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1. Introduction. Some years ago the problem of pion-nucleon
interactions with the production of an additional pion near 1 GeV
was intensively investigated. It was typical of these processes that
the final state interaction, particularly production of the resonance
A (1236) strongly affected the final particle spectra. These reactions
(see, for example{1/) were analysed in the framework of the so-called
isobar models which permitted finding the contribution of different
quantum states. One of the main sgtates near the production threshold
of the A (1236) resonance is D13 (angular momentum of the A (1236)
resonance relative to the additional pion in the final state is 2,
isotopic spin is 1/2, total angular momentum J=3/2).

In this energy region the reaction 91 p>W *r™n is one of the
main ones. During computer simulaetion we used a simplified model where
we assumed that thp main characteriatics of the reaction are described
by isobar production in the D13 state and the contribution of other
states is taken into account as a uniform batkground. Besgides, we
neglected the interference between the separate chammels of isobar
production, i.e. the following expression was uged for the joint pro-
bability distribution function of the energies E1, E2 of the second-
ary pioms 2/:
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r1 is the width of the A(1236) resonance, W, 1is the mass of
A(1236), (d13 and GJ23 are the masses of I n and A *n systems
in the final state respectively, p{ and p% are the momenta of
A (1236) in the centre-of-mass reaction (see also 2 ), a, end a,
are the parameters to be estimated.
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Anplysis of these reactions required the maximum of available
information, i.e. the information from other experiments which, as
a rule, was not fully for example, it was available as spectra over
a single variable though a three-particle reaction is described by
four variables. Sometimes the experiment itself did not permit the
full information (for example, in the reaction T p T °T°n only
the neutron was measured in the experiments of that time). So there
was a problem: how to get correct statistical conclusions about the
joint distribution of final particle parameters without full experi-
mental information.

From the point of view of mathematical statistics this problem
is reduced to the construction of a test permitting estimation of
mltivariate distribution parameters using data in the form of histo-
grams over single variables. Let us congider this problem in more
detail for the two-variable case (generalization of our conclusions
to & multivariate case is simple, all the necessary changes are noted
below in the text). We take the energies Ei and E2 of the second-
ary pions in (1) as the two variasbles in question.

Let (E{,E;) and (Eé,Eg) be the intervals of the range of
these variables divided into m, end m, subintervals regpectively.
It creates a grid with m, m, cells on the plene., Using hypothetical
distribution function (1) we can calculate the probabilities Pr1
(k=1,...,m1, l=1,...,m2) for all cells. The experimental sample of
N events can be groupped over cells as & histogram {Nkl} sy k=15000
ceesilyy l=1,...,m2, 2: Nkl = N . But we have not the full data, but
the data as histograms over single variables:
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In the anmlysis of such experiments the following statistic was
used:

2 P 2
N, -N (N,, =N
T o= Z ( Ko pkn ) +Z ] pol ) (2)

(here py, = %; Pyy » P.p = %; Pyy ) that was just the sum of

J(g-statistics for single-variable histograms. When the hypothesis
on the distribution (1) was tested, the value of T was compared
with the table for the )Kz-distribution with (m1+m2-2) degrees of
freedom. For the estimation of unknown perameters of (1) T statis-
tic was minimized over them. Both methods are not substantiated and
can yjeld glgnificant errors if the distribution parameters are not

independent (see the numerical example in the Appendix).

Here we investigate the correct distribution of T-statistic (2)
(Section 2), construct modified (generalized) T, statistic for tes-
ting the hypothesis on the distribution F(E1,E2) (Section 3) and
investigate the estimates of unknown parameters of F(E1,E2) by mi-

nimizing T, statistic (Section 4).

2. Digtribution of T statigtic. Let m=m, 0, Nkank' and
P=Py. for k=1,...,m1 and Nm +1=N‘1 N pm1+l=p..1 for 1=1,....,m2

("through" numeration). let also x = (N -Np, )ANp, for k=1,...,m
and x=(x1,x2,...,xm) be a column vector. For this notation T = Xix
(upper index T means transposition).

