Psi(x, t, k) \rightarrow R(k) \Psi^{ \pm}(x, t, k) \tag{2.85}
\end{equation*}
$$

where the function $\Psi^{ \pm}(x, t, k)$ is given with the help of our construction and corresponds to the set of data $\mathscr{X}_{N-m+1}, \ldots, \mathscr{X}_{N},\left(c_{i j}\right)$

The asymptotics of the functions $\Psi_{j}(x, t)$ can be easely obtained from the formula (2.85). The asymptotic of the potential $u(x, t) \longrightarrow$ $u^{+}(x, t)$ is m-soliton one corresponding to $x_{N-m+1}, \cdots, x_{N},\left(C_{i j}^{+}\right)$and quasi-periodic function of t. The transformation of the matrix $C_{i j}^{-}$to $C_{1 j}^{+}$determines the interaction between the bound states of m-solitons and the other components of the N -soliton solution.
3. The self-consistent conditions

The function $\Psi(x, t, k)$ which has been defined in the first section can be represented in the neighbourhood of $k=\infty$ in the form

$$
\begin{equation*}
\Psi(x, t, k)=\left(1+\sum_{s=1}^{\infty} \xi_{s}(x, t) k^{-s}\right) e^{i k(x+k t)} \tag{2.86}
\end{equation*}
$$

(The first factor in (2.86) is the expansion in k^{-1} of the pre-exponential factor in (2.12)). From (2.12) it follows that:

$$
\begin{equation*}
\xi_{1}=a_{1}=\sum_{j=1}^{N} r_{i} \tag{2.87}
\end{equation*}
$$

The gubstitution of (2.86) into (2.1) gives us the equalities

$$
\begin{equation*}
i \dot{\xi}_{s}-2 i \xi_{s+1}^{\prime}-\xi_{s}^{\prime \prime}+u \xi_{s}=0, \quad s=0,1, \ldots ; \xi_{0}=1 \tag{2.89}
\end{equation*}
$$

(The dot denotes the time derivative and the prime denotes the x derivative).

Consider once again the meromorphic function

$$
\begin{equation*}
\Omega(x, t, k)=\Psi(x, t, k) \overline{\Psi(x, t, \bar{k})} \tag{2.90}
\end{equation*}
$$

It's expansion in the infinity has the form

$$
\begin{equation*}
\Omega(x, t, k)=1+\sum_{S=2}^{\infty} J_{S}(x, t) k^{-s} \tag{2.91}
\end{equation*}
$$

A few first coefficients have the form

$$
\begin{gather*}
J_{2}=\xi_{2}+\bar{\xi}_{2}-\xi_{1}^{2}, J_{3}=\xi_{3}+\bar{\xi}_{3}+\bar{\xi}_{1}\left(\xi_{2}-\xi_{2}\right) \\
J_{4}=\xi_{4}+\bar{\xi}_{4}+\xi_{1}\left(\bar{\xi}_{3}-\xi_{3}\right)+\left|\xi_{2}\right|^{2} \tag{2.92}
\end{gather*}
$$

Using the equations (2.89) we can find the representation of J_{s} in terms of the potential $u(x, t)$.

Lemma 1. The following relations hold for any formal solution
$\Psi(x, t, k)$ of the equation (2.1) which has the form (2.86)

$$
\begin{align*}
& J_{2}(x, t)=\frac{1}{2} u(x, t)+C_{2}, C_{2}=\text { const } \tag{2.93}\\
& \partial_{x} J_{3}(x, t)=\frac{1}{2} \dot{u}(x, t) \tag{2.94}\\
& \partial_{x}^{2} J_{4}(x, t)=\frac{3}{8} \ddot{u}-\frac{1}{8}\left(u_{x x x}-6 u u_{x}\right)_{x} \tag{2.95}
\end{align*}
$$

The relation (2.93) was found in $/ 22 /$ and the relations (2.94) and (2.95) were found in $/ 23 /$. The constant C_{2} in (2.93) can be determined from the asymptotic of $\Omega(x, t, k)$ for $|x| \rightarrow \infty$. For example, in the case considered in the previous section where $\operatorname{Im} \mathscr{X}_{i}>0$ and the matrix $C_{i j}$ is invertible we have $\Omega(\pi, t, k) \rightarrow 1, u(x, t) \rightarrow 0$, $\mathrm{x} \rightarrow \pm \infty$. Therefore, $\mathrm{C}_{2}=0$.

The relations (2.93-2.95) are the basis of the constructions of the solutions with all self-consistent conditions (see below (2.101),(2.103),(2.104)). Let $E(k)$ be the rational function of the forms

$$
\begin{align*}
& E(k)=k+\sum_{i=1}^{n} \varepsilon_{i} \frac{b_{i}^{2}}{k-k_{i}}, \tag{2.96}\\
& E(k)=k^{2}+\alpha k+\sum_{i=1}^{n} \varepsilon_{i} \frac{b_{i}^{2}}{k-k_{i}}, \tag{2.97}\\
& E(k)=k^{3}+\beta k^{2}+\gamma k+\sum_{i=1}^{n} \varepsilon_{i} \frac{b_{i}^{2}}{k-k_{i}}, \tag{2.98}
\end{align*}
$$

Here $\alpha, \beta, \gamma, k_{i}, b_{i}$ are arbitrary real constanta. The constants $\varepsilon_{i}= \pm 1$. We shall denote

$$
\begin{equation*}
\Phi_{i}(x, t)=b_{i} \Psi\left(x, t, k_{j}\right), \quad i=\overline{1, n} \tag{2.99}
\end{equation*}
$$

The functions Φ_{i} satisfy the equation

$$
i \dot{\Phi}_{j}-\Phi_{j}^{\prime \prime}+u(x, t) \Phi_{j}=0, j=\overline{1, n}
$$

by the definition. The functions $\Psi_{j}(x, t)$ which are determined with the help of (2.21) setisfy the same equation

$$
\begin{equation*}
i \dot{\Psi}_{j}-\Psi_{j}^{\prime \prime \prime}+u(x, t) \Psi_{j}=0, j=\overline{1, N} \tag{2.100}
\end{equation*}
$$

too.
Theorem 3. Let the functions $\Phi_{i}(x, t), \Psi_{j}(x, t)$ correspond to the set of data $\mathscr{F}_{1}, . ., x_{N}, C_{i j}$ and to the rational function which has one of the form (2.96-2.98). Then they satisfy one of the self-consistent conditions:

$$
\text { 1. If } E(k) \text { has the form }(2.96) \text {, then }
$$

$$
\frac{u}{2}+\sum_{i=1}^{n} \varepsilon_{i} b_{i}^{2}+C_{2}=\sum_{i=1}^{n} \varepsilon_{i}\left|\Phi_{i}(x, t)\right|^{2}-\sum_{i, j=1}^{N} \overline{\Psi_{i}(x, t)} E_{i j} \Psi_{j}(x, t), \text { (2.101) }
$$

where

$$
\begin{equation*}
E_{i j}=c_{i j}\left(\overline{E\left(x_{i}\right)}-E\left(x_{j}\right)\right), \quad i, j=\overline{1, N} \tag{2.102}
\end{equation*}
$$

$$
\begin{align*}
& \text { 2. If } E(k) \text { has the form (2.97) then } \\
& \frac{\dot{u}}{2}+\alpha \frac{u^{\prime}}{2}=\sum_{i=1}^{n} \varepsilon_{i}\left|\Phi_{i}(x, t)\right|_{x}^{2}-\left(\sum_{i j=1}^{N} \Psi_{i}(x, t) E_{i j} \Psi_{j}(x, t)\right)_{x} . \tag{2.103}
\end{align*}
$$

Here the matrix $E_{i j}$ is the same $a s$ in (2.102).
3. If $E(k)$ has the form (2.98), then

$$
\begin{align*}
& \frac{3}{8} \ddot{u}-\frac{1}{8}\left(u_{x x x}-6 u u_{x}\right)_{x}+\beta \frac{\dot{u}_{x}}{2}+\gamma \frac{u_{x x}}{2}= \tag{2.104}\\
& =\sum_{i=1}^{n} \varepsilon_{i}\left|\Phi_{i}(x, t)\right|_{x x}^{2}-\left(\sum_{i j=1}^{N} \overline{\Psi_{i}(x, i)} E_{i j} \Psi_{j}^{-}(x, t)\right)_{x x}
\end{align*}
$$

(the matrix $\mathrm{E}_{i j}$ is given with the help of (2.102)).

* The proof. Consider the rational function

$$
\begin{equation*}
\hat{\Omega}(x, t, k)=E(k) \Psi(x, t, k) \overline{\Psi(x, t, k)} \tag{2.105}
\end{equation*}
$$

Using the residue theorem for this function and the relations (2.20), (2.22) we obtain the selp-consistent conditions. The theorem is proved.

It must be mentioned that the matrix $\mathrm{F}_{i j}$ is Hermitian. Therefore, this matrix can be reduced to the diagonal form with the help of the linear transformation of $\Psi_{1}, \ldots, \Psi_{N}$. By doing so we obtain the diagonal element equal to ± 1, or 0 .

