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1. Introduction

Asymptotic behaviour of distributions plays a fundamental role in the
analysis of singularities of integral transforms. Here we use the
technique of quasiasymptotics of distributions (Zavialov /6/) in
order to obtain some Tauberian theorems for the generalized Sz-trans-
form.

The notation and terminology of this work will follow that of /5/

and Vliadimirov et al., /6/ . Throughout the paper «,B,7,¢,V,a,b,k
are real numbers, p,n are non-negative  integers; S and S' denote
respectively- the space of test (C* -rapid decreasing) functions and
tempered distributions on the real line. The elements f with the
property supp f€ [0,00) form a subspace in S' which we denote by
S; . S+ denotes the space of C® on [0,00) functions equipped
with a topology induced by S .

2. Quasiasymptotic behaviour of distributions

The quasiasymptotic behaviour of distributions f € S' , respectively
£ e S; ,» was introduced by B.I.Zavialov and later analysed in /6/ .

A natural scale for the definition of quasiasymptotic behaviour is
the class of regular varying functions /4/ . Therefore, we shall
start with the definition. \

A function 2(k) which is positive,agﬁ continuous on R, = (0,00)

is called regular varying if for any. a >0 there exists the limit
(depending on a)

o (ak)
1im
k —o0 % (k)

= C(a) £0

and the convergence is uniform with resgpect to any compact set of
numbers a in R+ /4/ .
It is not difficult to see that C(a) satisfies the functional
equation

C(a) - C(b) .= C(a-b)
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from which it follows that C(a) = a8’ for some real 7 . In this
case we call the function #*(k) regular varying of order 7 .

The functions t7 and ta'ln'6(1+t) are reguler varying of order
7 . On the other hand, for all real 4 they are not asymptotically
equivalent, i.e. the limit of their ratios as t ——eyr+o00 does not
exist or is equal tn zero.

Let f € S; and (k) be a regular varying function of order g .
Ne say that the distribution f has in S; a quasiasymptotic
behaviour at infinity with respect to 2¢(k) if there exists the
1imit

f(kt)
lim

= F(t) (in the sense of S' )
k —»oo 2 (k) +

provided that P £ 0 /6/ .
One can prove that F 1is a homogeneous distribution of order J
(hence F € Si ) and supp P C.§+ . Thus there exists a constant ¢
such that PF(t) = C: 93_+1(t) .- Here
£?
e (t) = 6(t) ——— for 7> -1
¥+ Mg +1) (

and

qn
e 7 +1(t) = ey e g+n+4(t) for g<~-1 and y+n > -1

A

As usual, & (t) is the characteristic function of the interval R .
The distributions &(t) t , O(t) Int , 6(t) sin t , J(t) , J'(t)
have in Sl a quasiasymptotic behaviour with respect to +t ,

ety , t7V, 7, 72,

3. The distributional generalized S,~transform

In this section we reproduce tQat part of the theory of distributio-
nal generalized Sz-tranaform present in /5/ that will be used in
subsequent sections.

We define for infinitely differentiable complex-valued functions
$(t) on R, and a,bER the set of seminorms

Ay _ 1-a+p ~b (p)
(3e1) g g p(P) = e TSR (142 [ Pt | .
1

The test function Space Ma b is given by
’
- 80 . €

M, b ~{¢6 CPMR) gy, (B)¢ o0 forall p z+},

where Z+ is the set of all non-negative integers, Ma b is equipped
’

with the topology generated by the seminorms (3.1) . A sequence
(P )] , P bl M,y » converges in M, p to D) if
Mab p(qbn -¢@) tends to zero as n goes bo infinity for each
p6.2+’. We also use the directed set of seminorms

/ua,b,p(gb) = oé;l'llzp /'\a,b,p'(¢')

It can be proved that the two families of seminorms /“a,b.p and

s

/*a,b,p define the same topology on Ma,b . . .
Note that My is a Fréchet-space. The space M, , 1is not nuclear,

) , )
The dual space M'a b consists of 11 continuous linear functionals
, .
on Ma b and is equipped with the usual weak topology. Obviously we
i Y ) 1
have M'a,bc‘ S_;_ for a<1 and M'a,bCMc,d for a<c and d<b.