Lemma 1. The vector x im asymptotically normal with mean zero
and covariance matrix

V= - —— ]

T o
Vil V2

consisting of blocks ﬁ(%xyhvzmﬂmy,ﬁzmﬁmg.%ue
blocks have the form V1 =1 = u1u$ 5 V2 =1 - wu; here and on
Ik ig for the kxk unit mzlrix, u, and u, are vector columns

u1 = (qu:) J;;,NW‘! VB;} )y u2 = (V P,1;vG:;;-o-, VP_mzh

the (k,1)-th element v,, %f the block V,, has the form

k1
Pg1 ~ Pk, Pay

Vk1 = TR .

Proof. We follow the idea of H.Cramer (/3/, p.p. 418-419). The joint
characteristic function of the quantities Ny, (k=1,...,m1,1-1,...,m2)

is
m.
1 o . N
it
‘f)1 (t11’t12”"’tm1m2) =(Z D P e kl)
ka1l 11 .

Therefore the joint cheracteristic function of the quantities Nk
(k=1,-..,m) is
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Then we obtain the joint characteristic function of the variables x;
(k=1 goee .m)
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and, using the MacLaurin expension of its logarithm, we deduce by
gome easy calculation

1n )03 (u'1,u2,....um1,v1,...,vm2) = - % vy v 4+ 0(‘/1—1?) ,

where U denotes the vector column (u.‘,uz,...,um%,vv...,v ). The
function ?3 tends to the characteristic function of the“multiva-
riate normal distribution with mean zero and covariance matrix V
ag N-—>»oo. Using the continuity theorem (/ 3/ » D«96) we complete the
proof.
In the case of the d-dimensional distribution F (d>2) the

matrix V consists of dxd blocks of the same form.

Theorem 1. The characteristic function of the statistic T has

the limit n 3
Nii‘:a‘fm(t):=g (1-21yA t) , (3)

where >\1 < )‘2 Coee <Am are the eigenvalues of the matrix V. The
density of the asymptotic digirdibution of T statistic is

oD .
. -3
f(x)=%w5e'”‘ﬂ(1-2iﬁkt) Zat.
— k=1

Proof. Iet C be an arbitrary orthogonal matrix, then e = CTx
is & random vector e = (e1,e2,...,em) algo having an asymptotic
normal distribution with mean zero and covariance matrix

1n e D = 1im x> = cTve
N+oo Nooo
(here and further <. > denotes the expectation of a random value).

2 2
Besides, ej+.eetep = eTe = xTccTx = xx = T . One can find such a

matrix C that clvc 1s the dlagomsl matrix with diagonal elements

7\1,..., )m « Then the statistic T is the sum of squares of asym-

ptotically. independent normal random values € jeee,€p 5 80
m

lim LP (t) = I ' 1lim (t) .
T 2
Neroo k=1 N—roo ek

_1
We have lim 2 (t) =(C1-2 i\/?\k t) 2 (see /3/. p.233), s0

o ek
the theorem is proved.

Function (3) coincides with the characteristic fumction of a '
X 2-aistribution if and only if A =1 for ke3,...,m. We failed
to obtain en analytic expression for the density function £(x), but
in any way the distribution of T statistic depends on F(E1,E2)
end camnot be tabulated (contrary to X 2-distribution).

Corollary. If the random quantities E1 and E2 are indepen-
dent, i.e. Pyy = Py, Py o then the statistic T hes a limiting
Xz-distribution with m-2 degrees of freedom.

Proof. Since pyy = Py, P.j » the matrix V12 consists of zeroes
alone. Hence the eigenvalues of V matrix coincide with those of V1
and V2 matrices. These matrices have one zero eigenvalue each, and
the rest of their eigenvalues are ones (see /3/, p.419). This proves
the Corollary.

3. Generalization of T statigtic to the case of dependent va-
riables E1, E2. Let V4 and Vo be vector columns < , \/pz',...