For the general data $X_{i}, C_{i j}$ and rational functions of the form (2.96), (2.98) the Hermitian forms in the right sides of eslf-conaistent conditions have big ranks which are equal to $\mathbb{N}+\boldsymbol{\eta}$. In the case of, the self-consistent condition (2.101) it means that the functions $\Phi_{1}, \ldots, \Phi_{n}, \Psi_{1}, \ldots, \Psi_{N}$ are the solution of the ($\mathbb{H}+n$)-component vector non-linear Schrödinger equation the symmetry of which is de -
termined by the signature of the Hermitian matrix

$$
\left(\begin{array}{ccc}
-\varepsilon_{1} & & 0 \tag{2.106}\\
& -\varepsilon_{n} & \\
0 & & \boxed{E_{i j}}
\end{array}\right)
$$

The rank of this matrix decreases under some special conditions for the parameters of the construction. Consequently, the number of the component of the vector non-linear Schrödinger equations (and for other self-consistent conditions) would decrease.

The difference between the solutions (Ψ, Φ) of the self-consistent equation corresponding to the matrix (2.106) with the same rank and signature but with different number n of the poles of the functions $E(k)$ is as follows. As was shown in the previous section the functions $\Psi_{1}, \ldots, \Psi_{N}, \Phi_{1}, \ldots, \Phi_{n}$ have the different asymptotics for large x. The functions Φ_{i} have as a rule the oscillating asymptotics but the functions $\Psi_{j}^{(x, t) \text { are exponentially decreasing. }}$ This difference must be taken into account in the construction of the multisolition solutions, and the choice of the function $E(k)$ must depend on the required boundary conditions.

Chapter III
Some examples

1. Scalar models.

Example 1. Let us obtain using the formalism of Ch.II the wellknown ${ }^{130 /}$ multisolitons solutions of the scalar NLS equation (with attraction). Let us take $E(k)=k$. For the scalar case matrix $E_{i j}$ of the form (2.95) must be of rank 1. Hence the matrix $C_{i j}$ must have the form:

$$
\begin{equation*}
c_{i j}=\lambda \frac{\bar{\gamma}_{i} \gamma_{j}}{\bar{x}_{i}-x_{j}} \quad, \quad i, j=\overline{1, N}, \tag{3.1}
\end{equation*}
$$

where $\gamma_{1}, \ldots, \gamma_{N}$ are arbitrary complex constants and λ is a real number. The constants $\gamma_{1}, \ldots, \gamma_{N}$ can be supposed non-xero. They are to satisfy a normalizing condition

$$
\begin{equation*}
\left|\gamma_{1}\right|^{2}+\cdots+\left|\gamma_{N}\right|^{2}=1 \tag{3.2}
\end{equation*}
$$

(If $\gamma_{i}=0$ for some i then there are zero i-th line and i-th column in the matrix $\mathrm{C}_{i j}$; hence the system (2.13) is trivialized (see s.2.1)). Because of that we can consider only the case where all the constants $\not_{n}, \ldots, æ_{N}$ are in upper halfplane. It can be deduced from the re-
sults of 5.2 .1 because of non-degenerateness of matrix $\left(\left(\bar{X}_{i}-\mathscr{X}_{j}\right)^{-1}\right)$.) The condition for the matrix $C_{i j}$ (3.1) to be positive is equivalent to the inequality $\lambda>0$ (we suppose now that $\operatorname{Im} X_{i}>0, i=1, \ldots, \mathbb{N}$). The Hermitian form (2.95) in this case reduces to

$$
-\lambda \sum_{i, j=1}^{N} \bar{\gamma}_{i} \gamma_{j} \Psi_{i}(x, t) \Psi_{j}(x, t)=-\lambda\left|\sum_{i=1}^{N} \gamma_{i} \Psi_{i}(x, t)\right|^{2}
$$

The constant C_{2} in (2.94) in this case equals zero. Finally we obtain the function:

$$
\begin{equation*}
\varphi(x, t)=\sqrt{|\lambda|} \sum_{i=1}^{N} \gamma_{i} \Psi_{i}(x, t)=\sqrt{|\lambda|} \frac{\operatorname{det} \hat{M}(x, t)}{\operatorname{det} M(x, t)}, \tag{3.3}
\end{equation*}
$$

where the $\mathbb{N} \times N$-matrix $M(x, t)$

$$
\begin{align*}
& M_{i j}(x, t)=\frac{\lambda \bar{\gamma}_{i} \gamma_{j}+e^{i\left(\bar{\omega}_{i}-\omega_{j}\right)}}{\bar{\partial}_{i}-\mathscr{L}_{j}}, \tag{3.4}\\
& \hat{M}_{i j}(x, t)=M_{i j}(x, t), i, j=\overline{1, N}, \tag{3.5}\\
& \hat{M}_{\infty 0}=0, \hat{M}_{i 0}=e^{i \bar{\omega}_{i}}, \hat{M}_{0 i}=\gamma_{i}, i=\overline{1, N}
\end{align*}
$$

is a decreasing with $|\times| \rightarrow \infty$ solution of the NLS-equation

$$
\begin{equation*}
i \varphi_{t}=\varphi_{x x}+2|\varphi|^{2} \varphi \tag{3.6}
\end{equation*}
$$

Example 2. In analogous way decreasing solutions of the Schrödinger equation

$$
\begin{equation*}
i \varphi_{t}=\varphi_{x x}-u \varphi \tag{3.7}
\end{equation*}
$$

with self-consistent conditions of the forms
or

$$
\begin{equation*}
\frac{u_{t}}{2}=-|\varphi|_{x}^{2} \tag{3.8}
\end{equation*}
$$

r

$$
\begin{equation*}
3 \partial_{t}^{2} u-\left(u_{x x x}-6 u u_{x}\right)_{x}=-8|\varphi|_{x x}^{2} \tag{3.9}
\end{equation*}
$$

can be constructed (we consider the case $\alpha=\beta=\gamma=0$ in the formulae (2.96),(2.97)). For these conditions a solution has the form (3.3), where the matrix $M(x, t)$ is

[^0]\[

$$
\begin{equation*}
M_{i j}=\frac{\lambda \bar{\gamma}_{i} \gamma_{j}}{\bar{x}_{i}^{q}-x_{j}^{q}}+\frac{e^{i\left(\bar{\omega}_{i}-\omega_{j}\right)}}{\bar{x}_{i}-x_{j}}, \quad q=2,3, \ldots \tag{3.10}
\end{equation*}
$$

\]

the matrix \hat{M} is determined by formula (3.5), $\lambda>0$. Here $q=2$ for equation (3.8). In this case numbers $\mathscr{X}_{1}, \ldots, X_{N}$ should be taken from the 1 st quadrant of the complex plane, i.e.

$$
\begin{equation*}
\operatorname{Im}_{m}>0, \operatorname{Re} x_{i}>0, i=\overline{1, N} \tag{3.11}
\end{equation*}
$$

For the equation (3.9) we have $q=3$; the numbers x_{1}, \ldots, x_{N} are in sectors

$$
\begin{equation*}
0<\arg x_{i}<\frac{\pi}{3}, \frac{2 \pi}{3}<\arg x_{i}<\pi, i=\overline{1, N} \tag{3.12}
\end{equation*}
$$

and $x_{i}^{3} \neq x_{j}^{3} \quad$ for $i \nless j$.
For other self-consistent conditions of the type

$$
\begin{equation*}
\frac{1}{2} \dot{u}=|\varphi|_{x}^{2} \tag{3.13}
\end{equation*}
$$

or

$$
\begin{equation*}
3 \ddot{u}-\left(u_{x x x}-6 u u_{x}\right)_{x}=8|\varphi|_{x x}^{2} \tag{3.14}
\end{equation*}
$$

solution has the game form, but $\lambda<0$ and the numbers x_{1}, \ldots, x_{N} satisfied other restrictions. For (3.13) (where $q=2$) it is required the following inequalities being fulfilled:

$$
\begin{equation*}
\operatorname{Im} x_{i}>0, \operatorname{Re}_{e} x_{i}<0, i=\overline{1, N} . \tag{3.15}
\end{equation*}
$$

For equation (3.14) (where qu3) the restrictions are

$$
\begin{equation*}
\frac{\pi}{3}<\arg x_{i}<\frac{2 \pi}{3}, \quad i=\overline{1, N} \tag{3.16}
\end{equation*}
$$

Example 3. The technique of construction of non-decreasing conditions for various self-consistent conditions we demonstrate at first by a simple example of scalar NLS-equations. First of all let us take the NLS with attraction. To construct non-decreasing (oscillating) with $|x| \rightarrow \infty$ solutions of this equation we need the function $E(k)$ having the form

$$
\begin{equation*}
E(k)=k-\frac{b_{1}^{2}}{k-k_{1}} . \tag{3.17}
\end{equation*}
$$

The Hermitian form $E_{i j}$ (2.95) must be zero (otherwise the scalar NLS will not be obtained). In other words the following stick conditions must be fulfilled:

$$
\begin{equation*}
E\left(\bar{x}_{i}\right)=E\left(x_{j}\right) \text { for } C_{i j} \neq 0 \tag{3.18}
\end{equation*}
$$

(we have used that the coefficients b_{1}, k_{1} are real). For every value
of i equality $E\left(\overline{\mathscr{x}}_{i}\right)=E\left(\mathscr{X}_{j}\right)$ can be fulfilled only for the single value of j because the degree of the function $E(k)$ equals two. Hence for each i there are only one value $j=\mathcal{V}(i)$ such that $C_{i j} \neq 0$ (we recall that matrices $C_{i j}$ with zero lines are not considered). The requirement of matrix $C_{i j}$ being Hermitian implies that \mathcal{D} is an involution of the set of indices ($1,2, \ldots, N$). This involution has no fixed points because $E\left(\bar{x}_{i}\right) \neq E\left(x_{i}\right)$ for non-real x_{i}. Hence N is even and the points \mathscr{P}_{i} can be numerated in such a way that

$$
\begin{equation*}
E\left(x_{N-i+1}\right)=E\left(\bar{x}_{i}\right), \quad i=\overline{1, N / 2} \tag{3.19}
\end{equation*}
$$