The generalized Sz-transform of ordinary functions f(t) 1is defined

by .

[o5]
PLespov] (&) = [ H(zts9,v) £08) at , zeC,
° -, ¢ I
max (1,¢ ) = arg Z * pax (,e y !

where g 0, ~>0

oo
Kz, t5p,v) = f (z+y)"?(y+t)"v dy , g+~ > 1 .
0 )

Boas and Widder /1/ studied the S2-transform in the case p=7v =1.
Some properties of the generalized Sz—transform and a distributional
extention have recently been given in /5/ .

Theorem 3.1 /5, theorem 2/ :

Let
(3.2) o> max (0,v-1) , B<v+ min (0,9 -1) .
Then the generalized SZ—transfgrm maps Md ' continuously into
Ma,b if
a<1 + min (0,1-9) and ad1 if ¢ =1
(3.3) at2=-pP=v+ol and a<2-¢ 1if v =4
b>1-3 + max (0,1-+v) and b>1-% if ~ =1
by2-5 -v+fp and b>2-¢-v if (=0 .
3 .



Now suppose that o«,p ,a,b satisfy conditions (3.2) and (3.3) .
Let feM' b * TFor each P &M we have by theorem 3.1
a8, LY

f[¢;.f’ ,v]e M, , . Thus the adjoint mapping
’

(3.4) <P[t3v,90] ,p> = <K £, L[P;p,vI>

defines the generalized S,-transform FLesv,ele of

X1/
L
feMm a,b *

Remark that for ordinary functions with guitable integr'ability
properties we may consider the integral

J' f?f(xot;y ,v) £(x) @(t) dt dx.
6 0

If it is evaluated in two different ways, (3.4) follows.

The generalized Sz-transf‘orm can be inverted by using a differential
operator of infinite order.

Let I, v be an operator which acts on functions ¢(t)e C°°(R+)
ag follows

Ln,g .Y ¢(t) = I’n,g v ,tqs(t) =

r(e) riv) a
- )

n 2n
t2n+v—1(g_t) t2n+y —1 ¢(t)
n! n! 7(n+e =1) [M(n+vy -1)

Theorem 3.2 /5, theorem 3/ :
Suppose

o > max (0,v=1) , B « v+ min (0,p =1)
and let PeM,_
Then the sequence { L

n, 0, \"f’[¢;5’ ,’V]} convergés in M
to ¢ .

LRy

The proof follows from the estimate

sy s plTang v FLOsevd -0 <
4611 (/Cdvp ,P+1(¢) tP /ko(t/-'inp((p) )

where En —= 0 if n —spoa .
Let
7> 1-¢ + max (0,1~ 'v),JC 1+ min (0,1-8)
and consider d? € “? F Then the following commutation relation
holds for the operator I.n ? ~ /5, lemma 6/ :

.

(3.6) meg v yx ST TP p0v] (0 =
= x9+V -2 eﬂ-—Ln,g i st ¢(t); g,—v] (x)

Once for all in this paper suppose
(3.7) max (0,v=1)< o,& < v+ min (0,¢ -1)
and put

n

a 2-¢ =Y +
(3.8) b =2_9_-y+{5 .
In this case the results on the inversion of the generalized
Sz—transform can be summarized as follows:

E ' .
Let ¢ Md,fb ,¢>eMd,/s
Then ’

.y < Tl ooy g fivasd P> -

-‘< ngyy[¢;‘?|*-]> _— <f’¢>
as n —s» 00 .
Let feu', , , Qe Mop -
Then

<l”n,v,g.y[f;”’9] y P> =
=<f,b”|:Ln’g,Ydj;g,YJ> — 1, 0>

ag n —s oo .

