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1. Introduction. Some yeara ago the problem of pion-nucleon 
interactions with the production of an additional pion near 1 GeVI 
W6a intensively inveatigated. It was typical of theae processes thatI 

1 
I the final 'state interaction, particularly production of the ~esonance 

! A(1236) strongly affected the final particle spectra. Theae reactions 
I' (see;for example{1/) were analysed in the framework of the so-called 

1 isobar models which permitted finding the contribution of different 
f quantum states. One of the main states near the production threshold, of the Â ( 1236) resonance is D13 (angular momentum of the 6. (1236) 

resonance relative to the additional pion in the final atate ia 2, 
isotopic spin is 1/2, total angular momentum J=3/2).

·1 In thia energy region the reaction !Ir-p~'Jf +:;r-n i9 one of the 
'2 
'~	 main ones. During computer simulation we uaed a simplified model where 

we assumed that t~e main characteriatica of the reaction are deacribed 
by isobar production in the D13 atate and the contribution of other 
atatea ia taken into account as a uniform background. Besides, we 
neglected the interference between the separate channels of isobar 
product1on, i.e. the followi~ expression was uaed for the joint pro­
bability distribution function of the energies of the second­E1, E2 
ary piono /2/:

i'	 2 I I 12 
r,	 0 ]1. [2 + a 1-":1- ~ aR1 + bR2 ' ( 1 ) 

êE1 C7E2I 
( .r::;) - 1 i4> (.r::)-1 i<Pwhere a =- v3, a2 e ,b = - 3,3 a 2 e 

~ ) 1/2 1R1 = ---_....:.._---­
i	 ( 20T'P1 Wo - - 1/2 i ~ 

~II'	 
W13 

I, 

G 1 
I " 3r P2 Wo - ~3 - 1/2 i r1 

G is the width of the 11 (1236) reaonance, {,Jo i8 the mass of 
~(1236), and are the masses of :n--n and ~+n systemsW13 W23 

in the final atate respectively, P1 and P2 are the momenta of 
) ~(1236) in the centre-of~as reaction (see also /2/), a1 and 82 

are the parameters to be estimated. 
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Analysis of these reactions required the maximum of available 
information, i.e. the information from other e4Periments which, as 
a rule, was not full, for example, it was available as spectra over 
a single variable though a three-particle reaction is described by 
four variables. Sometimes the experiment itself did not permit the 
full information (for example, in the reaction ~-p -+:Xo~n only 
the neutron waa measured in the experimenta of that time). So there 
vma a problem: how to get correct statistical conclusions about the 
joint distribution of final particle parameters without full e4Peri­

• mental information. 
From the point of view of mathematical statistics this problem 

is reduced to the construction of a test permitting estimation of 
multivariate distribution parameters using data in the form of histo­
grams over aingle variables. Let us consider th1a problem in more 
detail for the two-variable case (generalization of our conclusiona 
to a multivariate case is simple, alI the necessary changea are noted 
below in the text). We take the energies E~ and E2 of the aecond­
ary piona in (1) aa the two variablea in questione 

Let (E~ ,E~') and (E2,E2) be the intervals of the range of 
these variables divided into m1 and m2 subintervals respectively. 
It createa a grid with m cella on the plane. Using hypotheticalm1 2 
distribution function (1) we can calculate the probabilities Pkl 
(k=1, ••• ,m1, 1=1, ••• ,m2) for alI cells. The experimental sample of 
N eventa can be groupped over cells as a histogram {NklJ, k=1, ••• 
••• ,m1, 1=1, ••• ,~, ~ = N • But we have not the full data, butNkl 
the data as histograma over single variables: 

Nk • = L Nkl ' H. l =,L.. Nkl 
1 k 

In the analysis of such experiments the following statistic w~s 

used: 
(N :.. N p )2L ( Nk• - N Pk. )2 + L ·1 ·1T (2) 

k N Pk. 1 N P.l 

(hez-e Pk. = f Pkl' P.l = { Pkl ) that was just the sum of 

)C2-statistics for single-variable histograms. \Vhen the hypothesis 
on the distribution (1) was tested, the value of T was compared 
with the table for the Jl 2- di s t r i but i on vdth (m1+~-2) degrees of 
freedom. For the estimation of unknown parameters of (1) T statia­
tic waa minimized over them. Both methoda are not substantiated and 
can Yfeld significant errors if the distribution parameters are not 

independent (see the numerical example in the Appendix). 