The matrix $C_{i j}$ is antidiagonal. It is easy to see that the points $x_{1}, \ldots, x_{N / 2}$ can be taken only from upper helf-plane. Then the po-

are in Iower half-plane. Finally, we obtain the following formulae for non-decreasing solutions of NLS-equation

$$
\begin{align*}
& i \varphi_{t}=\varphi_{x x}+2\left(|\varphi|^{2}-b_{1}^{2}\right) \varphi \tag{3.21}\\
& \varphi(x, t)=b_{1} e^{i \eta} \frac{\operatorname{det} \hat{M}(x, t)}{\operatorname{det} M(x, t)} e^{i k_{1}\left(x+k_{1} t\right)} \tag{3.22}
\end{align*}
$$

where η is an arbitrary real constant and the $N \times \mathbb{N}$ matrix $M(x, t)$ has the form

$$
\begin{equation*}
M_{i j}(x, t)=c_{i} S_{i, N-j+1}+\frac{e^{i\left(\bar{\omega}_{i}-\omega_{j}\right)}}{\bar{x}_{i}-x_{j}} \tag{3.23}
\end{equation*}
$$

here $\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{N}}$ are non-zero complex numbers satisfying the skew Hermitian condítions

$$
\begin{equation*}
C_{N-i+1}=-\bar{C}_{i}, \quad i=\overline{1, N / 2} \tag{3.24}
\end{equation*}
$$

numbers x_{1}, \ldots, x_{N} satiafy (3.20); the matrix $\hat{M}(x, t)$ has the form

$$
\begin{gather*}
\hat{M}_{i j}=M_{i j}, 1 \leqslant i, j \leqslant N \tag{3.25}\\
\hat{M}_{00}=1, \hat{M}_{i 0}=e^{i \bar{\omega}_{i}}, \hat{M}_{0 i}=e^{-i \bar{\omega}_{i}}\left(k_{1}-\varkappa_{i}\right)^{-1}, i=\overline{1, N}
\end{gather*}
$$

It should be noted that the solution $\varphi(x, t)$ will bethe quasi-periodic function of x (see s.2.2) if one requires the numbers $\mathscr{X}_{1}, \ldots, \mathscr{X}_{N}$ satisfying conditions

$$
\begin{equation*}
\operatorname{Im} x_{i}+\operatorname{Im} x_{N-i+1}=0, \quad i=\overline{1, N / 2} \tag{3.26}
\end{equation*}
$$

(the restrictions (3.20) in this case imply that the points \mathscr{X}_{i} and $\mathscr{X}_{\mathrm{N}-\mathrm{i}+1}$ are situated in the circle of radius b_{1} with centre in k_{1}).

If the equalities (3.26) are not fulfilled for any value of i then the solution $\varphi(x, t)$ (3.22) has the following asymptotics:

$$
\begin{equation*}
\varphi(x, t) \rightarrow b_{1} e^{i \eta} \Pi^{\prime}\left(\frac{k_{1}-\bar{x}_{j}}{k_{1}-\mathscr{F}_{j}}\right) e^{i k_{1}\left(x+k_{1} t\right)}, \dot{x} \rightarrow-\infty \tag{3.27}
\end{equation*}
$$

where one takes the product over all values of j such that

$$
\begin{align*}
& \operatorname{Im}\left(x_{j}+x_{N-j+1}\right)<0 ; \\
& \varphi(x, t) \rightarrow b_{1} e^{i \eta} \Pi^{\prime \prime}\left(\frac{k_{1}-\bar{x}_{j}}{k_{1}-x_{j}}\right) e^{i k_{1}\left(x+k_{1}, t\right)}, x \rightarrow+\infty \tag{3.28}
\end{align*}
$$

where one takes the product over the rest values of index f. We omit the proof of these formulae. Asymptotics with $|t| \rightarrow \infty$ can be calculated in analogous way but depend on relations between the values $\operatorname{Im} x_{j}^{2}$.
Let us investigate now the NLS with repulsion:

$$
\begin{equation*}
i \varphi_{t}=\varphi_{x x}-2\left(|\varphi|^{2}-b_{1}^{2}\right) \varphi \tag{3.29}
\end{equation*}
$$

The function $E(k)$ here must have the form

$$
\begin{equation*}
E(k)=k+\frac{b_{1}^{2}}{k-k_{1}} \tag{3.30}
\end{equation*}
$$

and the stick conditions must be fulfilled.
As well as above we obtain an involution ν on the set of indices $(1,2, \ldots, \mathbb{N})$ such that $C_{i j} \neq 0$ only for $j=\nu(i)$. But this involution now can have fixed points. Let us numerate the points x_{1}, \ldots, x_{N} in such a way that the points x_{1}, \ldots, x_{ℓ} lie in the circle of: the radius b_{1} and with the centre k_{1} and the rest points are pairwise

$$
\begin{align*}
& \text { symmetric in this circle, i.e. } \\
& \quad\left|x_{i}-k_{1}\right|=b_{1}, i=\overline{1, l} ; \tag{3.31}\\
& x_{N-i+l+1}=k_{1}+\frac{b_{1}^{2}}{\overline{x_{i}-k_{1}}}, i=\overline{l+1, l+m} .
\end{align*}
$$

The matrix $C_{i j}$ must have the following form:

- where numbers c_{1}, \ldots, c_{1} are purely imaginary and d_{1}, \ldots, d_{m} are arbitrary; all these numbers are non-zero. The points x_{1}, \ldots, e_{ℓ} can be supposed being situated in the upper half-plane. But for each $i>\mathcal{Q}$ the points \mathscr{X}_{i} and $\dot{\mathscr{X}}_{N-i+l+1}$ are situated in one halp-plane. From the positive definiteness of the matrix ($i^{-1} C_{i j}$) we obtain that $d_{1}=,=d_{m}=0$. So we can consider only the case $m=0$ and the matrix $C_{i j}$ being diagonal. Finally we have that the solutions of NLS with repulsion take the form (3.22) where the matrix $\left(M_{i j}(x, t)\right)$ is

$$
\begin{equation*}
M_{i j}(x, t)=i \tilde{e}_{i} \delta_{i j}+\frac{e^{\dot{i}\left(\bar{\omega}_{i}-\omega_{j}\right)}}{\overline{\mathscr{F}}_{i}-x_{j}} \tag{3.33}
\end{equation*}
$$

the numbers $\mathscr{X}_{1}, \ldots, \mathscr{X}_{N}$ are situated in the upper half-plane satisfying restrictions $\left|x_{i}-k_{1}\right|=b_{1}, i=1, \ldots N$, and the numbers $\tilde{c}_{1}, \ldots, \tilde{c}_{N}$ are real and positive; the matrix M is defined by the matrix M via (3.25). The simplest form of such solutions ($\mathrm{Na}=1$) has the form of a kink

$$
\begin{equation*}
\varphi(x, t)=b_{1}\left[1+i \beta \frac{1+t h \tau}{k_{1}-\infty}\right] e^{i k_{1}\left(x+k_{1} t\right)+i \eta} \tag{3.34}
\end{equation*}
$$

where $\notin=\alpha+i \beta=k_{1}+b_{1}(\cos \xi+i \sin \xi), \xi \neq 0, \pi$ is an arbit-

$$
\begin{aligned}
& \text { rary parameter, } \\
& \qquad=b_{1} \sin \xi\left[\left(x-x_{0}\right)+2\left(k_{1}+b_{1} \cos \xi\right) t\right], x_{0}=\frac{1}{\beta} \ln \sqrt{\tilde{c}(\bar{e}-x)} i(3.35)
\end{aligned}
$$

(see the formulae (2.44)-(2.47) above). For $N>1$ our solution is a non-linear superposition of steps.

2. Vector models

- Example 1. Let us construct vanishing with $|x| \rightarrow \infty$ solutions of the vector NLS with $U(n, 0)$ symmetry. Firstly let us supposed that $\mathrm{n} \leq N$. To obtain decreasing solutions we need the function $E(k)$ having the form $E(k)=k$. The Hermitian matrix ($E_{i j}$) takes on the form

$$
\begin{equation*}
E_{i j}=\left(\bar{x}_{i}-x_{j}\right) C_{i j}, \quad i, j=\overline{1, N} \tag{3.36}
\end{equation*}
$$

This matrix must be non-negatively definite of rank n. Let us represent it in a form $E=\Gamma^{+} \Gamma$, where Γ is a matrix of rank n, i.e.

$$
\begin{equation*}
E_{i j}=\sum_{s=1}^{n} \bar{\gamma}_{s i} \gamma_{s j} \tag{3.37}
\end{equation*}
$$

We obtain the following form of matrix $c_{i f}$:

$$
\begin{equation*}
c_{i j}=\frac{\sum_{s=1}^{n} \bar{\gamma}_{s i} \gamma_{s j}}{\bar{x}_{i}-x_{j}}, \quad i, j=\overline{1, N} \tag{3.38}
\end{equation*}
$$

It is easy to see that for any matrix $\Gamma=\left(\gamma_{i j}\right)$ with no zero columns the matrix ($C_{i j}$) (3.38) will be positively definite if all the numbers x_{n}, \ldots, x_{N} are situated in the upper half'-plane. And if there are zero columns in the matrix Γ then the matrix ($C_{i j}$) also has zero columns and hence a reduction of number of the parameters $x_{1}, \ldots x_{N}$ takes place.