(3.10)

To get the Tauberian theorem, we need the additional

Lemma 3.3
Suppose ol,(3 ,a,b as in (3.7) and (3.8) .
Then the set

={fff7+;g,v_7 : Yem

is dense in the space Ma,b .

o(,/& }

Proofs
"Consider feM', . and suppose <, ff’flf e vl > = 0 for every
YeEM . Let $PeM, y o Then for all nez, pewu

) 18V o o3
sothat Zf [L,g v¢ i 'v]}aO.By(310)
(f,q’[L g,-v]> converges to £ f,dP> as n —eoo ,
go that <§ = 0 for every (b&Ma b and consequently f = O

’
in M'&’b . This means that the set OL is dense in the space Ma,b‘
5 .



4. The main theorem

Theorem 4 :

Let feM! ‘b and % (k) be a regular varying function of order Vs
b¢=F<a ., Let Fle; v, 9] € M,
(3.7) and (3.8) . p
Then the following statements are equivalent:

i) £ has in M' ,b a quasiasymptotic behaviour at infinity with

respect to ac(k) .
i1) ¥ f;v,ed has in M ,<’»~ a quasiasymptotic behaviour at
) k°"f =Y and the set 797

infinity with respect to (k

’
and suppose o(,/&,a,b as in

1
(4.1) m=kgk { ae_—(k—) (Ln,*V,g Fleiv,ed Ykx) ='n€Z+}
0.

is .bounded in M'a,b .
Proof:
i) —— i) .
Let ¢6Ma,b and ?-fe-Md’F « We have
1 .
m — / £(kt), O =
Ry {Ext), P8)> = Lalt), P>

For each % eM by theorem 3.1 Y [y;0,v] e M, ) - Hence

L g(t), Ef’[‘-r’;g.v] > =

. 1
= 1im —— Jekt)y, $[ %9, ‘
(4.2) K-> 2(k) < [¥59,0] (0)>

3
= lim (97[
Y SV fiv kx b

k—>oo 12-2Y 1) b8 ] Gkx), H(x) >

= {Y(&iv.91] (x), $(x) >
The second equality follows from the homogeneity of the kernel of the
generalized Sz-transform

(& x,elty; g, v) = o '7F 'y:ft(x,t:g ')
so that

(=]
PLPH)yg,v ] (kx) = k25 =" jJé (x,85¢ 47 ) ¢ (kt) at
3 0
and the last equality is a consequence of (3.4)

(4.2) means that L[ f;~v ,g] has in M" the quasiasymptotic

« 5p

behaviour at infinity with respect to k2-€-Y at(k) .

Property (4.1) follows from the existence of the quasmsymptotic
behaviour at infinity of f in M! 'a,b and (3.10) . Really, because
f has a quasiasymptotic behaviour w1th respect to 3 (k) the set 37‘1—

1=U

n £(kt)

is weakly bounded in M', ,b * Since the space Ma p isa Fréchet-
space, '0111 is uniform bounded on bounded subsets of M b * i.e.
it H'c Ma,b is a bounded subset, then there exfsts a constant C‘/V‘
such that

ks;ﬁo ‘<__ £(kt), P () > ¢, ¥ dew

Consider now 4)6 M, , arbitrary fixed and let
’
A, ={ ff[Ln'g’y(p ie.v] nez+}

Because the sequence { 5"[ n, e .~ ¢ HE N ]} converges in Ma‘b
£

. to ¢ , the set {/f’} is a bounded subset of Ma p 80 that

£(kt)
' L HE ) t
ks;§° I % (k) ¢l n.g,vqb gsv ] ( )>l
n€Z+
= fyv, k
ks;ﬁo "x(k) Ny,vs¢ y[: v S] )( X) ¢(x) >'
nez+ .

Consequently T 1is bounded in M'a,b .

