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1. INTRODUCTION

A typical starting point of the various perturbative compu-
tations is a physically motivated decomposition of the Hamil-
tonian

H=T=+V. (1.1)

The pair of components T and V should be such that V is small,
i.e., H=T is a good zero-order approximation.

In the various systems exemplified by the chain models in
the solid-state physics’/Y , by the polyacetylene moleculed?,
etc., the strong-coupling component T of the Hamiltonian H
has a form of a band matrix with some 2s+] nonzero diagonals,

oe

T = 3 T .
s lm> T <n| (1.2)
]m—nlﬁs

In the standard Rayleigh-Schroedinger (RS) perturbation theo-—
ry /¥ , on the contrary, we have to use a diagonal-matrix ap-
proximation with s = 0. Then, the "strong-coupling structure"
(1.1) + (1.2) of the Hamiltonian H may lead to difficulties.

As a typical example, we may recall the anharmonic oscil-
lator

H=p2+ x% + «xt. (1.3)

A divergence of the standard RS expansions takes place he-
re’/4 . This may be related to an inadequacy of the standard
s = 0 RS assumption

H = H, + AH,, (1.4)

with a formal measure of smallness A = 0.

In our preceding papers’/% , the simplest nontrivial weake-
ning of the RS assumption s = 0 has been formulated as a tri-
diagonality postulate (Eq. (1.2) with s = 1). The numerical
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tests confirmed the feasibility and convergence of the resul-

ting modified RS formalism. In the present paper, we shall be
interested in an extension of these results to s >1.

An essence of any s> O generalization lies in fact in an
evaluation of the unperturbed propagator. Thus, in analogy to
the simple s = 0 RS formula

ot 1
R = 3 v
n=1|n>E—T <nl, (1.5)

(o] nn

the s = 1 construction /%’ preserves a non-numerical charac-
ter by means of an introduction of the analytic continued
fractions. Here, we shall generalize this procedure and des-
cribe an analogous analytic solution of the related technical
questions for s> 1.

In Sect. 2, a straightforward though rather formal genera-
lisation is described for an arbitrary matrix form of T. Then,
we point out that the assumption (1.2) with some s <o preser-
ves in fact a full analogy with its s = 1 special case. This
in fact is an essence of feasibility of our non-numerical spe-
cification of the unperturbed propagator R.

In Sect. 3, the matrix continued fractional (MCF) techni-
que is introduced and described in detail (Sect. 3.1). An ef-
ficiency of the resulting "inversion-perturbation" (IP) theo-
ry is tested then numerically on the standard example (1.3)
(Sect. 3.2).

Section 4 is a summary.

2. THE EXTENDED RS PERTURBATION THEORY
2.1. The RS Diagonality Restriction

In the textbook spirit/3/ , the RS formalism may be deri-
ved very easily after an introduction of a small variable A
in the Schroedinger equation

Hiy> = E|y >, (2.1)

via Eq. (1.4). Indeed, an insertion of the asymptotic-series
ansatz
N kK N+1 . N
lg>= 2 |y >A"+0(x ), E = X
k=o k=

»or

converts then the matrix bound-state problem (2.1) into a
hierarchy of relations

Hly, > =E |y >, (2.3)
and
k
(H-E) ¢ >+ Hlgp_ > = 2 E_ [ > k=12,... (2.4)
m=1

In the standard s = O RS context, we may start now from a
knowledge of the complete solution of the unperturbed problem
(2.3), specify the unperturbed propagator by the formula (1.5)
and treat Eq. (2.4) as a recurrent definition of corrections
in the final RS solution (2.2) /% .

In all the situations where the s = O RS series (2.2)
fails to converge, we may still start from some s 21 decompo-
sition (1.1) and try to apply the same philosophy /%’ , with
the operator T treated again as an unperturbed part of the
full Hamiltonian H, and with an arbitrary choice of the "un-
perturbed" initial state | 0> # |y, >.

2.2. An Inversion-Perturbation Formalism

In the first step, a projection operator Q = 1 - | 0><0]
is to be introduced. This enables us to define the unpertur-
bed propagator

1
R-Q—— Q, (2.5)
E,I - QTQ

say, as a numerically defined function of some (arbitrary)
unperturbed energy parameter E . .