Finally we have : if the numbers \mathscr{F}_{1}, \ldots, X_{N} situate in the up per half~plane for any $n \times N \sim m a t r i x ~ \Gamma=\left(\gamma_{i j}\right)$ the functions $\Phi_{1}(x, t)$, $\ldots, \Phi_{n}(x, t)$ of the form

$$
\begin{equation*}
\Phi_{k}(x, t)=\frac{\operatorname{det} M^{(k)}(x, t)}{\operatorname{det} M(x, t)}, k=\overline{1, n} \tag{3.39}
\end{equation*}
$$

where the $N \times N$-matrix $M(x, t)=\left(M_{i j}\right)$ has the form

$$
\begin{equation*}
M_{i j}(x, t)=\frac{\sum_{1}^{n} \frac{\gamma_{s i}}{\gamma_{s j}}+\exp \left(i\left(\bar{\omega}_{i}-\omega_{j}\right)\right)}{\overline{\partial e}_{i}-\partial e_{j}}, \quad i, j=\overline{1, N} \tag{3.40}
\end{equation*}
$$

$(N+1) \times(N+1)$-matrices $M^{(k)}(x, t)=\left(M_{i, j}^{(k)}(x, t)\right)$ have the form

$$
\begin{align*}
& M_{i j}^{(k)}=M_{i j}, i, j=\overline{1, N} ; \quad M_{00}^{(k)}=0 ; \\
& M_{0 j}^{(k)}=\gamma_{k j} ; M_{j 0}^{(k)}=e^{i \bar{\omega}_{j}}, j=\overline{1, N} \tag{3.41}
\end{align*}
$$

are solutions of system of equations

$$
\begin{equation*}
i \dot{\Phi}_{k}=\bar{\Phi}_{k}^{\prime \prime}+2\left(\sum_{s=1}^{n}\left|\Phi_{s}\right|^{2}\right) \Phi_{k}, k=\overline{1, n} \tag{3.42}
\end{equation*}
$$

These solutions exponentially vanish with $|x| \rightarrow \infty$ and fixed t because of results ofs.2.2 (the matrix ($C_{i j}$) here is non-degenerate). Asymptotics with $|t| \rightarrow \infty$ we shall describe below. From this description it will be clear that these solutions are a non-linear superposition of N one-soliton solutions of the form

$$
\begin{aligned}
& \Phi_{k, s}(x, t)=\Phi_{k, s}^{ \pm}\left(x_{s}-\bar{x}_{s}\right) \frac{\exp \left[i\left(\alpha_{s} x+\left(\alpha_{s}^{2}-\beta_{s}^{2}\right) t\right)\right]}{2 \operatorname{ch}\left[\beta_{s}\left(x-x_{0}^{ \pm}\right)+2 \alpha_{s} \beta_{s} t\right]} \\
& x_{s}=\alpha_{s}+i \beta_{s}, s=\overline{1, N} .
\end{aligned}
$$

Here $\Phi_{k, s}^{ \pm}$are some constant vectors of urity length, they are different for $t \rightarrow+\infty$ and $t \rightarrow-\infty$. Recall that the asymptotical decay of an initial packet into the solitons and hence formulae (3.43) take place in the case of the generic position only, when magnitudes of $\operatorname{Im} \mathscr{P}_{j}^{2}$ are
different in pairs. A general N-soliton solution with some of those magnitudes being equal is a conglomerate of the solitons and their bound states:

We have constructed yet only N-soliton solutions of equation (3.42) with $N \geqslant n$. For $N<n$ all N-soliton equations of n component NLS can be obtained of N-soliton solution of NLS (with $U(\mathbb{N}, 0)$-symmetry) by means of action of the group $U(n)$.

Remark. In view of definition of N-soliton potential given above in Ch. II the N-soliton solution of vector NLS ia given by poles

- $\mathscr{L}_{1}, \ldots, \mathscr{E}_{N}$. In particular, independently of the vector dimenaion. we call the solution one-soliton if it is defined by one pole $\mathscr{X}=\mathscr{R}_{1}$. It always can be obtained from a solution of the scalar NLS by isorotation.

It also should be noted that the two solutions (3.39)-(3.41) which are given by fixed poles $\mathscr{X}_{1}, \ldots, \mathscr{X}_{N}$ and by different matrices $\Gamma=\left(\gamma_{i j}\right)$ but with the same Hemitian form ($E_{i j}$) of the form (3.37) can be obtained one from another by means of action of the unitary group $U(n)$.

Asymptotics for $|t| \rightarrow \infty$ (for x is fixed) can be found using the formulae of s.2.2 and the following relations between the components $\Phi_{1}, \ldots, \Phi_{n}$ of solution of vector NLS and the residues $\Psi_{1}, \ldots, \Psi_{N}$ of the function $\Psi(x, t, k)$:

$$
\begin{equation*}
\Phi_{k}(x, t)=\sum_{j=1}^{N} \gamma_{k i} \Psi_{j}(x, t), k=\overline{1, n} \tag{3.44}
\end{equation*}
$$

As well as ins.2.2 let us suppose the conditions (2.63) being valid (i.e. the $N-t h$ soliton is stationary and the rest solitons move from right to left). Then we obtain from (2.67) that with $t \rightarrow-\infty$ the functions $\Phi_{k}(x, t)$ have the following asymptotios

$$
\begin{aligned}
\Phi_{k}(x, t) \rightarrow \sum_{j=1}^{N} \frac{\gamma_{k i} c^{j N}\left(\bar{x}_{N}-x_{N}\right) \exp \left(-i \beta_{N}^{2} t\right)}{\sqrt{c^{N N}\left(\bar{x}_{N}-x_{N}\right)} \cdot 2 c h\left[\beta_{N}\left(x-x_{0}^{-}\right)\right]}, k & =\overline{1, n}, \\
\mathscr{x}_{N} & =i \beta_{N}
\end{aligned}
$$

The phase x_{0}^{-}has the form (2.68).
For $t \rightarrow+\infty$ we have the following asymptotics

$$
\begin{aligned}
\Phi_{k}(x, t) & \rightarrow \gamma_{k N}\left(\frac{\left|z_{N}\right|}{C_{N N}\left(\overline{\left.x_{N}-x_{N}\right)}\right.}\right)^{1 / 2} i \beta_{N} \frac{e^{-i \beta_{N}^{2} t+i \varphi_{0}^{+}}}{C h\left(\beta_{N}\left(x-x_{0}^{+}\right)\right)} \\
k & =\overline{1_{1} n}
\end{aligned}
$$

where the numbers Z_{N}, X_{o}^{+}and ${ }_{o}^{+}$are given by formulae (2.75). Hence the phase shift ${x_{o}^{+}}_{o}^{-} x_{o}^{-}$can be calculated by formula (2.68). The unit vectors $\Phi_{k, N}^{ \pm}$from (3.43) have the form

$$
\begin{align*}
& \Phi_{k, N}^{-}=\sum_{j=1}^{N} \gamma_{k j} e^{j N}\left(e^{N N}\left(\bar{x}_{N}-x_{N}\right)\right)^{-1 / 2} \tag{3.47}\\
& \Phi_{k, N}^{+}=\gamma_{k N} e^{i \varphi_{0}^{+}}\left(\frac{\left|z_{N}\right|}{C_{N N}\left(\bar{x}_{N}-\gamma_{N}\right)}\right)^{1 / 2}
\end{align*}
$$

Example 2. Let us construct solutions of the two-component NLS with oscillating asymptotics.We shall consider in detail only twosoliton solutions.

Case I. Both components oscillate when $|x| \rightarrow \infty$. The function $\mathrm{E}(\mathrm{k})$ should be taken in the form

$$
\begin{equation*}
E(k)=k+\varepsilon_{1} \frac{b_{1}^{2}}{k-k_{1}}+\varepsilon_{-2} \frac{b_{2}^{2}}{k-k_{2}} \tag{3.48}
\end{equation*}
$$

Here $\varepsilon_{1}, \varepsilon_{2}= \pm 1$. These signs response for the type of symmetry of vector NLS. The Hermitian form ($\mathrm{E}_{1 \mathrm{f}}$) (2.95) must vanish, i.e. the stick conditions

$$
\begin{equation*}
E\left(\bar{x}_{i}\right)=E\left(x_{i}\right) \quad \text { for } c_{i j} \neq 0, i, j=1, \ldots, N \tag{3.49}
\end{equation*}
$$

are to be valid. If the stick conditions for the parameters (X_{i}), $\left(C_{i j}\right)$ are fulfilled for the given function $E(k)$ then the function
$\Psi^{(}(x, t, k)$ which is given by these parameters by means of formulae (2.15),(2.17),(2.18) gives a solution $\Phi=\left(\Phi_{1}, \Phi_{2}\right)$ of the vector NLS

$$
\dot{i} \dot{\Phi}_{j}=\Phi_{j}^{\prime \prime}-2\left[\varepsilon_{1}\left|\Phi_{1}\right|^{2}+\varepsilon_{2}\left|\Phi_{2}\right|^{2}-\varepsilon_{1} b_{1}^{2}-\varepsilon_{2} b_{2}^{2}\right] \Phi_{j}=0(3.50)
$$

by formula

$$
\begin{equation*}
\Phi_{j}(x, t)=b_{j} \Psi(x, t, k), j=1,2 \tag{3.51}
\end{equation*}
$$

For $N=1$ we obtain one-soliton solution
$\Phi_{j}(x, t)=b_{j}\left\{1+\frac{1}{2} \frac{x-\bar{x}}{k_{j} x}\left[1+\operatorname{th}\left(\beta\left(x-x_{0}\right)+2 \alpha \beta t\right)\right] e^{i k_{j}\left(x+k_{j} t\right)}, \quad\right.$ (3.52)
where relation between $\mathscr{X}=x_{1}=\alpha+i \beta$ and the parameters $k_{1}, k_{2}, b_{1}, b_{2}$
is given by the stick condition

$$
\begin{equation*}
E(\bar{x})=E(x) \tag{3.53}
\end{equation*}
$$

The signs $\varepsilon_{1}, \varepsilon_{2}$ in (3.50) can be arbitrary except $\varepsilon_{1}=\varepsilon_{2}=-1$ (in this case the equation (3.53) has no solutions).

