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1.	 INTRODUCTION 

A typicaI starting point of the various perturbative compu­
tations is a' physicaIIy motivated decomposition of the HamiI­
tonian 

H	 = T + V. (1. 1) 

The pair of components T and V should be such that V is smaII , 
i.e., H = T is a good zero-order approximation. 

In the various' systems exempIified by the chain models in 
the solid-st~te physics/ v , by the polyacetylene moleculei~, 
etc., the strong-coupling component T of the HamiItonian H 
has a forro of a band matrix with some 2s+1 nonzero diagonaIs, 

00 

T = 2 [ rn > T <n I.rnn m,n= o (1 .2)
Irn-n1::; s 

In the standard RayIeigh-Schroedinger (RS) perturbation theo­
ry/Y , on the contrary, we have to use a diagonal-matrix ap­
proximation with s = O. Then, the "strong-coupling structuie" 
(1.1)	 + (1.2) of the HamiItonian H may Iead to difficuIties • 

As a typicaI exampIe, we may recaII the anharmonic osciI­
Iator 

2 2 4
H=p+x +KX. 

A divergence of the standard RS 
re/~ • This rnay be reIated to 
s = O RS assumption 

H H o + À H l' 

(1. 3) 

expansions takes pIace he­
an inadequacy of the standard 

( 1 .4) 

with a formal measure of smaIIness À ~ o. 
In our preceding papers/5/ , the simpIest nontrivial weake­

ning of the RS assumption s = O has been formulated as a tri ­
diagonality postulate (Eq. (1.2) with s = 1). The numericaI 

~ r;v -..... t 

Ob'\eah,H~tiHb4~l :;HCT'lJTYl \ 
© Ooo.e,I1HHeHHbIH HH~\\~~~P!WIJÇ101~nH~.nY6Ha, 1987 

u ""~JI- ""1 .-." '"ri"! ,~ .N~' t 11 .. ,,: .ti ) ~ ~1 

1 

I 



00 

tests confirmed the feasibility and convergence of the resul­
ting modified RS formalismo In the present paper, we shall be 
interested in an extension of these results to s >1. 

An essence of any s> O generalization lies in fact in an 
evaluation of the unperturbed propagator. Thus, in analogy to 
the simple s = O RS formula 

R ~ 
1 

<n I, (1 .5) 
n = 1 

the s = 1 construction /5/ preserves a non-numerical charac­
ter by means of an introduction of the analytic continued 
fractions. Here, we shall generalize this procedure and des­
cribe an analogous analytic solution of the related'technical 
questions for s > 1• 

In Sect. 2, a straightforward though rather formal genera­
lisation is described for an arbitrary matrix form of T. Then, 
we point out that the assumption (1.2) with some s < oe preser­
v~s in fact a full analogy with its s = 1 special case. This 
in fact is an essence of feasibility of our non-numerical spe­
cification of the unperturbed propagator R. 

In Sect. 3, the matrix continued fractional (MCF) techni­
que is introduced and described in detail (Sect. 3.1). An ef­
ficiency of the resulting "inversion-perturbation" (IP) theo­
ry is tested then numerically on the standard example (1.3) 
(Sect. 3.2). 

Section 4 is a summary. 

2. THE EXTENDED ~S PERTURBATION THEORY 

2.1. The RS Diagonality Restriction 

In the textbook spirit/3 / , the RS formalism may be deri ­
ved very easily after an introduction of a small variable À 

in the Schroedinger equation 

HIl/J> = Eltf!>, (2.1) 

via Eq. (1.4). Indeed, an insertion of the asymptotic-series 
ansatz 

~ 

N N+l N N+lkIt/I> ~ I t/l > À k + O ( À ) , E ~ E À + O(À ), (2.2)k kk=o k=o 

... 

converts then the matrix bound-state problem (2.1) into a 
hierarchy of relations 

(2.3)H I t/I > = E I t/I >,o o o o 

and 
k 

k = 1,2, .... (2.4)
(H o - E o) 1 t/I k> + H 11 l/Jk- 1> ~ Em Il/Jk-rrr

m=l 

In the standard s = O RS context, we may start now from a 
knowledge of the complete solution of the unperturbed problem 
(2.3), specify the unperturbed propagator by the formula (1.5) 
and treat Eq. (2.4) as a recurrent definition of corrections 
in the final RS solution (2.2) /3/ • 

In alI the situations where the s = O RS series (2.2) 
fails to converge, we may still start from some s~ 1 decompo­
sition (1.1) and try to apply the same philosophy/5/ , with 
the operator T treated again as an unperturbed part of the 
full Hamiltonian H, and with an arbitrary choice of the "un­
perturbed" ini tial state I O> ,. Il/Jo >. 