In the s = 1 IP formalism as realised in Ref.’® , we re-
placed the RS identification of H, with T (in (2.3) and (2.4))
by a more flexible specification

H =T+ g|0><0],

o

AHl =V-g|0><0]. (2.6)

This contains a new, separable "Hartree-Fock'" field g | 0><0|
with some suitable (presumably small but variable) coupling
g. For s> 1, Eq. (2.6) will be used in the present paper.

The physical value of g is to be chosen in a way simplify-
ing, say, the unperturbed Eq. (2.3)

(T+g[0><0] —E))|yy> =0. (2.7)
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After an arbitrary normalisation <O|y, >= 1, we obtain the
solution

o> = 10> + RT[0> = [¢>, (2.8)
if and only if

g=E, - <O0[T|¢ (B>, (2.9)
(cf. also’® ). This fixed g = g(E;) uniquely.

The latter pair of definitions of [¥,> and g(E,) repre-
sents in effect an elimination of the unperturbed problem
(2.3) from the whole formalism. Thus, an IP introduction of
the parameter g in (2.6) may be understood as a "selfconsis-
tent" adaptation of the unperturbed Hamiltonian T to the a
priori chosen value E, of the trial energy parameter.

In a partial analogy to the RS theory, the IP unperturbed
problem Eq. (2.3) is also satisfied identically. The zero-
order IP wavefunction (2.8), on the contrary, acquires here
already the structure typical for the higher-order RS wave-
functions.

A systematic construction of all the higher-order IP cor-
rections remains the standard recurrent procedure familiar

from its RS predecessor. From the subsequent rows of Eq.(2.4),
we obtain

Myy> =Rlx>, [x>=MV-E)l¢>
2 (2.10)
AE =(<¢|Vig>-g)/<dl¢p> AMNEg =<x|R|x>/<¢| ¢ >,

etc.

3. AN ELIMINATION OF NUMERICAL INVERSION IN THE IP
FORMALISM

3.1. An Introduction of the Matrix Continued Fractions

A numerical inversion defines R in Eq. (2.5) for an arbit-
rary non—diagonal matrix T. Let us recall now our restriction

(1.2) and pay our further attention only to the band matrices
T.

4

o

o~
—

After the denotation

<i|T]ji> = (a)pn i=(k-1s+m j=(k-1)s+n
. 3.1
= (bk)mn i=(k~1)s+m j=ks+n ( )
= (Cyyydpy 15 ks +m j=(k-1ys+n
' mn=12,...,8 k=12,....
i.e., sxs - dimensional partitioning
a; by
arQ - | %2 22 P (3.2)
I

we shall be able to construct the unperturbed propagator R
in a purely algebraic manner.

In the first step, a suitable factorisation of E,I - QTQ
into a product of matrices

E,1 - QTQ = UDL, (3.3)
will be introduced. Its main aim is to simplify the inversion
since R = "1Dp UL,

In terms of elements of the block-diagonal factor

1 o .. . , B v

Dij = (fy Dmn 1=(k—1)s+m j=(k-1)s+n mn=12,...,8 k=12,...
(3.4)

the simple algebra defines already the respective block-two-

diagonal upper and lower triangular martix factors

I -b,f, I
U- o=befs . Li- fe%.. ! (3.5)
~f 1.
I =By fiyy kc‘f
The corresponding inversion formula
1 b1f2 blfzb2 f3
1
vo- I byl (3.6)
I

may be, mutatis mutandis, written also for the transposed
matrix L. ' ) .

Obviously, our assumption (3.3) implies that the submatri-
ces f in (3.4) must satisfy the relations




1 (3.7)1

fn = (EOI - a - bofiiiCur1) n =1,2,...
with a convenient initial choice of fy,; = O. Of course, the-
se relations must be considered in the limit N = =,
they define the quantities which are,known as the analytic

continued fractions’/®’ . For s> 1, we obtain their MCF gene-

ralisation /7.8/

f, = oo (3.8)
1

‘k+ 1
EOI - Ay e

Due to Eq. (3.6), we may summarise that for any s >1, the
whole inversion (2.5) is defined now explicitly in terms of
the auxiliary sxs - dimensional MCF matrices f,. In a way,
this array plays now a role (is an IP analogue) of the RS
unperturbed energies.