2 

Here we investigate the correct distribution of T-statistic (2) 
(Section 2), conatruct modified (generalized) T statistic for tes­m . 
ting the hypothesia on the distribution F(E1,E2) (Section 3) and 
inveatigate the eatimates of UDknown parameters of F(E1,E2) by mi­

nimizing Tm statistic (Section 4). 

2. Distribution of T statistic. Let m=m1+m2, Nk=Nk• and 
PkcPk. for k=1, ••• ,m1 and N +1=N.l, Pm +1=P'.l for 1=1, ••,. ,m2m1 1 
(IIthrough" numeration). Let also ~ = (Nk-NPk)/{NiÇ for k=1, ••• ,m 
and x=(x1,x2, ••• ,Xm) be a column vector. For tliia notation T = xTx 
(upper index T means transposition). 

Lemma 1. The vector x 1~ asy,mptotically normal with mean zero 
and covariance matrix 

1 
V1 : V12 

v 1-- - -r ---­
T I

V12 : V2 

consisting of blocks V1 (m1)(. m1), TheseV2 (m2)(m2), V12 (m1)( m2) . 
blocka have the form = I - j = I~- ' here and onV1 u1u1 

T V2 u2u
T
2 

I k is for the k x k uni t ~rix, u1 and u2 are vector columns 

u1 = (vp;. , {IÇ., .•. , ~. ), u2 :: (~, {p:;, ... , Vp. ~ ); 

the (k,l)-th element óf the block has the formvkl V12 
Pkl - Pk. P.l =vkl 
~ Pk.P·l 

Proof. We follow the idea of H.Cramer (/3/, p.p. 418-419). The joint 
characteristic function of the quantities Nkl (kc1, ••• ,m1,1.1, ••• ,m2)
is 

m1 
. ) N

r1 (t11,t12,···,tm ) = L f Pkl eJ.t kl • 
1~ ( k .. 1 1=1 

Therefore the joint characteristic function of the quantities Nk 
(kc1 , ••• ,m) is 

(" 

m1 L
m2 

\(J2 (u1 , u2 ' • • • , Um ' v1 ' • • • , vm ) =( L­ p
kl 

ei(~+Vl») N
•I 1 2 k=1 1=1 
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Then we obtain the joint characteristic function of the variables xk 
(k=1 , ••• ,m) m m 

'fJ (u,.u2·····"m,·v, •••••v'":!) • - [-{li ('L\r..JP;: + L2vl~lt 
k=1 1=1 

m1 m i~ l.Vl N)( L ( .)J
[ '[2 Pkl ezp J1/pk. + JHp'l

k=1 1::11 

-and, using the MacLaurin expansion of i ts logari thm, we deduce by 
some easy calculation 

ln ~3 (u1'u2'···'~'v1'···'vm2)= - ~ UTV U + 0\fN) , 
where U denotes the vector column (u1'u2., ••• , Um. ,v1' ••• ' v ). The 
function VJ 3 tends to the characteristic function of t~ultiva­
riate normal distribution with mean zero and covariance matrix V 

as N-+oa. Using the continuity theorem (/3/, p.96) we complete the 
proof. 

In the case of the d-dimensiônal distribution F (d > 2) the 

matri::z: V consists of d x d blocks of the same forme 
Theorem 1. The characteristic function of the stat1stic T has 

the l1mit 

lim Itr (t) = fi (, -21 .[\, t ) - ~ (3) 
N+OC) .' k=1 

where í\1 <: À2 ' ••• 'À are ,the e1genvalues of the matrix v. The m 
dens1ty of the asymptotic distribution of T statistic is 

m 1 

f(x) =* 
00 

j e-itx n ( 1 - 2 i If ) - '2 dt •k t 

-00 k=1 

E!:22!. Let C be an arbitrary orthogonal matrix, then e = CTx 
1s a random vector e = (e 1,e2, ••• ,em) also having an asymptot1c 
normal distribution with mean zero and covar1ance matrix 

11m <e eT>= 1im <cT;rxTc>= CTVC 
N+oo N~OCl 

(here and further <. > denotes the expectation of a random value). 