Pi.
eoey \‘Pm, 3050,000,0) and (0,0,¢44,0, VP.q» \)P.znv-’ \/P,m ) res-
pectivel}. One can easy find that Vv1 = sz =0, s0 v, 2a.nd AP

are eigenvectors of V with the eigenvalue O. Then the rank of the
V matrix does not exceed m=-2. The ranksg of the V1 and V2 mat-
rices are m,~1 and m,~1 respectively (/3/, p.419), therefore
rank V = m-2 in general case.

We shall suppose that the distribution F(E1,E2) has a general
form, i.e. rank V = m~-2 (or ?\3> 0 =~ see Theorem 1), In this case
one can find a normal random vector e = (e‘l seessep) with mean zero
and the unit covariance matrix such that

X = Ae +op(1) , (4)

where o_(1) denotes a random value tending to O in probability as
N-—»oo and A is a mXm matrix with zeroes in the m-th and m.1—th
columns. The matrices A and V are linked by the following rela-

tionship:

V= Nlim <IIT> = <AeeTAT> = A <eeT> AT = MT. (5)
>0



One can choose the A matrix as a low-triangular one , then its
elements can be calculated directly from (5).
We propose a generalization Tm of the statistic T as a qua-
dratic form m
T, = Z Xy Xy G = ex , (6)
k,1=1
where Q = (qkl) is the symmetric mxm matrix which will be spe-
cified below. From (4), (6) we obtain T, = eT(alqa)e + op(1) .
Let the Q matrix be chosen so that
L]
T T
AU =1 - °m1cm1 - cpln o (7)
where Sy denotes the vector column of the length m with one at
the k-th position and zeroes at the others. If (7) holds then we
obtain T = e$+e§+...+e2 -qte +1+...+e2 +op(1) . Therefore we

m, m-1

have proved the following theorem:

Theorem 2. Suppose that rank V = m-2 and the Q matrix sa-
tisfies the condition (7). Then the asymptotic distribution of T
statistic is that of Xa with m-2 degrees of freedom,

In the case of a d—dimens:.ona.l distribution F (4> 2) the con-

T T
dition (7) has the form AlQA = m1+"‘+md c °m1 - cm'1'+mgcm1+m2 -
T ! .
—.oe™ °m1+..-+md9m1+..-+md » where % is the number of cells in

the p-th axis of the distribution F(E1,...,Ed), P=1y000,de

Condition (7) defines the Q matrix correctly, but not uniquely.
We cen define the Q matrix uniquely adding a natural condition:
the mﬁhth and m—-th columnsg and rows of Q consist of zeroes alone.
After that the elements of Q can be consequently evaluated from (7)
from right to left end from bottom up (see the Appendix for the
FORIRAN-IV program for calculating the matrices A and Q from the
given matrix V).

Note. The ambiguity of the definition of the Q matrix in (7)
does not influence the value of Tm statistic, i.e. any choice of
the matrix Q satisfying (7) does not involve any loss of informa~-
tion. Actually, let I be the subspace in the m~-dimensional vector
gpace which is orthogonal to the vectors V4 and Voo Then L is
a characteristic space of the matrix V . The direct analysis of the
geometrical interpretation of formulae (5) and (7) shows that the Q
matrix is uniquely defined in L , mamely (Q[y) = (V])™! , where
'IL dgnotes the restriction of an operator to the subspace 1 . The
vectors Qv1 and Qv, may take arbitrary velues. One can easily

check it up that the vector x is orthogonal to vq and Vo s i.e.

X€L . Then the vector Qx and the value T = x'Qx are defined by

(7) uniquely. In our further considerations we shall suppose that the
operator Q is identical at V4 and R Qv1 = vy and Qv2 = Vo
In that case the matrix Q is strictly positive: Q>O0.