1i) —» 1) .
We have

.
Mn  —— (P t5v,e] Gx), % (0>
koo k275 =Y (k) ’

{9 lev,3] @, 4>

so that



1 ,
lim oy Let), PL¥ 59 ,v ] (DD

k —»o0o
(g‘(t)o y[y;? 1YJ (t)>
By lemma 3.3 this means that the limit N x
1
im  ——  £(kt) ?}
k —cc (k) i

exists on a dense set of elements of the space Ma b * If we show
that the set Wi, ’
1
7 = —  f(kt)
kzko

s

is bounded in M' a,b
f has a quasiasymptotlc behaviour with respect to 2 (k) .
Let @ &M, . From (4.1) we.have

?

s then by the theorem of uniform convergence

1 -
sup &(_k)*<(Ln"V’9 Y, )(kx),¢(x)>[

so that

sup __<f(kt) Pl Lo n® 9] (t)>‘

kzko
né.Z+

Fix .at the moment arbit;-ary k, k;ko s, by (3.10) it follows that
" Lree) o) >
— L t(xt t £c
2 (k) ’ l e,

Hence

.éC¢ .

This means 1, is bounded in M' .
1 a,b

k>k

The theorem is proved.

Remarks: "
T, Since -1{-ad 7%y we have g(t) = ¢C 6’6’+1(t) « Because :I
B&-y<a ,.it follows that g(t)e M’y , . 'h

' )

3

2. By formula 2.2.4.24 from /3/ we have
FLO,svigl =Bly,g-7) B¥+1-§,v+e-1-%) 6

max (0,9 -1)< ¥ & ¢ + min (0,~ -1),
where B(i,j) is the usual Beta function. Thus

fles~,g1 (x) = ¢ €y 4320 -v (X)

4 +2~¢ =¥

5. Non-negative measures

In this section we show that our condition (4.1) is more general than
the usual Tauberian condition by which f£(t) 1is a non-negative
measure. )

First we give a description of non-negative elements of M' ,b with
the help of the generalized Sz-transfom. This description is a
straightforward verification of the classical one given by Boas and
Widder in the case $§=<v =1 . Remember, f is a non-negative
element of a space of distributions if for every non-negative test
function @ (t)» 0 the inequality < f,¢> >0 is valid.

Lemma 5.1

Let feM!' a,b ?
then the follow1ng statements are equivalent:
1) £ 1is non-negative.
1i) Por every neZz,

50[f;\'!3]

Lﬁ, ~ e is non-negative,

Proof:

i) — 11) . .
Let (PeMa p @&nd suppose @(t)> 0 . Because of equality (3.6)
, :

Fllp,g ,vPigsv](x) =
=x2"8 g, PLee+ 2h e, vl @

Ny Q 57 X
o

[(2n+¢ ) M(2n+~ ) ,f T’
0 0
>

«B 2n n+¢ +v =2
b dy P(t) at

nl 0! M(a+ @ -1) [(n+ v =1) (x+y)2"*f (y+t)°BHY

s0 that ff[Ln,g’qu;g,-v](x) 0 . Thus
Ll g POt 3T, 0> =
=<f150[1‘n’f’7¢3f177>>



11) —s 1)
Let Qe My b o
nez, . Using (3.4) we have

OQZL 'g"\?[‘f;'\’)g] 1¢>=(f,ql__lun’g’_v¢;‘?,-y]>'

r Y

By (3.10) (¢, %[Lng NP seav>
Hence < f,0> >
The lemma is proved.

¢ (£)> 0 and suppose %" ﬁfff;v,g]Jﬁ);O

Ry~ ,¢
converges to (f,¢> .

Theorem 5.2 :

Let fé€ M' and let 2¢(k) be a regular varying function of order
¥ b4-3<a.Let LLesv,g1€ M and suppose ¢ ,/3,a,
b ae in (3.7) and (3.8) . Suppose that &P[ f;v,28 ] has in

M'ot A a quasiasymptotic behaviour at infinity with respect to
k2'3 =Y ae(k) and suppose further that f 1s a non-negative element.