Besides, e~+••• +ei = eTe =xTCCTx =xTx :I T • One can find such a 
matrix C that cTvc is the diagonal matrix w1th diagonal elements 
À1' ••"., À • Then the statistic T 1s the sum of squares of asym­m 

4 

.... 

ptotical1y.independent normal random values e1, ••• ,em, so 
m 

11m. YJT (t ) = n 11m IJ) 2 (t ) • 
N_coe k=1 N-+goC) I ek 

1 

We have 11m. \.f} 2 (t) = (. 1 - 2 i ~ t ) - ~ (aee /3/, p.233), ao 
N....o.a I ek 

the theorem is proved. 
Function (3) coincides with the characteristic function of a 

)C2-distribution if and only if I\k- 1 for k=3, ••• ,m. We failed 
to obtain an analytic expression for the dens1ty function f(x), but 
in any way the distribution of T stat1stic depends on F(E 1, E2) 
and cannot be tabulated (contrary to 1- 2-distribution). 

Corollary. 11' the random quanti ties E1 and E2 are indepen­
dent, i.e. Pkl =Pk. P.l ' then the st~tistic T has a limiting 
]C2-distribution with m-2 degrees of freedom. 
~. Since Pkl = Pk. P.l ' the matrix consists of zeroesV12 

alone. Rence the eigenvalues of V matrix coincide With those of V1 
and V2 matrices. Thesematrices have one zero eigenvalue each, and 
the rest of their eigenvalues are ones (see /3/, p.419). This proves 

the Coro1lary. 

3. Generalization of T statistic to the case of de endent va­

riables E'~2' Let v, and v2 be vector columns ~ • Jp 2' •••• 
••• , {Pm ,0,0, ••• ,0) and (o;o, ••• ,o,~, ~, ••• , res­Pom2)
 
pectivelt. One can easy find that VV1 = VV2 = ° , so v1 and v2
 
are eigenvectors of V with the eigenvalue O. Then the rank of the
 
V matrix does not exceed m-2. The ranks of the V1 and V2 mat­

rices are m and ~-1· respectively (/3/, p.419), therefore
 

o 

1-1 
rank V = m-2 in general case. 

We shall suppose that the distribution F(E 1, E2) has a general 
f'orm, i.e. rank V .. m-2 (or í\ 3> ° - see Theorem 1). In this case 
one can find a normal random vector e = (e 1, ••• ,em) with mean zero 
and the unit covariance matrix such that 

x = Ae + 0p (1) , (4) 

where 0p(1) denotes a random value tending to ° in probability as 
N~oo and A is a mX m matrix with zeroes in the 'Jil:...th and m.,-th 
columns. The matrices A and V are linked by the following rela­

tionship: 

V = 11m <xxT>= <AeeTAT) 
A <eeT>A

T = ü 
T

• (5) 
N-+e>O 
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One can choose the A matrix as a low-triangular one , then its
 
elements can be calculated directly from (5).
 

We propose a generaliza~ion T of the statistic T as a qua­m 
dratic form m 

Tm = L X k Xl <1kl = xTQx , (6) 
k,1=1 

where Q = (qkl) is the symmetric mx m matrix which will be spe­
cified below. From (4), (6) we obtain T = eT(ATQA)e + 0p(1) • m 
Let	 the Q matrix be chosen so that 

T TATQA = Im - cm., c - c c	 (7)mmm1 

where ck denotes the vector column of the length m with one at 
the	 k-th position and zeroes at the others. If (7) holds then we
 

. 22 2 2 2 ()
obta1n Tm = e1+e2+ ••• +em1_1+e~+1+••• +em_1+op 1 • T.herefore we 

have proved the following theorem: 
Theorem 2. Suppose that rank V = m-z and the Q matrix sa­

tisfies the condition (7). Then the asymptotic distribution of T m 
statistic is that of JC2 with m-2 degrees of freedom. 

In the case of a d-dimensional diatribution F (d> 2) the con­

dition (7) has the form ATQA = I - cm., c;1 - c;1+m2 ­
T 

m1+".+md cm'f+m2
- ••• - c + +m c + + ' where rnL is the number of cells inm1 ••• d .m1 ••• md P 

the	 p-th azis of the distribution F(E 1, ••• ,Ed), p=1, ••• ,d. 
Condit1on (7) defines the Q matrix correctly, but not uniquely. 