3.2. The Anharmonic Oscillator Ekxample

In the standard harmonic oscillator basis |n> n = 0,1,...,
the anharmonic oscillator Hamiltonian (1.3) is represented by
a pentadiagonal Hamiltonian matrix 7/

ao :Bo Yo

H = | ’30 ay ﬁl Y1 (3.9)
Yeee Br-1 ek Bx v
with the siéple matrix elements
a2 2 2
a = 6k0”+0(n), f =4xn"+0(n), Yo = k0 + O(n). (3.10)

14~
In Ref. ° » we have chosen a "maximal" tridiagonal subset of
the matrix elements (3.9) as our non-diagonal IP dominant com-
ponent T of the Hamiltoniam, and tested an efficiency of the
corresponding s = | IP algorithm.

From the purely algebraic point of view, the present s > 1
IP generalisation seems more suitable for a "selfconsistent"
incorporation of the large off-diagonal matrix elements of

»
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the pentadiagonal Hamiltonian (3.9) into T. For the sake of
brevity, we shall study here an extreme choice only,
T = H(V = 0) (3.11)

with the well established MCF convergence '7-87,

For the first three energy levels, we have obtained a good
convergence (cf. Tables | - 3). In comparison with the s = 1
numerical tests of Ref./5 , it proved accelerated, roughly
speaking, by a factor of two. Obviously, this reflects a
"complete selfconsistency” of T in the present case.

Table 1

A sample of convergence of the ground-state energies,
with Egxger = 4.648 8127 79/

N E(N)

0 6.000 7.000

1 4,688 4,803

2 4,644 4.611

3 4.649 4 4,654

4 4.648 805 4.649 2
5 4.648 823 4.648 2

Table 2

The dependence of results on the guess parameter Eg =
= EY 5 the first-excited-state energies with E

= 13.156 800 %/ exact

£© E® g (1)
12.8 13.156 709 13.156 706
13.0 13.156 769 13.156 769
13.2 13.156 777 13.156 777
13.4 13.156 793 13.156 793
13.6 13.156 759 13.156 792
13.8 13.156 667

13.156 447




Table 3

An interplay of parameters N and Eo for the second
cxcited state with Eegaer = 23.297 442 7% . The
deviations D = (EN) = Eggact) 10 are tabulated

o . 23.0 23.1 23,2 23.2 23.4 23.5 23.6
N

1 -155. -68. -16.4 =0,0 46 -17.8 -68, -149.
2 ~ 8l. -23. - 2.7 =0.046 + 2.8 +21. + 67.
3 41, - 7.6 = 0,46 -0.04g — 0.55 6.2 =2.7
4 =21, - 2.5 - 0.11 -0,046 _ 0,16  +L.5 +9.4
5 -10,6 - 0,78 - 0,061 0,046 -0.12 -0.44 2.7
6 - 5.3 -0.23 - 0,061 -0,046 0,12 -0.03 40,18
7 - 2.7; -0, 06 - 0,061 -0,046 0,14 -0,09 +0,08
8 -1.3 -0,02 -~ 0,061 -0,046 —-0.14 -0.11 -0.35
9 -0,69 0,00 -0.061 -0.046 0,14 -0,11 -0.03
10 -0.37 0.00 -0.061 -0.046 -0.14 -0,12 -0,20

4. SUMMARY

In a methodical context, our results illustrate nicely
that the role of a small IP parameter is in fact played by
the error Eo — Egyycr Of coupling g. It is also worth mentio-
ning that a trial and error choice of the best value of Eg
(such that g becomes equal to zero) may be used as a sort of
optimalisation of the TP prescription. In fact, this has al—
ready been derived from different principles and used in a
.numerical MCF solution of the problem in question (c£.77 ).