In two-soliton case ($N=2$) there are two types of matrices ($C_{i j}$) which are consistent with the stick conditions (3.49). The first - type consists of diagonal matrices $\left(C_{i j}\right)$, i.e. $C_{12}=0$; the second type consists of antidiagonal matrices, i.e. $\mathrm{C}_{11}=\mathrm{C}_{22}=0$. Really if $\mathrm{C}_{11} \neq 0$ and $\mathrm{C}_{12} \neq 0$ then the following stick conditions are to be fulfilled:

$$
E\left(\bar{x}_{1}\right)=E\left(x_{1}\right), E\left(\bar{x}_{1}\right)=E\left(x_{2}\right)
$$

The first of them implies the number $r=E\left(\mathscr{e}_{1}\right)$ being real. Hence we have that the numbers $x_{1}, \bar{x}_{1}, x_{2}$ are the three roots of the cubic equation $E(k)=r$ with real coefficients. But this is impossible because all three numbers $\mathscr{X}_{1}, \bar{x}_{1}, x_{2}$ being non-real and distinct.

Let us consider in detail both the types of two-soliton soluti ons.

Type 1. $C_{12}=0, C_{11} \neq 0, C_{22} \neq 0$. One may assume that Im $\mathscr{P}_{1}>0$, Im $\mathscr{R}_{2}>0$. The stick conditions have the form

$$
\begin{equation*}
E\left(\bar{x}_{1}\right)=E\left(x_{1}\right), E\left(\bar{x}_{2}\right)=E\left(x_{2}\right) . \tag{3.54}
\end{equation*}
$$

For $\varepsilon_{1}=\varepsilon_{2}=-1$ this equations have no solutions. For other aings ($\varepsilon_{1}, \varepsilon_{2}$) restrictions have the form of inequalities. It turns out that these restrictions can be formulated in terms of disposition of the point $\left[x_{1} ; x_{2}\right]$

$$
\begin{equation*}
a=\frac{\left|x_{2}\right|^{2}-\left|x_{1}\right|^{2}}{2\left(x_{2}+\bar{x}_{2}-x_{1}-\vec{x}_{1}\right)} \tag{3.55}
\end{equation*}
$$

of intersection of the middle perpendicular to the segment $\left[\mathscr{P}_{1} ; \mathscr{X}_{2}\right]$ and the real axis within the interval $\left[k_{1}, k_{2}\right]$. For the $U(0,2)$-symmetry (i.e. $\varepsilon_{1}=\varepsilon_{2}=1$) the point a (3.55) must lie within the interval $\left[k_{1}, k_{2}\right]$. For the $U(1,1)$-symmetry (i.e. $\left.\varepsilon_{1} \cdot \varepsilon_{2}<0\right)$ the point a must be situated out of the interval $\left[k_{1}, k_{2}\right]$ (including the limit case when the segment $\left[x_{1}, x_{2}\right]$ being vertical).

Asymptotics of these solutions for $|x| \rightarrow \infty$ and fixed t can be

$$
\begin{aligned}
& \text { calculated as in } 2 \text {. We have } \\
& \qquad\binom{b_{1} \exp \left(i k_{1}\left(x+k_{1} t\right)\right)}{b_{2} \exp \left(i k_{2}\left(x+k_{2} t\right)\right)}, x \rightarrow-\infty,
\end{aligned}
$$

$$
\begin{equation*}
\Phi(x, t) \rightarrow\binom{b_{1} \frac{\left(k_{1}-\bar{x}_{1}\right)\left(k_{1}-\bar{x}_{2}\right)}{\left(k_{1}-x_{1}\right)\left(k_{1}-x_{2}\right)} e^{i k_{1}\left(x+k_{1} t\right)}}{b_{2} \frac{\left(k_{2}-\bar{x}_{1}\right)\left(k_{2}-\bar{x}_{2}\right)}{\left(k_{2}-x_{1}\right)\left(k_{2}-x_{2}\right)} e^{i k_{2}\left(x+k_{2} t\right)}} \tag{3.57}
\end{equation*}
$$

Asymptotics at $|t| \rightarrow \infty$ and fixed x also can be calculated via methods of s.2.2. We give here such asymptotics for the case $\operatorname{Im} X_{1}^{2}>0$, Im $X_{2}^{2}=0$ (calculations are omitted). At $t \rightarrow-\infty$ we have

$$
\begin{align*}
& \Phi_{j}(x, t) \rightarrow b_{j}\left\{1+\frac{1}{2} \frac{x_{2}-\bar{x}_{2}}{k_{j}-x_{2}}\left[1+\operatorname{th} \beta_{2}\left(x-x_{0}\right)\right]\right\} e^{i k_{j}\left(x+k_{j} t\right)} \tag{3.58}\\
& j=1,2
\end{align*}
$$

where

$$
\begin{align*}
& x_{2}=i \beta_{2}, \beta_{2}>0 \\
& x_{0}^{-}=\frac{1}{\beta_{2}} \ln \sqrt{c_{22}\left(\bar{x}_{2}-x_{2}\right)} \tag{3.59}
\end{align*}
$$

At $t \rightarrow+\infty$ asymptotics has the following form:

$$
\begin{aligned}
& \Phi_{j}(x, t) \rightarrow b_{j}\left\{1+\frac{1}{2} \frac{x_{2}-\vec{x}_{2}}{k_{j}-x_{2}}\left[1+t h \beta_{2}\left(x-x_{0}^{+}\right)\right]\right\} e^{i k_{j}\left(x+k_{j} t\right)+i \eta_{i}}(3.60) \\
& j=1,2
\end{aligned}
$$

where

$$
\begin{align*}
& x_{0}^{+}-x_{0}^{-}=\frac{1}{\beta_{2}} \ln \left|\frac{x_{2}-\bar{x}_{1}}{x_{2}-x_{1}}\right| \tag{3.61}\\
& \eta_{j}=\arg \frac{k_{j}-\bar{x}_{1}}{k_{j}-x_{1}}, \quad j=1,2 \tag{3.62}
\end{align*}
$$

Asymptotics on lines $x=-2 \alpha_{1} t+x_{0}$ at $|t| \rightarrow \infty$ have similar
form. So we have obtained a non-linear superposition of the one-soliton'solutions (3.52).

Type 2. $\mathrm{C}_{11}=\mathrm{C}_{22}=0, \mathrm{C}_{12} \neq 0$. One may assume that $\mathrm{Im} x_{1}>0, \mathrm{Im} \mathrm{e}_{2}<0$. The stick conditions have the form

$$
\begin{equation*}
E\left(\bar{x}_{1}\right)=E\left(x_{2}\right) \tag{3.63}
\end{equation*}
$$

Let us consider the problem of solvability of this equation (here the sings $\varepsilon_{1}, \varepsilon_{2}$ can be arbitrary). Let

$$
\begin{equation*}
b=\frac{\bar{x}_{2} x_{1}-x_{2} \bar{x}_{1}}{\left(x_{1}-\bar{x}_{1}\right)-\left(x_{2}-\bar{x}_{2}\right)} \tag{3.64}
\end{equation*}
$$

be a point of intergection of segment $\left[\mathfrak{x}_{1}, \mathfrak{z}_{2}\right]$ with the real axis. Let us introduce the notation

- $d(k)=b-\frac{\left(x_{1}-\bar{x}_{1}\right)\left(\bar{x}_{2}-x_{2}\right)\left(x_{1}-x_{2}\right)\left(\bar{x}_{2}-\bar{x}_{1}\right)}{(b-k)\left(x_{1}+\bar{x}_{2}-\bar{x}_{1}-x_{2}\right)^{2}}$

For solvability of the equation (3.63) it is neceasary that the points $k_{1}, k_{2}, x_{1}, x_{2}$ are not situated on a circle,i.e.

$$
\begin{equation*}
k_{2} \notin d\left(k_{1}\right) \tag{3.66}
\end{equation*}
$$

The aings $\varepsilon_{1}, \varepsilon_{2}$ depend on $k_{1}, k_{2}, x_{1}, x_{2}$ as follows:

$$
\begin{align*}
& k_{1}<k_{2}<b \Rightarrow \varepsilon_{1}=-\varepsilon_{2}=1 \\
& b<k_{1}<k_{2} \Rightarrow \varepsilon_{1}=-\varepsilon_{2}=-1 \\
& k_{2}=b \Rightarrow b_{1}=0 \\
& k_{1}=b \Rightarrow b_{2}=0 \tag{3.67}\\
& k_{1}<b<k_{2}<d\left(k_{1}\right) \Rightarrow \varepsilon_{1}=\varepsilon_{2}=1 \\
& k_{1}<b<d\left(k_{1}\right)<k_{2} \Rightarrow \varepsilon_{1}=\varepsilon_{2}=-1 .
\end{align*}
$$

*Aeymptotice of the solutiona $X_{j}(x, t)$ at $|x| \rightarrow \infty$ and fixed t depend on relations between $\operatorname{Im} \mathscr{C}_{1}$ and $\operatorname{Im} x_{2}$. Namely, for $\operatorname{Im}\left(x_{1}+x_{2}\right)>0$ esymptotics have the form (3.56), (3.57). For $\operatorname{Im}\left(x_{1}+x_{2}\right)=0$ the solution $\Phi(x, t)$ is quasi-periodic function of x. And for $\operatorname{Im}\left(x_{1}+x_{2}\right)<0$ asymptotion in (3.56),(3.57) at $x \rightarrow \pm \infty$ change over.