2.2. An Inversion-Perturbation Formalism 

In the first step, a projection operator Q = 1 - 10><01 
is to be introduced. 'This enables us to define the unpertur­
bed propagator 

1 
R Q Q, (2.5) 

EoI - QTQ 

say, as a numerically defined function of some (arbitrary) 
unperturbed energy parameter E •o 

In the s = 1 IP formalism as realised in Ref. /5/ , we re­
placed the RS identification of H with T (in (2.3) and (2.4))o
 
by a more flexible specification
 

H T + gIO><OI, ÀH1 = V - g IO > < O I . (2.6)
o 

This contains a new, separable "Hart.ree-Fock" field g I 0>.<0 I 
with some suitable (presumably small but variable) coupling 
g. For 's> 1, Eq. (2.6) will be used in the present paper. 

The physical value of g i8 to be chosen in a wa~ simplify­
ing, say, the unperturbed Eq. (2.3) 

(T + g lO> < O I - Eo) Il/J o > = O. (2.7) 

3 
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After an arbitrary normalisation <o I t/Jo > = 1, we obtain the 
solution 

It/Jo > =: lO> +RTIO> =Içp>,	 (2.8) 

if	 and only if 
'~ 

g =: E o - < O I T I çp (E o» '	 (2.9) 

(cf. also/5/ ). This fixed g = g(E o) uniquely. 
The latter pair of definitions pf It/Jo > and g(E o) repre­

$ents in effect an elimination of the unperturbed problem 
(2.3) from the whole formalismo Thus, an IP introduction of 
the parameter g in (2.6) may be understood' as a "selfconsis­
tent" adaptation of the unperturbed Hamiltonian T to the a 
priori chosen value Eo of the trial energy parameter. 

In a partial analogy to the RS theory, the IP unperturbed 
problem Eq. (2.3) is also satisfied identically. The zero­
order IP wavefunction (2.8), on the contrary, acquires here 
already the structure typical for the higher-order RS wave­
functions. 

A systematic construction of alI the higher-order IP cor­
rections remains the standard recurrent procedure familiar 
from its RS predecessor. From the subsequent rows of Eq.(2.4), 
we obtain 

À I t/J 1 >' =: R I X >, I X > =: À (V - E 1) I çp > 
(2.10)
 

À E 1 =: ( <çp I V I çp> - g)/ < çp I çp >, À2E 2 == <X I R I X> / < çp I çp >,
 

etc. 

3.	 AN ELIMINATION OF NUMERICAL INVERSION IN THE IP 
FORMALISH ~i 

3.1. An Introduction of the Matrix Continued Fractions 

A nvmerical inversíon defines R in Eq. (2.5) for an arbít ­
rary non-diagonal rnatrix T. Let us recaI I now our restriction 
(1.2) and pay 'our further attention only to the band matrices 
T. 

4 

After the denotation 
< i I T \ j > =: (a ) i =: (k - l}s + m j =: (k.- l)'s+ n 

k mn 
(3.1)

i =: (k - 1) S + m =: ks + n(bk)mn 

j =: (k - l)'s + n 

I
(Ck+ 1 )mn i ': ks + m . m.n =: 1.2, ...• 's k =: 1.2 •.... 

i. e. , sxs - dimensional partitionin~ 

b 1 
aI

QTQ =: c 2 a2 b2	 (3.2)... 
c k a k J

we shall be able to construct the unperturbed propagator R 
in a purely algebraic manner. 

In the first step, a suitable factorisation of EoI - QTQ 
into a product of matrices 

Eol - QTQ =: UDL. (3.3) 
will be introduced. Its main aim is to simp~ify the inversion 

1 n- 1u-1•since R = L 
In terms of elements of the block-diagonal factor 

D~1 =: (fk )m~ i=: (k-l)'s + m j = (k -l}s + n m,n =: 1,2 •... ,·s k = 1,2,... 