We may notice that a many-times repeated computation of
the auxiliary sequence f, is needed to find the E, giving g =
= 0. In this context, our IP formalism of Sect. 3.1 is more
economical - it necessitates an evaluation of merely one set
of the MCF auxiliary matrices f (E.).
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In our sample of applications, an overall pattern of de-
pendence of the results and their precision on our choice of
E, remains the same as in Ref.’/% - weak and flat in a suf-
ficiently broad interval of E,'s. This is fairly obvious from
our numerical results where, for the sake of definitless, we
have chosen « = 1 and restricted out attention to the s-wave
only. This proved sufficient for the illustration purposes
and enabled us to confirm a good and reliable applicability
of the IP formalism to the higher excited states.

REFERENCES

1. Bullett D.W., Haydock R., Heine V., Kelly M.J. - Solid
State Physics, vol. 35, ed.H.Ehrenreich et al., Academic,
New York, 1980.

2. Baeriswyl D. In: '"Theoretical Aspects of Band Structures
and El:zctronic Properties of Pseudo—-One-Dimensional Solids",
ed. H.Kamimura, D.Reidel Publ.Comp., Amsterdam, 1985.

3. Morse P.M., Feshbach H. Methods of Theoretical Physics,
McGraw-Hill, New York, 1953.

4. Simon B. - Ann.Phys., 1970, 58, 76, (N.Y.).

5. Znojil M. - Phys.Rev., 1987, A 35, p.2448; Phys.Lett.,
1987, A 120, p.317;

Znojil M., Flynn M., Bishop R.F. unpublished.

6. Wall H.S. Analytic Theory of Continued Fractions, Van
Nostrand, London, 1948.

7. Graffi S., Grecchi V. - Lett.Nuovo Cimento, 1975, 12,p.425.

8. Znojil M. - Phys.Rev., 1981, D 24, p.903; J.Math.Phys.,
1984, 25, p.2979.

9. Seetharaman M. Vasan S.S. - J.Math.Phys., 1986, 27, p.1031.

Received by Publishing Department
on August 12, 1987.



3Houn M. E5-87-634
TeopHa BO3MYmMEHHH C MAaTPHUYHLIMH LeNHbMH OpO6aAMH

Teopus Bo3MymeHHIl Panesa-llpeaunrepa pacmupseTcs Ha Clay-
uali seHTOYHBIX MaTpHu Hgy, KoTophle mpepcTaBiawT 0606meHHe
O6bIKHOBEHHOI'O OHAaroHallbHOro npubmmxkeHHA. OxupaeTcsd yiyume-|
HHe CXOOMMOCTH BO3MYTHTEJILHHX DANOB BCJeNCTBHe ''caMocoriia-—
copaHHoro" sbdeKTHBHOTO BKIIOYEHHS GONBNHX HeIHaTroHAaJIbHBIX
MaTpHUHLIX 3jieMeHTOB H B HeBosMymeHHwbt npomararop R. llocnept-
HHH oInepaTop M BecChb pfAO TeOpHUH BO3MymeHUH anrebpauyecku
ypoaeTcd IMOCTPOMTh Kak GYHKLUMH BCMOMOTAaTe IbHBIX MaTpPHYHLIX
uenHex gpobefi. CXOOHMMOCTBL OEeMOHCTPHUPYETCHA UHUCJIEHHO Ha IMpHU-
Mepe aHrapMOHMUYECKOro ocuHmaaTropa - ¢opMasiisM NpUMEHUM B
KayecTBe o6me# M HOBOH TeXHHKH MNepecyMMHpPOBAHMSA.

Pa6ora BrimonHeHa B Jla6opaTopuu TeopeTHueCckol dU3UKHU
0)50:04 8
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Znojil M. ' E5-87-634
Perturbation Theory with the Matrix Continued
Fractions

An idea of using the nondiagonal unperturbed Hamiltoni-
ans is further developed. We admit a band-matrix structure
of Hy and describe how the propagator R may be constructed
in terms of the matrix continued fractions. The new pertur}
bation prescription is then described in more detail, Its
numerical test employs the standard anharmonic osé¢illator
example and shows a good applicability of the formalism,
presumably to all the systems with a strong coupling bet-
ween the neighbouring "unperturbed" orbitals.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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