Amyptotica at. $|t| \rightarrow \infty$ and fired x can be calculated very easily. For the case Im $\partial P_{1}^{2}>0$, Im $X_{2}^{2}=0$ we shall have for $t \rightarrow-\infty$

$$
\begin{equation*}
I_{j}(x, t) \rightarrow b_{j} e^{i k_{j}\left(x+k_{j} t\right)} \quad, j=1,2 \tag{3.68}
\end{equation*}
$$

For $t \rightarrow+\infty$

$$
\begin{equation*}
\mathbb{I}_{j}(x, t) \rightarrow b_{j} \frac{\left(k_{j}-\bar{x}_{1}\right)\left(k_{j}-\bar{x}_{2}\right)}{\left(k_{j}-x_{1}\right)\left(k_{j}-x_{2}\right)} e^{i k_{j}\left(x+k_{j} t\right)}, j=1,2 \tag{3.69}
\end{equation*}
$$

Hence the asymptotics are purely exponential for solutions of such a type. These solutions cannot be reduced to a superposition of onesoliton solutions. Because of that it is naturally to call them double solitons (they are analogous to the well-known bions of the scalar NLS 7307 ;.

It should be noted that for arbitrary N the solutions (3.51) of the equation (3.50) can be reduced to a non-linear superposition of solitons and double solitons. For the $U(2,0)$-case there are supplementary triple soliton solutions. The triple soliton is a solution with $N=3$ and the matrix ($C_{i j}$) as follows:

$$
\left(c_{i j}\right)=\left(\begin{array}{ccc}
0 & c_{12} & c_{12} \tag{3.70}\\
c_{21} & 0 & 0 \\
c_{31} & 0 & 0
\end{array}\right)
$$

the stick conditions have the following form:

$$
\begin{equation*}
E\left(x_{1}\right)=E\left(x_{2}\right)=E\left(x_{3}\right) \tag{3.71}
\end{equation*}
$$

$\left(\varepsilon_{1}=\varepsilon_{2}=-1\right)$. Here the points \mathscr{x}_{2}, x_{3} lie in the upper halfplane, and the point \mathscr{R}_{1} lies in the lower half-plane. Proof of this assertion we omit.

Case 2. The component $\Phi_{1}(x, t)$ oscillates at $|x| \rightarrow \infty$ and $\Phi_{2}(x, t)$ vanishes when $|x| \rightarrow \infty$. The function $E(k)$ one should take as follows:

$$
\begin{equation*}
E(k)=k+\varepsilon_{1} \frac{b_{1}^{2}}{k-k_{1}} \tag{3.72}
\end{equation*}
$$

The aimplest one-soliton solution of such a type can be constructed via our formalism for $N=1$. It is given by parameters $x \equiv x_{1}=\alpha+i \beta$ (let us suppose that $\beta>0$) and $\mathrm{C}_{11}=\mathrm{C}_{11}, \widetilde{\mathrm{C}}_{11}>0$. This solution was obtained in $/ 31 /, / 2 /$. It has the following form:

$$
\begin{align*}
& \Phi_{1}(x, t)=b_{1}\left\{1+\frac{1}{2} \frac{x-\bar{x}}{k_{1}-x e}\left[1+\operatorname{th} \beta\left(x-x_{0}+2 \alpha t\right)\right]\right\} e^{i k_{1}\left(x+k_{1} t\right)} \\
& \Phi_{2}(x, t)=\frac{(x-\bar{x})\left(\left|x-k_{1}\right|^{2}-\varepsilon_{1} b_{1}^{2}\right)^{1 / 2}}{\left|x-k_{1}\right|} \cdot \frac{\exp i\left(\alpha x+\left(\alpha^{2}-\beta^{2}\right) t\right)}{2 \operatorname{ch} \beta\left(x-x_{0}+2 \alpha t\right)} \tag{3.73}
\end{align*}
$$

Here

$$
\begin{equation*}
x_{0}=\frac{1}{\beta} \ln \sqrt{c_{11}(\bar{x}-x)} \tag{3.74}
\end{equation*}
$$

The vector function $\Phi=\left(\Phi_{1}, \Phi_{2}\right)(3.73)$ is a solution of equations

$$
\begin{equation*}
i \dot{\Phi}_{j}=\Phi_{j}^{\prime \prime}-2\left[\varepsilon_{1}\left|\Phi_{1}\right|^{2}+\varepsilon_{2}\left|\Phi_{2}\right|^{2}-\varepsilon_{1} b_{1}^{2}\right] \Phi_{j}, j=1,2 \tag{3.75}
\end{equation*}
$$

Here the sign ε_{2} is defined if $\left|r-k_{1}\right|^{2} \neq \varepsilon_{1} b_{1}^{2}$ via the following formula:

$$
\begin{equation*}
\varepsilon_{2}=\operatorname{sgn}\left[\varepsilon_{1} b_{1}^{2}-\left|æ-k_{1}\right|^{2}\right] \tag{3.76}
\end{equation*}
$$

For $\varepsilon_{1}=-1$ we also have $\varepsilon_{2}=-1$. Hence in this case (3.73) gives onesoliton solution of the $U(2,0)$-NLS. For

$$
\begin{equation*}
\varepsilon_{1}=1,\left|x-k_{1}\right|>b_{1} \tag{3.77}
\end{equation*}
$$

we have $\varepsilon_{2}=-1$. Hence in this case we have solution of the $U(1,1)$ NLS. For

$$
\begin{equation*}
\varepsilon_{1}=1,\left|x-k_{1}\right|<b_{1} \tag{3.78}
\end{equation*}
$$

we obtain solution of the $\mathrm{O}(0,2)$-NLS.
If the equation

$$
\begin{equation*}
\left|x-k_{1}\right|^{2}=\varepsilon_{1} b_{1}^{2} \Leftrightarrow E(\bar{x})=E(x) \tag{3.79}
\end{equation*}
$$

is satisfied (it is possible only for $\varepsilon_{1}=1$) the component Φ_{2} is identically zero and the solution (3.73) reduces to one-soliton solution (3.74) of NLS with repulaion.

Let us prove that for $\varepsilon_{i}=1$ multi-soliton solutions are non-11near superposition of solitons. The Hermitean form ($E_{i j}$) (2.95) is to be of rank 1. Let us auppose first of all that the points x_{1}, \ldots, x_{N} satisify no stick conditions, i.e.

$$
\begin{equation*}
E\left(\bar{x}_{i}\right) \neq E\left(x_{j}\right), \quad i, j=\overline{1, N} . \tag{3.80}
\end{equation*}
$$

Then the corresponding matrix ($C_{i j}$) has the following form:

$$
\begin{equation*}
c_{i j}=\lambda \frac{\bar{\gamma}_{i} \gamma_{j}}{E\left(\bar{x}_{i}\right)-E\left(x_{j}\right)}, \quad i_{i j}=\overline{1, N} . \tag{3.81}
\end{equation*}
$$

Here $\gamma_{1}, \ldots, \gamma_{N}$ are arbitrary complex constante such that

$$
\begin{equation*}
\left|\gamma_{1}\right|^{2}+\left|\gamma_{2}\right|^{2}+\cdots+\left|\gamma_{N}\right|^{2}=1, \tag{3.82}
\end{equation*}
$$

λ is a real number. Assuming that $\gamma_{1}, \ldots, \gamma_{N-1}, \gamma_{N} \neq 0$ (cp. the example 1 above) we prove non-degeneracy of the matrix $\left(C_{i j}\right)$. Hence one mey suppose the points x_{1}, \ldots, x_{N} being situated in the upper half-plane. In view of non-negative definiteness of the matrix ($\frac{1}{i} C_{i j}$) we have one of the following conditions for the points $æ_{1}, \ldots, x_{N}$
and λ being valid:

$$
\begin{align*}
& \text { 1) } \lambda>0, \quad \operatorname{Im} \frac{E}{\hat{i}}\left(x_{i}\right)>0, \quad i=\overline{1, N} \tag{3.83}\\
& \quad\left|x_{i}-k_{1}\right|>b_{1} ; \\
& \text { 2) } \lambda<0, \quad \operatorname{Im} \hat{E}\left(x_{i}\right)<0, \quad i=\overline{1, N} \tag{3.84}\\
& \quad\left|x_{i}-k_{1}\right|<b_{1} .
\end{align*}
$$