We can define the Q matrix uniquely adding a natural condition: 
the m., ~th and m-th columns and rows of Q conaist of zeroes alone. 
After that the elements of Q can be consequently evaluated from (7) 
from right to left and from bottom up (see the Appendix for the 
FORTRAN-IV program for calculating the matrices A and Q from the 
gi. ven matrix V)• 
~. The ambiguity of the definition of the Q matrix in (7) 

does not influence the value of Tm statistic, i.e. any choice of 
the matrix Q satisfying (7) doea not involve any losa of informa­
tion. Actually, let L be the subspace in the m-dimensional vector 
space which is orthogonal to the vectors v1 and v • Then L is

2
a character1stic apace of the matrix V. The direct analysia of the 
geometr1cal interpretation of formulae (5) and (7) shows toot the Q 
matrix ia uniquely defined in L, namely (Q1L) = (VIL)-1 , where 
·lL d~notes the restriction of an operator to the subspace L. The 
vectors QV1 and QV2 may take arbitrary values. One can easily 

6 

check it up that the vector X is orthogonal to v1 and v2 ' i.e. 
x t L • Then the vector Qx and the value Tm = xTQx are defined by 
(7) uniquely. In our further considerations we sOO1l suppose that the 
operator Q is identical at v1 and v 2 : QV1 = v 1 and QV2 = v 2• 

In that case the matrix Q is strictly posi tive: Q> O. 

4. Estimating unknown parameters on the basis of T stat1stic.m 
It ia known (73/, p.p. 426-427) that minimizing the ](2_sum leada to 
a test.statistic having an aaymptotical j2-distribution with (m-s-1) 
degrees of freedom, where m ia the number of cells in the data 
histogram and s is the number of estimated parameters. We obtain 
an analogous result for T statistic in the case of the multiva­m 
riate distribution with incomplete data. 

Let oL= (oL1' ••• '~s) be the vector of unknovr.n parameters de­
fined in ~ domain IeRs, and "'"o = (oL~, ••• ,oL~) be its "true" 

.va1ue (s<m-1). We suppose that 
(i)	 functiona Pkl (o'-) have continuous second derivatives; 
(ii) 01... is an inner point of the domain I.

0 
Under these conditions the estimate minimizing Tm is a solu~
 

tion of the equation (jTmld~r' r=1, ••• ,s , or
 

°_ 1 ~ ( 'd~ dqk1
- . r;;- L- 2 07 Xl qkl + x01 7"r"J )
 

VN k,1=1 r (}O(..r
 

~ OPk 1 Nk-NPk 1,;- {iqkl
 
-2 L '07 ( ~ + .tz: )xl qkl + .r;;- L. xkxl ôoL
 

k,lc1 r VPk 2NPkVPk' yN k,1=1 r
 

As in 131, p.426, we shall consider the modified estimate mini­

mizing T which is obtained by excluding alI terms of the order
 m 
0p(1/[N) from the last expression and keeping only the terms of the'
 
order 0p(1). Now we have simpler equations
 

~	 'é)Pk 1 
L	 'dT ,..-- xlqkl ::: ° · (8) 

k,1=1 r VPk 
Let us suppose	 that the follow1ng additioDal condit1ons are val1d: 

2(iii) Pk(oL) >c for some c >° and alI k,oL; 
(iv) matrix D = (JPkld~r) , k=1, ••• ,m , r=1, ••• ,s 1s of rank
 

s for alI d.-.;
 
(v) rank V = m-2 and , moreover, i\](o/.. ) > c for alI oL (aee
 

notation in TOeorem 1).
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The 1aat condition ia an extra one compared with the c1asaic According to Chebyshev' a inequa1ity, p{ INk-Np~ I~ S{li J~ p~/~2 
theorem (131, p.p. 426-427). :for any :5 > o. Rence 

Theorem 3. Under conditiona (i)-(v) syatem (8) has one and only 
~ r.... A r»; 

one solution éI.. = (~1' ••• ' eis) such that;;( tends t~cf o in pro­
bability as N _1>0. The statiatic T at the point ót. has an asy­m 
mptotic )C:distribution with (m-s-2) degrees of freedom. 

Proof. The proof of the theorem ia very much similar to that of 
the classic theorem (/3/, p.p. 427-434). Therefore we shortly descri ­
bee the common steps preserving the notation of H. Cramer 131 and dis­

cusa new onea in detai1. 