Then condition (4.1) is valid.

Proof:
Let fEM', , . Thus PLtiv,eleE N
Hence L, . N¢GM¢/3 and ‘:f[l’..n
We have

. Consider ¢ ema b *

oLy
ﬂ(b S”"’Jemab‘

;
JPLeiv,g] tex),L P> =
k278 "V (k) hEY :

1 .
Cr o S Pl o Pipav T ()5

and the limit for k —s> Do exists for every neZ+ .

Consider ¢0 %1 ('1+x)ﬁ'°‘em P . Because for t>0

5’[¢o,f,11 (t) = fU(,(t X359, ~) x% (1+x)P “Yax>o0,

and £ 1is non-negative, we have

1

—_  {9P[ % v,g](kx)L
] k25 =Y 2 (k) < »

"¢'(X)>l

g e Bizr] )

10

C>]

oy

S (5.4) 1

Plla, g ,yBipsv 10

1
—_— L 2(kt), PL P 50,y ] ()
2 (k) ‘ $ois sp[yﬁo;g,VJ(t)

(5.1) |PLLn, g v @i 5ov T )
ts;§+ Flpoicsv I (V)

1 .
v {2t), P[P i g

*(x) ] 02>

Since [ ¢0;5 , Y] (t) 1is continuous, monotonically decreasing
for t+t3>0 and N

PlPgs pov ] () =0t = o(t3 1y
PLboierv] (1) = 0 A=Yy o o(¢P™T)
we can estimate the first term of (5.1) by

| [T, o v @i g0y ] B
sup
teR, 9[¢°;_§ v ] (1)
1- B~
. 178 (144)87P lffan,g,qu;?.v](t)l
t€R+ t1-3(.|_',t)a-b 50[¢o;f-’\l](t)

1-a a=b
(R R l&f[Ln’S”qb;y.Y] )|

ol-g-‘v+1)

t — 40

t — oo

N

¢4

© (5.2) ot

= 01 /u'a,'b,O(EP[I'n,g ,vd) i g "'/] )
By -using inequality (3.5), (5.2) may be transformed into
ly[Ln,g,vq’;f'TJ(t)l ~
o €%

(5.3) sup

t€R+ 50[¢0;3

Because < [f; v ,_9] has a quasiasymptotic behaviour at infinity
the second term of (5.1) for krk, , k, sufficient large,

.
poyoy <f(kt). Plpss

0’V} (t)>
P tiv,p] (kx), P (0> ( C(P,)
k2™ % =¥ se(k) ° i

is bounded. Consequently, from inequalities (5.1) , (5.3) and (5.4)

11



it follows that for k;k

(5 L1, o g SLesv, g 1Hwx), ¢x) > |

lk
é ¢ /aja’b’1(¢)

for every ¢€_ Ma b where the constant C depends only on £ s, k
’
and ¢)o « This means that in M'a,b the set L

- U i;(

1L
kzk, L %(k) n,v,R

1

P Teivag] Gmly o L P |

2~9 =~

& (k)

(]

@Ple;v,¢e1 )kx) :nez+}

is bounded,
The theorem is proved.

6. Examples

1. Consider ¢=+v =1 ., Put PLrLe;1,1] (x) = qu Inx, x>0

and 0¢ ¥y & 1, Choose o,/3 such that 04 @ <1-y s ¢1 . Let
a=od |, b=/% (hence ¢=+v = 1). We have
B (x) xT-1 15 x€M'd’(5 . Let further <¢(k)

Obviously, B(x) 7" 1n x has in AN a2 quasiasymptotic

= k¥ @14k

behaviour at infinity with respect to k9-1 In(1+k) . By direct
computation we have for x>0

Iy, Tl8111 (0 = {An x7 " 1nx+ B, x""}

(F(g) M up)?
where
Mint+g) M(a+1-7) 2

n! (n-1)!