We have the $U(1,1)$-NLS for the first possibility and the $U(0,2)$-NLS for the second. Hence if points x_{1}, \ldots, x_{N} are situated in the up per half-plane and satiafy (3.83) or (3.84) and the matrix ($\mathrm{C}_{1 j}$) has the form (3.81) (in these formulae we put $\left.E(k)=k+b_{1}^{2}\left(k-k_{1}^{1}\right)^{-1}\right)$, then the corresponding function $\Psi^{(}(x, t, k)$ (see (2.15),(2.17),(2.18)) gives solution of $U(1,1)$-NLS or $U(0,2)$-NLS via the formulae

$$
\begin{align*}
& \Phi_{1}(x, t)=b_{1} \Psi\left(x, t, k_{1}\right) \tag{3.85}\\
& \Phi_{2}(x, t)=\sqrt{|\lambda|} \sum_{i=1}^{N} \gamma_{i} \operatorname{res}_{k=x_{i}} \Psi(x, t, k)
\end{align*}
$$

We shall see, in what follows that these solutions actually describe a non-linear superposition of the one-soliton solutions (3.73). But firstly let us analyse the stick conditions.Let us auppose that for some i, j the stick conditions $E\left(\bar{x}_{i}\right)=\mathbb{E}\left(x_{j}\right.$) are fulfilled. Then the 1 -th and j-th lines (and colurna) of the matrix ($E_{i j}$) are zero. Hence in the i-th line of the matrix ($c_{i j}$) only the element $c_{i j}$ might be nonzero. But the numbers x_{i}, x_{j} are situated in the same half-plane because of the stick condition. Hence the definiteness of the corresponding block of the matrix $\left(C_{i j}\right)$ can be valid only for joi. That means that the stick condition has the following form:

$$
\begin{equation*}
E\left(\bar{x}_{i}\right)=E\left(x_{i}\right) \Leftrightarrow\left|x_{i}-k_{1}\right|=b \tag{3.86}
\end{equation*}
$$

As a consequence we have the general form of the matrix ($C_{i j}$) which one needs to construct the solutions of considered type to the $\mathrm{U}(1,1)$-NLS or the $\mathrm{U}(0,2)$-NLS:

$$
c_{i j}= \begin{cases}\lambda \frac{\overline{\gamma_{i}} \gamma_{j}}{E\left(\bar{x}_{i}\right)-E\left(x_{j}\right)} & \text { when } \lambda\left\{\left|x_{i}-k_{1}\right|-b_{1}\right\}>0 \tag{3.87}\\ c_{i i} \delta_{i j}, & \left|x_{i}-k_{1}\right|=b_{1} .\end{cases}
$$

One has the $U(1,1)$-symmetry for $\lambda>0$ and the $U(0,2)$-symmetry for $\lambda<0$. The solution is defined via formulae (3.85). The constants $\gamma_{1}, \ldots, \gamma_{N}$ are satisfied (3.82).

Let us pay our attention to the calculation of asymptotics.

In the considered case all the points $\mathscr{X}_{1}, \ldots, \mathscr{X}_{N}$ are situated in the upper half-plane and the matrix $\left(C_{i j}\right)$ is non-degenerate. Hence we can use the asymptotic formula from s.2.2. Let t be fixed. Then for

$$
\begin{array}{ll}
x \rightarrow-\infty & \text { we have } \\
& \Phi(x, t) \rightarrow\binom{b_{1} e^{i k_{+}\left(x+k_{1} t\right)}}{0} . . . ~ . ~ . ~ \tag{3.88}
\end{array}
$$

At $\mathrm{x} \rightarrow+\infty$ we have

$$
\begin{equation*}
\Phi(x, t) \rightarrow\binom{b_{1} \prod_{j} \frac{k_{1}-\bar{x}_{i}}{k_{1}-x_{i}} e^{i k_{1}\left(x+k_{1} t\right)}}{0} \tag{3.89}
\end{equation*}
$$

Let us calculate the asymptotics at $|t| \rightarrow \infty$ and fixed x under assumption $\operatorname{Im} \mathscr{X}_{i}^{2}>0$ for $i=1, \ldots, N-1, \operatorname{Im} \mathscr{X}_{N}^{2}=0$. Using the formu-

$$
\begin{align*}
& \text { lae from s.2.2 we have at } t \rightarrow-\infty: \\
& \Phi_{1}(x, t) \rightarrow b_{1}\left\{1+\frac{1}{2} \frac{\bar{x}_{N}-x_{N}}{k_{1}-x_{N}}\left(1+\operatorname{th} \beta_{N}\left(x-x_{0}^{-}\right)\right)\right\} e^{i k_{1}\left(x+k_{1} t\right)} \tag{3.90}\\
& \Phi_{2}(x, t) \rightarrow \frac{\mathscr{E}_{N}-\bar{x}_{N}}{\left|x_{N}-k_{1}\right|}\left(| | x_{N}-\left.k_{1}\right|^{2}-b_{1}^{2} \mid\right)^{1 / 2} \cdot \frac{\exp i\left(-\beta_{N}^{2} t+\varphi_{2}^{-}\right)}{2 c h \beta_{N}\left(x-x_{0}^{-}\right)}
\end{align*}
$$

Here x_{0}^{-}is defined via (2.68).

$$
\begin{equation*}
\varphi_{2}^{-}=\arg \gamma_{N}-\arg \prod_{S \neq N} \frac{E_{N}-\bar{E}_{S}}{E_{N}-E_{S}}, \tag{3.91}
\end{equation*}
$$

where we defined E_{s} as follows:

$$
\begin{equation*}
E_{s}=E\left(x_{s}\right)=x_{s}+\frac{b_{1}^{2}}{x_{s}-k_{1}} \tag{3.92}
\end{equation*}
$$

$$
\begin{align*}
& \text { For } t \rightarrow+\infty \text { the asymptotics has the following form: } \\
& \qquad \Phi_{1}(x, t) \rightarrow b_{1}\left\{1+\frac{1}{2} \frac{\bar{x}_{N}-x_{N}}{k_{1}-x_{N}}\left(1+t h \beta_{N}\left(x-x_{0}^{+}\right)\right)\right\} e^{i k_{1}\left(x+k_{1} t\right)+i \varphi_{1}^{+}} \\
& \Phi_{2}(x, t) \rightarrow \frac{\left(x_{N}-\bar{x}_{N}\right)}{\left|x_{N}-k_{1}\right|}\left\{| | x_{N}-\left.k_{1}\right|^{2}-b_{1}^{2} \mid\right\}^{1 / 2} \cdot \frac{\exp i\left(-\beta_{N}^{2} t+\varphi_{2}^{+}\right)}{2 \operatorname{ch} \beta_{N}\left(x-x_{0}^{+}\right)} \tag{3.93}
\end{align*}
$$

The phame X_{0}^{+}has the form (2.75) and

$$
\begin{align*}
& \varphi_{1}^{+}=\arg \prod_{j \neq N} \frac{k_{1}-\overline{x_{j}}}{k_{1}-x_{j}}, \tag{3.94}\\
& \varphi_{2}^{+}=\arg \gamma_{N}+\arg \prod_{S \neq N} \frac{x_{N}-\bar{x}_{S}}{x_{N}-x_{S}} \tag{3.95}
\end{align*}
$$

We have obtained the one-soliton asymptotics. The interaction between solitons is pairwise as can be shown by simple calculations. This follows from the formulae for the phase shifts of the N-th soliton:

$$
\begin{align*}
& \Delta x_{0}=x_{0}^{+}-x_{0}^{-}=\sum_{j \neq N} \frac{1}{\beta N} \ln \left\{\left|\frac{E_{N}-E_{j}}{E_{N}-E_{j}}\right|\left|\frac{x_{N}-\bar{x}_{i}}{x_{N}-x_{j}}\right|\right\}, \\
& \Delta \varphi_{1}=\varphi_{1}^{+}-\varphi_{1}^{-}=\sum_{j \neq N} \arg \frac{k_{1}-x_{j}}{k_{1}-x_{j}}, \tag{3.96}\\
& \Delta \varphi_{2}=\varphi_{2}^{+}-\varphi_{2}^{-}=\sum_{j \neq N} \arg \frac{\left(x_{N}-x_{j}\right)\left(E_{N}-\bar{E}_{j}\right)}{\left(x_{N}-x_{j}\right)\left(E_{N}-E_{j}\right)}
\end{align*}
$$

In conclusion let us note that in the case of $U(2,0)$-symmetry (where
$\varepsilon_{1}=-1$) the multi-soliton solutions are the non-linear superposition of one-soliton and also of double solitons. The simplest double soliton corresponds to the case $N=2$ with the points $\mathscr{X}_{1}, \mathscr{X}_{2}$ being satisfied the stick conditions

$$
\begin{equation*}
\bar{x}_{1}-\frac{b_{1}^{2}}{\bar{x}_{1}-k_{1}}=x_{2}-\frac{b_{1}^{2}}{x_{2}-k_{1}}, \tag{3.97}
\end{equation*}
$$

and the matrix $\left(C_{i j}\right)$ having the form

$$
\left(c_{i j}\right)=\left(\begin{array}{ll}
0 & c_{12} \tag{3.98}\\
c_{21} & 0
\end{array}\right)
$$

We shall not discuss properties of such solutions.