Let us denote P~ = Pk(d o)' q~l = qk1(~0) and dP~/do(r = 
= dPklàci ( do). System (8) is e quivalent to 

where 

(,Jr 

r 

a m dpo dpo qO

I	 (dt-J~) L. d. ()rJ.1 . r~o 
t=1 k,1=1 t r VPkP1 

m o ':\ o' o">" Nk-NPk CI P1 qk1
1- --.;=---= - ­

k, 1=1 N 'O d.. r VP~P~ 

mo':)Z: Nk-NPk [UPl qk1 
- "a..J . c-::­

k,1=1 N 

m_L dP1(p _pO) 
k k, ()oI.. rk,1=1
 

tIl ,:\0 o

Q P1 qklL sr: ~ 

"7	 V PkP1 

""" 

(8a ) 

+	 W , 
r 

,,",\0 01 
o P1 qk1 
~ ­'00(_ 'I o o 

r	 Pkf.1 

[(Pk-Pk) - iJ; (d.t-clt)

k,1=1 r V PkPi t ...1 t
 

.'.	 1 ~ P~
Let	 us J.ntroduce a matru B = = /fJ '001.. ,k=1 , •••(bk1), bk1 

VPk 1 
••• ,m, 1=1, ••• ,s and ~ vector co1umn W= (úJ l' (.)2' ••• ,CJ a). Then 
one can rewrite (8 a) in the matrix form 

BTQB(ol-cJ.o) = lC1/ 2 BTQx + W ,	 (9) 

where Q = (q~l) and x = x(olo). Note that the matrix B can be 
represented as B = PoDo' where Do = D(ol o) and P is the diago­o 
nal matrix f'ormed by the diagonal e1ementa 1/1Pf, 1/fPr, ••• ,1/~. 
Bence, by virtue of assumption (iv), the matrix B is of rank s. 
Uaing the note at the end of Section 3, we deduce that the matrix 
nTQB iEi not a singular one, sO equation (.9) can be rewritten as 

+ N-1/ 2 (BTQB)-1oi- =.01..	 BTQx + (BTQB ) - 1 W • (10)o 

o o 
~ _ O'P1 qk1 _ (8b ) 
. rpp rc;7l; Vp~fjO 
V .1'k.1'l ~ 1 

a"o]o (1 Pk . o 
~ 

p{ INk-NP~ I ~ S{i . for at 1east one 

« ~-2") o c-2 
-.;; o L Pk = 2 o •;)	 

m 

k=1 

Taking Ó= N1/8 and using (iii) we obtain 
'I	 -1/4 .k=1, ••• ,m wi th the probabi1ity 1-2N ( aa N-- o<:l ).Pr PN- 1 

By vi~ue of (i),(iii),(iv) and the note at the end of' Section 3 

the quantitiea qk1 and ~r are smooth function ~f oL • Therefore, 
as in 13/, for any d..' and 01.." wi th the probabi1ity PN the f'01­

10wing inequality ho1da: 

'Wk(ol') - CcJk(ol") f < K lal' - oi" I ( ,oe -ol.o' + Ioe- elo" + 81fii) (11) 

where K> O ia a conatant. 
1et us introduce a sequence of vectors {ol))) , 'Y =1,2, ••• 

01.. = d + N- 1/ 2 (BTQB ) - 1BTQx + (BTQB ) - 1W (ol.. ))} o	 )}-1 

with
 

(BTQB)-1 BTQx
0(1	 - d.. = N-1/ 2 , (12)
o 

i. e. we have lol1 - o{o I < c1 d /{i wi th the probabi1ity PN , where 
c >O is a constant. By virtue of' (11) for aome constant c2 >O we1

have with the probabi1ity PN
 

T
lolV+1 -ol.vl = J(B QB ) - 1 [ W ( ciV) - W(o(V_1)][<: 

~ c 2 I d..V- c;(v-11 (Io(v - olol +lolY_ - oloJ + â I[N)1 

Using induction, one can eaai1y show that for aufficient1y large N 

with the probabi1ity PN 

lolY+1 - J.. y I ~ ($ IfN) V+1 ,	 (13)c1c1 
where c = (4c1+1)c2 • Therefore, with t~e probability the

3 
PN, 

aequence {ol)/} has a limit - a ve;.:or ~ wbich ia a solution of 

(10). By virtue of' (13) ~ have Id.. - olo I , 2c 1 Sl{ii with the 
prob~ility PN, i.e. <l.. tenda to ci. in probability aa N"'-co. o 
If 01.. is another aolut10n of (10) tending to eLo in probability, 
then by virtue of (11), with the probabi1ity 

'j IJ'-~I =	 - úJ(J)JI 
P

~ 
N, 

I(BTQB)-1[W(J') 

~const IcZ-ol'l (/cZ - doi + let - ol.o' + 81[N)J 
" But the expreasion within parenthesia tends to O in probabi1ity as 

k=1 , ••• ,m} ~ 

11t/ < SIc for every 

8	 9 



'T­ 1 

r 
I} 
~ ~ 

:, 

N-+ 00, ao a contradiction ariaea. Therefore the firat part of the 
Theorem has been proved. . 