4. Estimating unknown paremeters on the bagig of T statigtic.
It is known (/?/, p.p. 426-427) that minimizing the ) “-~sum leads to
a test statistic having an asymptotical Xz-distribution with (m-s-1)
degrees of freedom, where m is the number of cells in the data
histogram and s 1is the number of estimated parameters. We obtain
an apalogous result for Tm statistic in the case of the multiva-
riate distribution with incomplete data.

let ol= (o(1,...,o< ) be the vector of unknowvmn parameters de-—
fined in a domain I<R%, and o/ (0L1,...,o{ ) be its "true"

.value (s<m~1). We suppose that

(i) functions pkl(oﬁ) have continuous second derivatives;

(ii) ol is an inner point of the domain I .

Under these conditions the estimate minimizing Tm is a solu-
tion of the equation 'aTm/aoér y T=lgeees8 5 OT

m
qkl

1 9%
=F = aT"lqu.*xkxl?ﬂ‘
k,1=

9py M-Npy 9‘11:1
-2 Z (X )xlqkl + Z nX 50 ¢
k, 1m1/a"(r ‘/—i: Zmpkﬁ ‘/—_ k,1=1

As in 73/, p.426, we shall consider the modified estimate mini-
mizing T, which is obtained by excluding all terms of the order
0_(1/{N) from the last expression and keeping only the terms of the’
order Op(1). Now we have simpler equations

9& - XqaGQyq = 0
1:,1:1,‘;"(r @ ol
Let us suppose that the followlng additional conditions are valid:
(1ii) pk(oL)>02 for some c¢>0 and all k,ol;
(iv) matrix D = (gpk/Qe{r) s K=1ye00,l1 5 Tslye00,8 18 of rank

s for all ol;
(v) rank V = m-2 and, moreover, A3(o()> ¢ for all ol (see

notation in Theorem 1).

(8)



The lagt condition 1s an extra one compared with the classic
theoren (3, p.p. 426-427).

Theorem 3, Under conditions (1)-(v) sys}{am (8) has one and only
one solution of = (o(1,...,o(s) such that of tends tvolo in pro-
bability as N--e<, The statistic Tm at the point of has an asgy-
mptotic Xidistribution with (m-s-2) degrees of freedom.

Proof. The proof of the theorem is very much similar to that of
the classic theorem ( 3 s PePe 427-434). Therefore we shortly descri-
be® the common steps preserving the notation of H.Cramer /3/ and dis-
cuss new ones in detail.

Let us denote p; = pk(olo), qﬁl = qkl(olo) and QPE/ao(r =
= 9P /0 (o{,)+ System (8) is equivalent to

$otedy T G
v k 197;3% \/51cP1 )

t=1 =
m ’ [ o o (8%
) NNy 9p; %9
N N 0ol T * h)r ’
k,1=1 T PyPy
where
o [o]
A I " [3_1{; Yy 9P % _
T 2 J 0.0
Kle1 ¥ L Vppy 9% ;Plsf
m o (o]
- D e P L W) _ &%)
5 9 ‘? 0,0
k,1=1 odt PPy T VyP
& 9p apy (p-p)—ngpg(o(-o)]
L oy 5w | P s (K| -
) =
. 1 9}
Let us introduce & matrixz B = (byq)s by = —m— =X , k=l,.00
k1l k1 \/;g‘ (g

esesly l=1,400,8 and a vector column W= (OJ1,6JZ,...,&)S). Then
one can rewrite (82) in the matrix form

BTaB(ol-ol)) = ¥V2 BTz + w0 (9
where Q = (qfcl) and x = x(o{_ ). Note that the matrix B can be
represented as B = P D, where D = D(olo) and P, is the diago-
nal matrix formed by the diagonal elements 1/ p?, 1/¢pg,...,1/\/p§1 .
Hence, by virtue of assumption (iv), the matrix B is of rank s.
Using the note at the end of Section 3, we deduce that the matrix
BTQB id not a singular one, so equation (9) can be rewritten as

ol =oly + 712 8%e) 8%z + BTem) M w . (10)

According to Chebyshev's inequality, P{ I Nk-ﬂp;; ]2 S\/F}s plc;/g2
for any S> 0. Hence