Conclusion

We give above a modern state of problems related to a class of models we name Bose-gas models. From the point of view of condensed matter theory there arises an important question whether localized excitations of the soliton (or soliton-like) type can exist in a given ordered system (crystals, ferromagnets and so on). To understand statistical properties of such excitations (if any) the stability problem of a separate soliton-like object and that of their interaction should be solved. A part of these have been solved by the constructive way for the above modela associated with a nonstationary Schrbdin-
ger equation. Namely: the general method developed in chapter II was applied to get and study asymptotic behaviour of multi-soliton solutions to some integrable versions of NLS with selfconsistent potentials. Such solutions describe well a dilute soliton gas and one can tell about an ideal gas, weakly non-ideal gas and so on depending on the result of soliton interactions.

First we discuss formulae given in chapter III having in mind their stability. It is well known that plane wave solutions (conden-- sate) and those obtained from them via local modifications are unstable in the framework of compact versions of the VNLS with attraction ($U(p, o$) versions). The ingtability is of a gravitational type. Unlikely, condensate solutions are stable for compact veraions of the VNLS with repulaion ($U(0, q$) versions) $/ 2,26 /$. The atability of localized solutions under vanishing boundary conditions in the case of $\mathrm{U}(\mathrm{p}, \mathrm{o})$ VNLS and the condensate boundary conditions in the case of $U(o, q)$ VNLS is stated rigorously for only some simplest (one-soliton) solutions $/ 26,27 /$. Question is still open of stability of arbitrary non-soliton solutions to $U(p, o)$ NLS and the answer aparently depends on the type of equation as well as the solution under consideration. At any rate one-soliton solutions to $U(p, o)$ VNLS are stable that follows from qualitative ideas based on the inverge transform (see also a generalization of the Q-theorem given in /27/).

Stability of the condensate for non-compact $U(p, q)$ models is given by the condition

$$
\left(\Psi_{c}, \Psi_{c}\right)=\sum_{1}^{p}\left|\Psi_{c}^{(j)}\right|^{2}-\sum_{1}^{q}\left|\Psi_{c}^{(j)}\right|^{2}>0
$$

The above multi-soliton formulae make sense under condensate boundary conditions only when this ${ }^{\circ}$ condition holds.

Stability of the two-soliton solutions (according to our definition and one-soliton solutions in a naive one) has been investigated by means of computer in Dubna (JINR) for the simplest non-compact $\mathrm{U}(1,1)$ VNLS. Results tell in favour of stability of such solitons. Multi-aoliton solutions asymptotical behaviour obtained above makes us to be sure that the interaction between solitons is reduced to, the pair elastic interaction in the Pramework of compact models (with an arbitrary signature $\nabla i z ., U(p, o)$ see also $/ 28 /$, or $U(0, q)$). This interaction resulta only in changing soliton phases in the usual space and in the colour one. The change of colour as a result of the soliton intersction is possible as well which was established first in /1/
, All this means that even in the framework of one model gas of soliton-like excitations may be regarded as an ideal one (the soliton
density ia less than unity) and at the same time as a non- ideal gas if one considers e.g. the colour exchange.

There are physical situations when the soliton gas can be with a sufficient accuracy regarded as an ideal gas, then one can imploy a phenomenological approach $/ 13 /$ for calculating e.g. dynamical structure factors $/ 14 /$ in vector models and the signature of the colour space metric is arbitrary at $N \geqslant 2$.

In this sense the method to study the vector NLS equation proposed above can be thought of as a tool for the furhter research of corresponding models, in particular, those of condense matter physics (see chapter I).

References

1. S.V.Manakov.ZETF, 1973, 65, p. 505-516 (in Russian).
2. V.G.Makhankov, O.K.Pashaev. TMF, 1982, 53 p. 55-67 (in Russian).
3. N. Yajima, M.O1kawa. Progr.Theor. Phys., 1976, 56, p.1719-1739.
4. K.Nishikawa et al. Phys.Rev.Lett., 1974, 33, p.148-151.
5. V.G.Makhankov. Phys.Lett., 1974, 50A, p.42-44.
6. A.Kundu, V.Makhankov, O.Pashaev. Phyaica, 1984, 11D, p.375-380.
7. A.S.Davydov. Solitons in molecular systems. Naukova Dumka. Kiev, 1984, p. 287 (in Russian).
8. L.J.Jongh, A.R.Miedema. Adv. in Physice, 1974, 23, p.1-260.
9. A.A.Ovchinnikov, I.I.Ukrainski1, G.F.Kvencel'. UFN, 1972, 108, p.81-112 (in Russian).
10. M.Ito. Progr.Theor. Phys., 1981, 65, p.1773-1786. A.B.Zolotovitzki1, V.P.Kalaghnikov. TMF, 1981, 49, p.273-282 (in Russian).
11. H. Shiba. Progr.Theor. Phys., 1972, 48, p.2171-2186. R.A.Bari. Phys.Rev., 1973, B7, p.4318-4320. I.Egri. Solid State Comm., 1975, 17, p.441-444.
12. V.P.Kalashnikov, N.V.Kozhevnikov. TMF, 1978, 37, p. 402-415. A.B.Zolotovitzkii, V.P.Kalashnikov. Phya.Lett., 1982, 88A, p.315317.
13. J.Krumhansl, J.Schrieffer. Phys.Rev., 1975, B11, p.3535-3545.
14. V.G.Makhankov, V.K.Fedyanin. Phys.Rep., 1984, 104, p.1-86.
15. L.M. Degtyarev, et al. ZETF, 1974, 67, p. 533-542 (in Rusaịan).
16. V.E.Zakharov. ZETF, 1972, 62, p.1745-1759 (in Russian).
17. V.Makhankov, O.Pashaev, A.Kuṇdu. Phys.Scripta, 1983, 28, p.229234.
18. K.A.Gorshkov, L.A.Ostrovski1. Physica, 1983, 3D, p. 428-438.
19. V.I.Karpman. Phys.Scripta, 1979, 20, p.462-478.
20. A.M.Kosevich, B.A.Ivanov, A.S.Kovalev. Non-linear waves of magnetization. Magnetic solitons. Kiev, Naukova Dumka, 1983, p. 192 (in Russian).
21. V.G.Makhankov. Phys.Rep., 1978, 35C, p.1-128; CPC, 1980, 21, p.1-49; Particles and Nuclei, 1983, 14, p.123-180.
22. I.V.Cherednik. Functional analysis and applieation. 1978, 12, p.45-52 (in Russian).
23. I.M.Krichever. Functional analysis and application. 1986, 20, Num.3, p.42-54 (in Russian).
24. V.M.Eleonskii, I.M.Krichever, N.E.Kulagin. DAN, 1986, 287, p.606610 (in Russian).
25. A.Scott, F.Chu, D.Malaughlin. Proc. IEEE, 1973, 61, p.1443-1483.
26. V.G.Nakhankov, O.K. Pashaev, S.Sergeenkov. Phys.Lett., 1983, 98A, p.227-232; Physica Scripta, 1984, 29, p.521-525.
27. I.V.Barashenkov. Acta. Phys.Austr., 1983, 55, p.155-165.
28. P.P. Kulish. Works of FVE Conference, Protvino, 1980, p.463-470.
29. Physica Scripta, 1979, 20. Special Soliton Issue.
30. Soliton Theory. Method of Inverse Problem. Editor S.P.Novikov. M. Nauka, 1979, p. 318 (in Russian).
31. V.G.Makhankov. Phys.Lett., 1981, 81A, p.156-163.

Дубровин Б.А. и др.
E5-87-710
Точные решения нестационарного уравнения Шредингера
с самосогласованными потенциалами
В рамках единого подхода дается описание интегрируемых моделей,связанных нестационарным уравнением 山редингера,вместе с построением их многосолитонных Формул. К ним относятся векторные НУШ, модель Яджимы-Ойкавы и др. При построе нии явных решений не используются коммутационные представления. Рассмотрены конденсатные граничные условия для некомпактных моделей, где стандартная тех ника обратной задачи неконструктивна. Предлагаемый подход основывается на алгебро-геометрической теории интегрируемых систем и позволяет эффективно строить все известные на сегодняшний день их явные реше ия. обзор содержит ряд оригинальных результатов и написан в доступной для не мататов форм

Работа выполнена в Лаборатории вычислительной техники и автоматизации оияи.

```
Dubrovin B.A. et al. 
Exact Solutions to a Time Dep
```

Description of integrable models associated with a time-dependent Schrödinger equation is given along with constructing their multisoliton formulae Among such models there are the vector versions of NLS, Yajima-0ikawa model and others. In constructing exact solutions the communication relations are not used. The condensate boundary conditions are considered for noncompact models where the conventional technique of the inverse transform is not effective. The proposed approach is based on the algebro-geometrical theory of integrable systems and allows to construct all known by now exact solutions of such systems. The review contains a number of original results and is add ressed to nonmathematiclans.

The investigation has been performed at the Laboratory of Computing Techniques and Automation, JINR.

[^0]: *) Such a simple assertion will be usefull below: if all the numbers $x_{1}^{\prime}, \ldots, x_{N}, \bar{x}_{1}, \ldots, \bar{x}_{N}$ are distinct, and $\operatorname{Im} x_{i}>0$, im, $\bar{p} ; \operatorname{Im} X_{j}<0$, $j=p+1, \ldots, N ;$ then the Hermitian matrix $\left[i\left(\overline{\mathscr{P}}_{i}-\mathscr{X}_{j}\right)\right]^{-1}$ has the algnature $(p, N-p)$.