Note. So far we did not use the apecial form of the matrix Q 
defined by (1). Rence the first part of the Theorem is valid for any 
matrix Q = Q(ol) which ia a smooth function of cl and has eigen­
valuea Â ' ••• , Â satiafying the restriction O< c I <::: IÂk I c( c 1/<00

1 m 
for alI k and d... for some constants c~ C~I 

Now we continue the proof of the Theorem. According to (9) and 
T -1 "I';. I _I• (11) we have (B 013) LO (o(.) = ~ - ol.1 =' ( 0(2- ~1) + (~3- d 2T + ••• 

and by	 virtue of (13) we have
 

I(BT013)-1 W (ol. " ) \ 6: g2
const -	 (14) 

with the probability PN• Bence 

(BTQB)-1 BTQa- 01. = N-1/2 x 
0 

(nez-e and further O (N'lr) denotes such a 
sup P{N-~ 'E > c} -!° as c ----.00).
N (

Let ua consider 

Nk-NPk 
Yk g \[NÇ

NÍ3k 

'iN 1\ 

Pk - Pk
o 

- N

R 

6. 

N 

+ Op(-?) • (15) 

random valUe? that 

Â 

the quantitiea Pk = Pk(~) and
 

Â o (' 0)2

Pk - Pk Pk - Pk 

k= x - xk ~~kP~(~+~) + 1fN{P:kP~(~+\g:) ­

. ~ i'OP~'" o 1)2= 4c - ~ -a (alI - oll ) + 0p("'"1r) 
Pk 1=1 alI 

These relations can be rewritten as 
~Q" 82 

y = :x - VN .B ( 01.. - d..o ) + 0p(Ir) 

where y is the vector column (Y1' ••• 'Ym). Applying (14) 
we obtain 

2 
y = x _ - .y;·B(BTQJ3)-1 W ( :J:. ) + ° (8B(BTQB )- 1BTQx p """lr) 

82 
= Rx + 0p(Ir) 

and (15) 

B(BTQB)-1 BTQ•where R = Im - By virtue of Lemma 1 the vector y is 
aaymptotica1ly normal with mean zero and covariance mat~ix V1 = RVRT• 

The value of the statiatic T at the point 01.. =oL. ism
 
/\ 'N T T/\


Tm(oL) = y Qy = y Qy + y (Q-Q)y 

'I where ~ = Q(~) • Since the matrix Q is a smooth function of d....,
! lia - Q/I = 0p(8 /fi), i.e. Tm(~) = yTQy + 0p(1). 

f.
 

Let ua return to the vectors V1' V2 and the subspace L (aee
 
Section 3). It is easy to check it up that BT

V1 = BT
V2 = ° , i.e.
 

the image of the a-dimenaional vector space ~s lies inside the
 
space L due to B operation. Let Lo = QBIR a c. L and let L1
 

~ 
be the orthogonal complement to Lo in L. Note that dim Lo = s ,
 
d1m L1 = m-s-2 • Let us represent the vector y as the sum y=Y1+Yo'
 
Y1 E: L1 ' Yo1L1 • Remember that xEL (Section 3), hence
~ 

(vk'Y) = (vk'Rx) + 0p(1) = 0p(1) for k=1,2 

Then for any s-dimensional vector w we have 

(QBw,y) = (w,BTQRx) + 0p(1) = 0p(1) 
~ 'Therefore 11 yoll = 0p(n and T (cÍ) = y~QY1 + 0p(n • The vector yl'm~ 

I 
like y, is asymptotically normal wi th mean zero and covariancei
 
matrix V ,i.e. rank V = m-s-2 •
1 1 

One can find such a normal vector e with mean zero and th-e 

unit covariance matrix that Y1 = Ae + 0p(1) ,A ia a matrix of the 
m x has	 coLumna,order m wbich zeroes in i ts (s+2) last Then 