An = (
and Bn is a sum of ["~functions.
From Stierling's formula it follows that Ari converges to 1 as n
goes to infinity. By careful estimates and Stierling's formula it can
be proved that B, 1is bounded (the bound depends on ) as n goes
to infinity. Note further that

i ) 1 _ sin J7
P ra-g) X .

3} . 12

=

A

-

We have for k >1

l(];n,1 L P Le5,1,1] (kx), ¢(x)>|

k7" 1n(1+k)
—_ 2
sinTy 1 - -1 -1
. y |<A xx) ¥ Tin xx + B_(kx)7 77, A (x) l
JC k777 1n(1+k) i ' . >
sinTy 2
& ("7—3 ‘(x'( -1 ¢(x)>‘
sinJiy ‘2 1 r-1 -7
+ ( JT 1n(1+k) <An * In x + B, x ¢ (x)>l

Hence condition (4.1) is valid. Thus the S,-original f has in
M‘a b 8 quasiasymptotic behaviour at infinity.
’

Remarks:

.1y £ 1is not non-negative.

ii) In this example f can be calculated. explicitly. Look for f£(t)
in the form ©(t) t7 (A In t + B) .
We have by (3.4) for QP eM r

ol y

Lx ¥V 1n x, h(x)> = Zt7" ' 1n t + B), ff[¢ 31,11 (t)>

ftT 1(A1nt+B)jE:—ln—t ¢(x) dx at

OLSO

lnx—lnt
t7"a 10t +B) at P(x) ax
0 x -t '
= ool
n u
= / f (ux)‘7'1(A 1n ux + B) du ¢(x) dx
) u-=1

o0 00 yai 6’
u’ lnu 7-1 ln u
—du + x ——-—-'(A ln u + B)du} 95 (x)dx

o v~ o ur
Choosing
oo
1n u -1 -1 sin Jiy 2
a= ¢ [ ——u¥ e a g y
o u- 1 JL



Because
and —at (iv)
e 1n sin 2T at (™" cos at)
" u = = -
B = = A2 f ua/_‘l 1n u du = _ e cos at 1
(') u -1 JL a
’ | by integrating (6.3) by parts we have
we get the desired result. | oo 4 .
' fe- VE -1 oos (VX u)usl{’(u4) du =
2. The following example shows that the conditions (3.7) and (3.8) 3

can't be essentially weakened.

, R ! 4 4
Let 0<¢ < 1 v = 1, Consider 1 4
s ’ ’ 4 . ! = — e~ —‘(? Y cos ‘\/?-u ( Z a, ¥t kp(J)(u )) dat
-V ‘—‘\[" ' k o 3=0
£(t) = O(t) Vit e cos t €M, b 1-9<bdt1 . 8o that
:]
Then for PEM, y , k1 : )

,__.<f(kt) ¢(t)>\ \f" R A\l_'d)(—) at 5

. (6.4) oo _ Any 4
(6.1) s bt 1 J’ e kt cos -\}Y(?( 74_, tj (3)( )
t - : = - ’ a. t)) dt
£ ol P) fﬁ" -Vt (4 +0at < C/“1,b,o(¢) ' k o |kt jo ¢ ?
o 3

\ Iterating (6.4) as many times as desired we get
From the Lebesgue theorem it follows that . oo

oo 4 [(‘? e 4V -AV_—’ (t) dt
1im fft" e__‘{_t—' cos _z\er d)(i) dt = . 0 ¥ i
k w00 é k Go A\[—]-{" ,4\/——1
j ° e 7 NORARNORT
0 J<4n

From (6.1) , (6.2) follows. Hence for an arbitrary regular varying
function f can't have in M'a p 8 quasiasymptotic behaviour.
14

.