(3.4) 
the simple algebra defines already the respective block-two­
diagonal upper and lower triangular martix factors 

II	 -b1f2 

- f 2C~.. IU = I - b2 f3 . (3.5)• L 
- fkCk I

[	 I - bk fk + 1 

The corresponding inversion formula 

b f b f f
1 2 1 2b2 3~I ~ II (3.6)I b 2 f 3 

I 

may be, mutatis mutandis, wri~ten also for the transposed 
matrix L. 

Obviously, our assumption (3.3) implies that the submatri ­
ces f 

n 
in (3.4) must satisfy the relations 

5 



(3.8) 

(3.7)n == 1,2, ... 

C'k + 1.E I - a k - bk E I _ a k+ 1 _o o 

1 

1 
f 

k 

-1 
f = (E I - a - bnfn+1Cn+l)n o n 

with a convenient initial choice of f N + 1 = O. Of course, the­
se relations must be considered in the limit N 1~. For s = 1, 
they define the quantities which are.known as the analytic 
continued fractions / 61 • For s> 1, we obtain their MCF gene­
ralisation 17,81 

\~ 

'~ 
r; 

(3. 1 1) T = H(V = O) 

with the well established MCF convergence /7-81 • 

For the first three energy leveIs, we have obtained a good 
convergence (cf. Tables 1 - 3). In comparison with the s = 1 
numerical tests of Ref./ W , it proved accelerated, roughly 
speaking, by a factor of two. Obviously, this reflects a 
"complete selfconsistency" of T in the present case. 

the pentadiagonal Hamiltonian (3.9) into T. For the sake of 
brevity, we shall study her.e an ~xtreme choice only, 

Due to Eq. (3.6), we may summarise that for any s LI, the 
whQle inversion (2.5) is defined now explicitly in terms of 
the auxiliary sxs - dimensional MCF matrices f n • In a way, 
this array plays now a role (is an IP analogue) of the RS 
unperturbed energies. 

..... 
A sample of convergence of the ground-state 
with Eexact = 4.648 8127 191 

N E (N) 

Table 1 

energies~ 

6 

3.2. The Anharmonic Oscillator Example 

(3. lO) 

(3.9) 

2
Kn + O(n). 

Yk 

Yn 

f3 k 

Yl 

2 2 
a n = 6K n + O( n ) • f3 n = 41< n + O( n ) • 

with the si~ple matrix elements 

In the standard harmonic oscillator basis In>, n = 0,1, ... , 
the anharmonic oscillator Hamiltonian (1.3) is represented by 
a pentadiagonal Hamil tonian matrix /7/ 

[ 

a o f30 Yo 

. f30 a 1 f3 1 

Yk-2 1?k-l a k 

H 

In Ref. 15 

1 

, we have chosen a "maximal" tridiagonal subset of 
the matrix elements (3.9) as our non-diagonal IP dominant com­
ponent T of the Hamiltonian, and tested an efficiency of the 
corresponding s = 1 IP algorithm. 

From the purely algebraic point of view, the present s > 1 
IP generalisation seems more suitable for a "selfconsistent" 
incorporation of the large..off-diagonal matrix elements of 

I; 

:f. 
~, 

t 
E{O) E(9) E (10) 

12.8 13.156 709 13.156 706 
13.0 13.156 769 13.156 769 
13.2 13.156 777 13.156 777 
13.4 13.156 793 13.156 793 
13.6 13.156 759 13.156 792 
13.8 13.156 667 13.156 447. 

Tabl.e 2 

The dependence of results on the guess parâmeter Eo = 
= E(O) ; the first~excited-state energies with Eexact = 
= 13.156 800/ 91 

O 6.000 7.000 
1 4.688 4.803 
2 4.644 4.611 
3 4.649 4 4.654 
4 4.648 805 4.649 2 
5 4.648 823 4.648 2 
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---------------------------------------------------------------

Table 3 

An interplay of parameters N and Eo for the second 
excited state with Eexact = 23.297 442 /9/ • The 
deviations D = (E(N) - Eexact) 10 are tabulated 

'Eo . 23. O 2,3.1 213.2 23.2 23.4 23.5 23.6 

N 

1 

2 

-155. 

- 81. 

-68. 

-23. 

-16.4 

- 2.7 

-0.0 46 

_0.0 46 

-17.a 

+ 2.8 

-68. 

+21. 

-149. 

+ 67. 