P{‘Nk—Np?kl) 3[1? 'for at least one k=1,...,m}<

m
=2 o -2
4 s Z pk = 2 8 .
k=1

Teking @ = §/8 ana uging (iii) we obtain [ku< S/c for every
k=1,.e0,m With the probability Py= 1284 T p 1 as Neoo),

By virtue of (i),(iii),(iv) and the note at the end of Section 3
the quantities Qe and () are smooth function qf ol . Therefore,
as in /37 , for eny ol' and ol" with the probability Py the fol-
lowing inequality holds:

| ) - @ o) € Kol =ol'| (foL' el +['=elo] + SAT (11)

where K> O is a constant.
Let us introduce a sequence of vectors {ol.uj s ¥ 21,2500, ¢
oly=oly+ v1/2 (8%m) 18T + BT W (ol )
with
oL, -, =512 ") T (12)
i.e. we have Ie(1 - °4°l <c1 Slﬁ with the probability Iy , where

c,> 0 is & constant. By virtue of (11) for some constant c;>0 we
have with the probability PN

oLy, -oy| =[BT wiety) - wet, ][
V+1 v Y V=1
écz I O(v- O<V"1‘ (,dv-olol +'Oly_1 -o(ol + §/ﬁ) .

Using induction, one can easily show that for sufficiently large N
with the probability PN

y Y +1 .
[oLyy =oly| < eged SpmIVH (13)
where c, = (4cy+1 )c2 . Therefore, with the probability Py , the

7p
sequence {oly} hes & limlt - a vector ol which is a solution of
(10). By virtue of (13) we have | L - o(ol < 2cy SNT with the

, probability Py, i.e. o tends to of, in probebility as N->eo.

Iz ol 1is another solution of (10) tending to o{, in probability,
then by virtue of (11), with the probability 2, ,

|L-oL| - [ @)1 w (L) - wd]}] <
ceonst |L=ol| (|- olol + |L-clol + 8 ) .

But the expression within parenthesis tends to O in probability as




N—oo , 50 a contradiction arises. Therefore the first part of the
Theorem has been proved.

Note. So far we did not use the special form of the matrix Q
defined by (7). Hence the first part of the Theorem is valid for any
matrix Q = Q(ol) which is & smooth function of ol and has eigen-
values 7\1,...,7\m satisfying the restrictlon 0<e'<| Al e < oo
for all X and o for some constants c, c!

Now we continue the proof of the Theorem. According to (9) and
(11) we have (B QB)-1w(oL)- 2 - eL =(ol2 o{)+(ol =l + eee
and by virtue of (13) we have

2
|8%) ()| £ consti— (14)
with the probability PN‘ Hence 82
- ot = 172 @) 8% + 0, (5 (15)

(here and further © (NE) denotes such a random value F that
sup P{N F)c}-—o as c —»o0).
N

A N
Let us consider the quantities py = py(cl) and

N, -Kp, - pk B, - pp)°

Yk " \ ¥B, " T )}’ﬁkpku(m+r° y " VI Bypy (U pk+0pk5) )

e
’aa
Thege relations can be rewritten as 82
/N
y=x—ﬁ-B(4—°‘o)+0p(T) ’

where y is the vector column (¥qsees,¥y) o Applying (14) and (15)
we obtain

y=x-~- B(BTe) 'BTex -

-9 0(82)
1/ vy R

_V‘—'pk Py

1. 32
N-B(8TaB) Tw (L) + 0y () =

82
=Rx+O(T) s

- B(B QB)'1 TQ By virtue of Lemma 1 the vector y is
T

where R =

asymptotlcally normsl with mean zero and covariance matr:.x V = RVR"™.

The value of the statistic T at the point ol = o{ is

r1.‘m(o/L\) = yTey = yTQy + yT(S-Q)y s

where 6 = Q(&i) « Since the matz;J;.x Q 1s a smooth function of « ,
19 - ol = op(é’/\/if), ice. T(d) =y Ty + 0 (1)

Let us return to the vectors Vi Vo and the subspace L (see
Section 3). It is easy to check it up that BT vy = BTV2 =0, i.e.
the image of the s-dimensional vector space R® 1ies inside the
space L due to B operation. Let L, = Q@BR% < L and let L,
be the orthogonal complement to L, 1in L . Note that dim L,=8>
dim L1 = m~8-2 + Let us represent the vector y as the sum Y=Yt

¥4 c Ly » 3;'c>_l_L1 . Remember that =x€L (Section 3), hence

(vk,y) = (vk,Rx) + op(1) = op('1) for k=1,2 .