H‘ul—‘

oo 4
=¢(’O)‘ [ﬁd e -\r? cos "t{_t'I it = 0
J-

Hence if £ has in M'1 b @ quasiasymptotic behaviour of order v
*

then 7 < -1, . Because f 18 absolute summable, the generalized S,-transform of f
Further for all ‘¥ of the subspace S, of M, , 1t can be proved can be calculated as follows
. ’
that for every YeR o
(:fff;gn] (x) = .[J{(x,t;g,n £(t) dt =
(6.2) m k¥ <ekt), P)> =0 _ . o0 0
Really we have ‘ , o (x+y)g s t+y .
7 Y 4 'l Usi
- 8 £ 1 .5.33.
j\ﬁ(?‘ . '\jkt von _\[1_(? Pty at - ng formula 2.5.33.4 from /3/ we get
o0 TN e V
(6,3) oo . Plesp il =0 [ — . .
<4 ‘f w’ o o COB(:{rF u) ‘P(u4)' du . - ° )
0 . Obviously ¥ [f;¢,1] (x)€ M’ 1f d>¢ , 340,

o

4 14 ‘ 15




-0 - -1 -
Let ¢(x)€Md g ~(k) = k278" Y.x"1 = k™S . Then

1n —— {P[e a1l (kx), P(x) > =

k .—w00 k -9

oo OO(-y—-, e_ 4‘/ 4y
= 1lim I k€ jQS(x) dx J dy |
k —+ro 0 0 (kx + ¥
Because 4
0o po - Vay
k$ J Jme qb(x) ax dy | €
0 0 (kx + y)

i

0 (x+ k y)f

("1+x)'P - dx dy

4/“»( P o(P) f

Mg, 0(¢>)f f{_’e Vay 418 (anf % ax gy

by the Lebesgue theorem, for arbitrary ¢ eM ’(5

lim — <3’[f;»3,1] (kx), B(x) >

k —»o00 k-

-J(fFe

Hence ‘:f[f;_f ,1] (x) has in every u'

f¢( % ax - ¢ {8, ¢ 0, g >

. ol>g

,(340,&

que'siasymptotic behaviour at infinity with respect to k™S5 .
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Tperep T.
Ogna Tay6epoBa TeopeMa g 0606meHHOro
Sa-npeo6pasoBaHusg 0606mMeHHBIX GYHKITHE

E5-87-489

AcuMTOoTHYeCKOe MoBedeHHe OGO6mMeHHnX QYHKUIHH HrpaeT cy-—
MeCTBEHHYI0 DOJIb B HCCIIeJOBAHHH CHHIYJIAPHHX TOYEK HHTerpanb
HbIX npeobpasoBaHMit, C HCIONB3OBAHMEM TEXHHKH KBasHACHMIITO—
THKH OIIMCHBAWTCA ACHMIITOTHYECKHE COOTHOmMEHHs ONnA So-npeob-
pasoBaHusa o606meHHbx byHKuM. YcnoBue Tay6epoBa Tuma, Ko—
Topoe cbopMyIIHpPOBaHO B HOaHHOU pafBoTe, saBnsgercsa Gojiee 06—
MMM MO CPaBHEHHI0 C IPEJAIIOJIOKeHHeM O TOM, 4YTOo Sa-npoobpas
€CTh IOJIOKHTENIbHasa Mepa. . . '

PaGora BhmonHeHa B JlabopaTOpHH TeOopeTHYEeCKON GH3IHKH
Ooudan.

IpenpunT O6BbeNHHeHHOT0 MHCTHTYTA ANEPHBIX HccneoBanmi. y6ua 1987

Trdger G.
A Tauberian Theorem for the Generalized
Sa-Transform of Distributions

E5-87-489

Asymptotic behaviour of distributions plays a fundamen-
tal role in the analysis of singularities of integral
transforms. Using the technique of quasiasymptotics, we
describe the asymptotic relations for the generalized Sa-
transform of distributions. The Tauberian condition given
here is more general than the assumption by which the Sx-
original is a non-negative measure.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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