T TT T I';. T T )
V1 = <Y1 Y1 >= <Aee.t >= AA • Since Tm(~) = e (A QA)e + 0p(1 , 
the statistic Tm(~) has a limiti.l;lg 1- 2-distribution wi th m-s-2 
degrees of freedom if and OIÜY if the matrix V2 = ATQA is a diago­
nal one, its first (m-s-2) diagonal elements are ones and the rest 
of its elements are zeroes. Since rank A = m-a-2 , this condition 
is equivalent to 'AATQAAT = AAT ,i.e. = The last condi­V1QV1 V1 • 
tion can be proved directly if one uaea the subatitution V1 = RVRT 

and the formula QV = VQ '= Im-vrv1-v~v2 (see Section 3). Theorem 3 
has been completely proved. 

In the case of the d-dimensional diatribution F (d '>2) the 
statistic Tm(~) haa the asymptot1c distribution of f. 2 wi th

1 

I 
m-s~d degrees of freedom. The proof of the TPeorem doea not change 
in this case. 

A 

Note that the asymptotic covariance matrix of oi. estimate is~ 
N-1/2 (BTQB )- 1 

:1 

Appendix. For numerical comparison of the discussed distributions 
we have made a computer experimente We constructed distribution (1)

f' for a1=90.14 and a 2=3.11 • The ranges of the variables E1 ' E2 
were subdivided into 15 equal intervala each (m1=~=1S), and SOO 
eventa were being generated with the diatribution according to law
 

1'1
 

ou 
lO 



(1), i.e. N=500. It was done 12.000times and the sampling distribu­ SUM=SUM*A(J,J)
tion functions 01' T and T atatistics were calculated at 1'ourm 
points - quantiles 01' the 'JC 2- diat r i but i on with 28 degreea o! 
!reedom (m1+~-2a28). The reaulta are presented in the table 

x 

P{J~8> xJ 
p{ T > xJm

• 
P{T>X} 

41.3 45.4 48.3 56.9 

5% 2% 1% 0.1% 

4.7% 1.75% 1.12% 0.15% 

5.5% 2.67% 1.80% 0.30% 

It is seen that the T atatistic distribution considerably 
deviates 1'rom the }:2-diatribution n the "tail" , i.e. in the InOst 
important region 01' big values 01' the j(2-variable: the error 01' 
the 1'irst kind. can be 2-3 times larger than the tabular one , 

In conclusion we give the text 01' the FORTRAN-IV program for 
calculating the A and Q ma.trices from the given V matrix. 
Th1s algorithm requires m4/ 2 + 513 m3 + 7/2 m2 + 2 m 1'loating-point 16(6), p. 1279-1285. 
operation and m square root subroutine calls. , 2. Olsson M.G., Yodh G.B. P.hya. Rev., 1966, 145, p. 1309. 

~ 3. Cramer H. Mathematical methods 01' statistics, Princeton UDiv. 
SUBROUTINE QMATR (Q,A,V,K,M1) i Presa, Princeton, 1946.'I 

C IT CALCULATES THE MATRICES Q(M,M) AND A(M,M) FROM THE GlVEN I 

C MATRIX V(M,M). SEE THE NOTATION IN THE TEXT. ONLY FOR D=2. 
C 

DIMENSION Q(M,M),A(M,M),V(M,M)
C -------- FIRST STEP: CALCULATE mE MATRIX A. 

DO 4 I=1,14
DO 3 J=1 M 

A(I,J~=~. 
IF (J.GT.I) GO TO 3 
SUM='.IF (J.EQ.1) GO TO 2
 
J1=J-1
 
DO 1 L=1,J1

1 SUM=SUM+A(I,L)*A(J,L)
2 IF (J.LT.I) A(I,J)=(V(I,J)-SUM)/A(I,J) 

IF (J.EQ.I) A(I,J)=SQRT(ABS(V(I,J)-SUM»
 
3 CONTINUE
 
4 CONTIlflJE
 

SECOm> STEP: CALCULATE THE MATRIX Q.
C -------------- ­DO 9 II=1,M 

00 8 JJ=1,)4

I::M+1-II
 
J-M+1-JJ 
Q(I,J)=O. 
IF (I.EQ.M1.0R.I.EQ.M) GO TO 8 f

IF (J.EQ.H1.0R.J.EQ.M) GO TO 8
 
11=1+1
 
J1=J+1
 II 
SUM=0.
 