Then for any s-~dimensional vector w we have
(@Bw,y) = (w,BTQRx) + op(1) = op(1) .

‘Therefore ”yOH = 0,(1) end Tm(@) = nyy.l +0,(1) . The vector y,,
like y , is asymptotically normel with mean zero and covariance
matrix V.) , i.es rank V1 = m-s-2 .

Cne cen find such a normal vector e with mean zero and the
unit covariance matrix that ¥y, = de +o (1) , A is a matrix of the
order mxm which has zeroes in its (s+2) last colu.mns. Then
V, =<y - <AeeTAT>= T . since T (aL) = eT(aTQa)e + 0, (1)
the sta.tistic T (oL) hag a limiting x -distribution with m-g-2
degrees of freedom if and only if the matrix V A QA is a diago-
nal one, its first (m-s-2) diagonal elements are ones and the rest
of its elements are zeroes. Since rank A = m-g-2 , this condition
is equivalent to AATQ_AA A.A s lee. V QV = V « The last condi-
tion can be proved directly if one uses the su'bstltution V1 RVR
and the formula QV = VQ = Im-v$v1 -\)gv2 (see Section 3). Theorem 3
has been completely proved.

In the case of the d-dimensional distribution F (d>2) the
statigtic 'I‘m(o() hes the asymptotic distribution of xz with
n-g-d degrees of freedom. The proof of the Theorem does not change
in this case.

N
Note that the asymptotic covariance matrix of ol estimate is
5172 %) .

Appendix. For numerical comparison of the discussed distributions
we have made a computer experiment. We constructed distribution (1)
for a,=90.74 and a,=3.71 . The ranges of the variables E, , E,
were subdivided into 15 equal intervals each (m;=m,=15), and 500
events were being generated with the distribution according to law

11 .



(1), i.e. KN=500. It was done 12.000times and the sampling distribu-
tion functions of T and T, statistics were calculated at four
points - quantiles of the X 2_aigtribution with 28 degrees of
freedom (m1+m2-2=28). The results are presented in the table

41.3 45.4 48.3 56.9
p{12> =} 5% 2% 1% 0.1%
{1 > x} 4.7% 1.75% 1.12% 0.15%
?j;?>-x} 545% 2.6T% 1.80% 0.30%

It is seen that the T statistic distribution considerably
deviates from the f_z—diatribution n the "tail", i.e. in the most
important region of big values of the X 2_variable: the error of
the first kind can be 2-3 times larger than the tabular one.

In conclusion we give the text of the FORTRAN-IV program for
calculating the A and Q matrices from the given V matrix.

This algorithm requires m4/2 + 5/3 n + 7/2 m’ +2m floating-point
operation and m square root subroutine calls.

SUBROUTINE QMATR (Q,4,V,M,M1)

C IT CALCULATES THE MATRICES Q(M,M) AND A(M,M) FROM THE GIVEN
C MATRIX V(M,M), SEE THE NOTATION IN THE TEXT., ONLY FOR D=2.

DIMENSION Q(M,M),A(M,M),V(M,M)
0 e FIRST STEP: CALCULATE THE MATRIX A,
DO 4 I=1,M
DO 3 J=1
AT,
. IF (J.Gm.I) GO TO 3

IF (J.EQ.1) GO TO 2
J1=Jd-1
D0 1 L=1,
1 SUM=SUM+A(I L)*A(J,L)
2 ¥ (J.1r.1) A(I,d)=(V(I, J)-SUM)/A(I J)
IF (J.BEQ.I) A(I,J)= SQRT(ABS(V(I J)~SUM)
2 CONTINUE

C mmem———————— SECOND STEP: CALCULATE THE MATRIX Q.