3 .-41. - 7.6 - 0.46 -0.046 - 0.55 -6.2 -2.7 

4 -21. -.2.5 - 0.11 -O. O 46 - 0.16 +1.5 +9.4 

5 -10.6 - 0.78 _ 0.061 -0.046 -0.12 -0.44 -2.7 

6 - 5.3 -0.23 _ 0.061 _0.046 _0.12 -0.03 t O•18 

7 

8 

9 

- 2~7~ 

-1.3 

_0.69 

-0.06 

_0.02 

0.00 

_ 0.061 -0.046 

- 0.061 _0.046 

_0.061 _0.046 

-0.14 

-0.14 

_0.14 

-0.09 

-0.11 

_0.11 

+0.08 

_0.35 

_0.03 

10 
-

-;0.37 0.00 -0.061 _0.046 _0.14 _0.12 _0.20 

4. SUMMARY 

In a methodical context, our results illustrate nicely 
that the role of a small IP parameter is in fact played by 
the error Eo - Eexact of coupling g. It is also worth mentio­
ning that a trial and error choice of the best value of Eo 
(such that g becornes equal to zero) may be used as a sort' of 
optimalisation of the JP prescription. In fact, this has al-' 
ready been derived from different principIes and used in a 

.numerical }1CF solution of the problem in question (cf. /7/ ). 

We may notice that a many-times repeated computation of 
the auxiliary sequence f n is needed to find the Eo giving g = 
= O. In this context, our IP formalism of Sect~ 3.1 is more 
economical - it necessitates an evaluation of merely one set 
of the MCF auxiliary matrices fn(E o) ' 

In our sample of applications, an overall pattern of de­
pendence of the results and their precision on our choice of 
Eo rernains the same as in Ref. /5/ - weak and flat in a suf­
ficiently broad interval of Eo's. This is fairly obvious from 
our numerical results where, for the sake of definitless, we 
have chosen K = 1 and restricted out attention to the s-wave 
only. This proved sufficient for the illustration purposes 
and enabled us to confirm a good and reliable applicability 

~ of the IP formalism to the higher excited states. 

'I f" 
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3Hmm M. ES-87-634 
TeopHR B03M~eHHH c MaTpuqHb~H QenHb~H ~po6RMH 

TeopuR B03M~eHHH P3neR-llipe~uHrepa pacmupReTcR Ha cny­
qaH neHToqHbiX MaTpHQ H0 , KOTOPbie npe~cTaBnHIOT o6o6~eHue 
oobiKHOBeHHoro ~uaroHanbHoro npuomDKeHHH. OJKu~aeTcR ynyqme­
HHe CXO~HMOCTH B03MYTHTenbHbiX PR~OB BCne~CTBHe 11 CaMOCOrna­
COBaHHOf'011 3cJ:xl>eKTHBHOf'O BKmoqeHHR oOnbmHX He~HaroHanbHbiX 
MaTpHqHbiX 3neMeHTOB H B HeB03M~eHHbrn nponaraTop R. llocne~~ 

HHH onepaTOp H BeCb pR~ TeOpHH B03M~eHHH anreopauqecKH 
y~aeTCH nOCTpOHTb KaK ~yHKQHH BCnOMOraTeflbHbiX MaTpHqHbiX 
QenHbiX ~po6eA. Cxo~HMOCTb ~eMoHcTpupyeTCR qucneHHO Ha npu­
Mepe aHrapMOHHqecKOf'O OCQHnnRTOpa - ~OpManH3M npHMeHHM B 
KaqeCTBe 06~eH H HOBOH TeXHHKH nepeCYMMHPOBaHHR. 

PaooTa BhlnOnHeHa B naoopaTOPHH TeopeTuqecKOH ~H3HKH 
mum . 

.Coo6meHHe 06'be,nHHeHHOrO HHCTHT}'T8 ll,llepHhiX HCcneAOBaHifA. ,lly6Ha 1987 

Znojil M. ES-87-634 
Perturbation Theory with the Matrix Continued 
Fractions 

An idea of using the nondiagonal unperturbed Hamiltoni­
ans is further developed. We admit a band-matrix structure 
of H0 and describe how the propagator R may be constructed 
in terms of the matrix continued fractions. The new pertur 
bation prescription is then described in more detail. Its 
numerical test employs the standard anharmonic oscillator 
example and shows a good applicability of the formalism, 
presumably to all the systems with a strong coupling bet­
ween the neighbouring "unperturbed" orbitals. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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