DO 5 K=I1,M Received by ~ubliahing Department

SUM=SUM+A(K,I)*Q(K,J)
5 on Septembe~ 17, 1987. 

"1 
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J 

DO 7 L=J1,1'4 
D=fd. 
DO 6 K=I,M 

6 D=D+A(K,I)*Q(K,L)
SUM=SUM+D*A(L,J)


7 CONTINUE
 
S=~. 
IF (I.EQ.J) 5=1.

i1 Q(I,J)=(S-SUM)/(A(I,I)*A(J,J»
8 Q(e,T,I)=Q(I,J) 

j 9 CONTINUE 
RETURN
 
END
 

We acknowledge the valuable help 01' N.V.Guseva and A.M.Rozhdest­
vensky in computer aimulation. 
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04eHKa napaMeTpOB l-1 KPI-1T€PI-I~ COr.nacvtR AJlR MHOrOMepHbiX 

pacnpe,qeneHvH1 e cny4ae ,qaHHbiX, npe,qcraaneHHbiX 
8 Bl-1.Q€ O.QHOM€pH~X rl-1CTOrpaMM 
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~cc.ne,qosaH~ aa,qa4l-1 o~eHKI-1 napaMerpoe MHoroMepH~x eepORTHOCTH~X pacnpe,qe­
.neHl-1~ 1-1 npoBepKI-1 CT8Tl-1CTI-14€CKI-1X rHnOT€3 8 ¢1-131-14€CKI-1X 3KCnepl-1M€HTaX, B KOTOp~X 

.QaHH~e nOCTyna~T B Bl-1.Q€ O.QHOM€pH~X rl-1CTOrpaMM OT.Q€J1bHO no Ka~.QO~ nep€M€HHOH. 

Vlccne,qoaaH npY1M€HRIOLL\VIHCfl 06bfl...IHO M€TO.Q 11 CyMMbl )(2 -cran-tCTHK11 no BC€M OT.Q€J1bHbiM 

nepeM€HHbiM, noKa3aHa €f0 H€KOPP€KTHOCTb 8 CJ1y4ae 3aBHCHMbiX nepeM€HHbiX. npe,q­
J10~€HO KoppeKTHoe o6oELL\eHI-1e 3Toro Mero,qa, AJlR KOToporo ,qoKa3aHbl aHanorH K.nac­
CI-14eCKI-1X reopeM o npe,qe.nbHOM pacnpe,qeneHHI-1 x2-craTit1CTHK e cny4ae npoeepK~ r~­

noTea ~ B cny4ae O~eHK~ H8H3BeCTH~X napaMeTpos. npeAnOmeHH~H MeTOA pean~30BaH 
8 B~Ae nporpaMM~ H npoHnn~CTPHPOBaH Ha 4HCneHHOM npHMepe AnR OAHO~ MOAenH 
nHoH-HyKnOHH~X B3aHMOAeHCTBH~. 

Pa60Ta B~nonHeHa B na6opaTOPHH B~4HCnHTenbHOH TeXHHKH H aBTOMaTH3a~HH 
OH~H. 

Coo6weHue 06DenmteHHoro HHCTmyTa R.n.epHbix uccne.n.oBaHHH. )ly6ua 1987 

Chernov N. 1., Ososkov G.A., Kurbatov V.S. 
The Estimation of Parameters and the Goodness-of-Fit T~st 
for Multivariate Distributions for Data Presented as 
One-Dimensional Histograms 

ES-87-698 

The problems of estimating parameters of multivariate probabil Jty dis­
tributions and testing hypothesis are studied in the framework of physical 
experiments where data are presented as one-dimensional histograms for every 
single variable separately. A commonly used method of "sum of )(2-statlstlcs" 
over alI single variables is invest I gated. It is shown that this method Is 
incorrect for dependent variables. A correct generalisation of this method 
is proposed for which analogues of classical theorems concerning asymptotic 
distributions of x2-statistics are proved for testing hypothesis and estima­
ting unknown parameters. The proposed method is implemented as a FORTRAN-IV 
program and illustrated by a numerical example for some model of pion-nucle­
on interactions. 

The investigation has been performed at the Laboratory of Computing 
Techniques and Automation, JINR. 
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