IP gl.EQ.M1.0R.I.EQ.M) GO TO 8
IF (J.EQ.M1,0R.J.EQ.M) GO T0 8
I1 =I+1

J1=J+1

DO 5 K=I1,

5 SUH_SUM+A(K I)*Q(K,J)

L]

e ——— 3y Y T . T %

A ® e o rh Ty T pr—— et A TT T Vvt

SUM=SUM*A(J,J)
DO 7 L=J1,M
D=¢,
DO 6 K=I,M
6 D=D+A(K, I)*Q(X,L)
SUM:SUH+D*A(L J)
7 CONTINUE
S=4.
IF (I.EQ.J) S=
QI,J)= (S-SUM)/(A(I I)*A(3,J))
8 Q(J,I1)=Q(I,J
9 CONTINUE
RETURN
END

We acknowledge the valuable help of N.V.Guseve and A.M.Rozhdest~-
vensky in computer simulation.
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YepHor H.U., Ocockos I.A., KypBatos B.C. E5-87-698
OyeHKa NapaMeTPOB M KPUTEPHI COTNACMA ANA MHOFOMEpHLIX

pacnpefeneHuit B CAyuae faHHeIX, MPeacTaBAeHHbIX

B BUAE OOHOMEPHHX FUCTOFDaMM

HccneposaHy 3aflayv OUEHKM NapaMeTPOB MHOMOMEPHMX EEPOATHOCTHBIX pachpegde-
feHUit U NPOBEPKW CTATUCTUUECKNX FUNOTe3d B PUBMUECKUX OKCNepUMeHTax, 8 KOTOPbIX
faHHbe NOCTYNawT B BUAE OAHOMEPHBMX FUCTOrpaMM OTAeNbHO NO KaX[oH nepeMeHHOM .
HccnenoBaH NPUMEHANWMACA OBMYHO MeTod ''cymMu y2-cTaTuCTUK'' NOo BCeM OTAeMbHbLM
nepemMeHHuM, NOKA3aHa €ro HEeKOPPEKTHOCTbL B CAyuyae 3aBUCHMHX NepemeHHsx. Mpen-
noweHo koppekTHoe ofofueHne 3TOro metoda, ANA KOTOPOrO [OKa3aHw aHanoru Krnac-
CMUECKMX TeopeM O fpeaenbHoOM pacnpegeneHnnt y2-cTaTUCTMK B CNydyae NPOBEPKY M-
noTes M B CNy4yae OUEeHKW Heuw3BeCTHwX napameTpos. lpeanoweHHWM MeTod peann3oBaH
B BMAE NPOrpamMMpl M NPOMANICTPUPOBAH HA UMCNEHHOM MPUMEpPE ANA OAHOM MoAen
NUOH-HYKNOHHbBIX B3auMOAENCTBNIA.

PaboTta BsuwnonHena 8 IlabopaTopuu BWUMCAUTENBHON TEXHUKWM W 3BTOMAETW3aUUM
onau.
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Chernov N.I., Ososkov G.A., Kurbatov V.S. E5-87-698
The Estimation of Parameters and the Goodness-of-Fit Test

for Multivariate Distributions for Data Presented as

One-Dimensional Histograms

The problems of estimating parameters of multivariate probability dis-
tributions and testing hypothesis are studied in the framework of physical
experiments where data are presented as one-dimensional histoarams for every
single variable separately. A commonly used method of '‘sum of yZ-statistics'
over all single variables is investlgated. It is shown that this method Is
incorrect for dependent variables. A correct generalisation of this method
is proposed for which analogues of classical theorems concerning asymptotic
distributions of y2-statistics are proved for testing hypothesis and estima-
ting unknown parameters. The proposed method is implemented as a FORTRAN-IV
program and illustrated by a numerical example for some model of pion-nucie-
on interactions.

The investigation has been performed at the Laboratory of Computing
Techniques and Automation, JINR,
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