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1. INTRODUCTION 

In the atomic, molecular or nu~lear physics, Slater deter
minants represent a transition to the fully correlated picture 
of bound states. They are usually constructed from the simple 
one-particle harmonic-oscillator components 

r 2m+ f + 1

1 2 ( n )
ep(r) nexp(- -r ) 2 

n 
--------- . (1. I)

2 m=O m (m + f + 1:/2) 

For some particular anharm~nic Hartree-Fock potentials 

2q + 1 2m
 
Ver) = I g rJ • g 2q+l > O, q >O ( I .2)
 

m =1 

the elementary expressions (I. I} may be generalised to the 
exact anharmonic particular solutions 

~(r)' = exp[-P(r)] I 
N 

h r 2m + f + 1 (1.3)
m=O m 

wi th the WKB polynomial per) 11,21 •For the general q > O force 
and/or more energy levels, we must consider here the N-+oo lí 
mit, o f course. Even then, the truncated N = expansions00 

(1.3) remain sufficiently precise iu both the threshold and 
asymptotic regions, and remain ane of the most natural des
criptions of bound states. 

In practice, the solution of the general anharmonic one
body Schrodinger equation 

d 2 f (i + 1)
[ - - + ---- + V(r) ] et>(r) = E ~(r). f = 0,1, ... (1.4) 

dr 2 r 2 

by means of the ansatz (1.3) may lead to certain methematical 
d i f f i cu I ties 13,41 • In particular, for the present class of 
potentials (1.2) and ~VKB exponents per) we must demand that 
the fources are "super-confining" 121, i. e. , 

lim [ V (r) _ g r 4q + 2] r -2!L- + 00 
(I.5)2q +1 • 

r-+ 00 

Here, we intend to get rid of the puzzling restriction (1.5) 
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by using a broader class of P~) 's, and describe in detail the 
universal N"=oo solution of the type (1.3) valid for an arbit 
rary polynornial potential. 

The material is arranged with an empha~is put upon the gene
ral q ~ 1 features of the N == solution. Its more detailed00 

properties may be illustrated on the simplest nontrivial examp
les 151 . 

In §2, we start our discussion by a conversicn of the dif

ferential Schrodinger equation into its difference equation
 
equivalent for coefficients hn , n = 0, 1,... . The i r a s ymp t c 

tically correct form is derived as certain discrete analogue
 
of the standard Jost solutions / 6 1 of (1.4).
 

In §3, we analyse a reduction of the latter equation into 
a finite-dimensional matrix equation and construct the corres
ponding "effect i ve Hami I tonian" Q ert(N). Finally, §4 de I i vers 
an alternative definition of the approxirnate binding energies 
as roots of a N+I - dimensional determinante 

A detailed illustration of technicalities is referred to
 
the forthcoming paper.
 

2.	 THE DIFFERENCE SCHRODINGER EQUATION
 
AND ITS BOUNDARY CONDITIONS
 

In the trivial q = ° special case of (1.2), an insertion 
of ansatz (1.3) in the differential equation (1.4) leads to 
the two-term recurrences for hn's and to their well-known 
garnrnafunction so l.utí.cn (c f . (1.1». With q 2: 1, the recurrences 
acquire~a more-term character. Now, we shall show that asyrnpto
tically, they degenerate back to the solvable two-term case 
for alI q > 1. 

In the first step, we notice that our special choice ;f 
polynomials (1.2) is fully general. Indeed / 2/, any force regu
lar or weakly singular in the origin may be approximated by 
a truncated power series, while the latter force may be repla
ced exactly by (1.2) after a suitable change of variables. 

In the second step, we may insert our ansatz (1.3) and po

tential (1.2) in the radial Schrodinger equation (1.4). After
 
a choice of the polynomial P(r) in accord wi th the leading-or

der WKB asymptotic prescription,
 

.,. q r 2j
P(r) == -4~- r 2q+ 2 + I f3. --, a = g 1/2 > O (2.1)

2q+ 12q + 2. j = 1 J 2j 

~.. 
\t 

.. 

this converts this differential equation into its difference 
equation equivalent 

t (f) 
oC (J)h +	 n = O, I, •..Bnh n+1 == ~ n n-J ~ D hn-q-f'	 (2.2) 

j=O i= 1 

where t"5 q in general. 
The original interpretation of hds as coefficients in (1.3) 

introduces the natural bounda'ry conditions "in the origin", 

h-1 = h -2 =. .. = h _q _ t = O	 ( 2 . 3) 
and leads also to the explicit specification of the separate 
coefficients B ,C~J) andO(k), j = 0, I, ... ,q and k = 1, 
2, ... , t , In t~e n» I asymptot ic doma.i.n wi ih n = O(M) and 

."	 M >> 1, we may wr i t e 

Bn == (2n + 2)(2n + 2 i + 3) 4M 2 + O(M) , 

:::lOCU) == 4 tJ M + 0(1) j O,I,.•• , q ,	 (2.4)
n fJ j + 1 ' 

O(k) == 0(1) , k = 1 ,2 ,... , t , t ~ q , 

where f3 == a == g 112 > 0, O (t) f. O and D(q+l)= O due to 
(2. 1) • q + 1 2q+1 

In the light of (2.4), the asymptotic structure of the dif
ference eq. (2.2) is very simple. For the smooth functions h , 
it admits in fact the two alternative possibilities of the D 

mutual c anc e l Là t on of the domí.nant contributions in (2.2),í 

with 

(2.5a)4M 2 h 1 = 2aMh + correctionsn+ n-q 
or 

4Mah _ O(t)h + corrections. (2.5b)_ q_ tn q= n 

Here, we shall a suume that t = q for O(q) f. O, t = q -1 • for 
O(q) == O, O(q-1),i O, etc. 

In the case (2. Sa), we have h +1/ h n-q :::: O(l/M) and arrive n 
at an estimate
 

a m/(q+l) •
 
h M + m .... ( 'M) . + c or r e c t i.ons ,	 (2.6a) 

In the -compLex plane, this represents precisely q + 1 diffe
rent possible asyrnptotics of the corresponding solutions hn• 

A similar analysis of (2.Sb) recovers that h n_q /h n-q_t=0(l/M)
and leads to the further t ~ q different complex roots 
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h ... (...2.).m/t + corrections (2.6b)
M+ rn M 

whe r e b = D (t) / 4a -::J O. The set may also prove empty (f = O). 
Obviously, the latter class of solutions in asymptotically 
suppressed (subdominant), 

a m/(q+l) b m/t m(q+1-t)/t(q+l) 
I("M) /("M) I .... M »1. (2.7) 

An algebraic independence of the q +t+l roots (2.6) implies 
that we may use them as boundary conditions in infinity: In 
this interpretation, they specify a complete (fundamental) set 
of q+t+l solutions of the linear difference equation (2.2), 

h (d , k). l(a)n/(q+1L) I 27Tikn 1 k-12 1 
~ - exp--, n x-L, _ ••••.• q+ (2.8a)

n n q + I 

(the superscript means "dominant") and 

(8, k) b n/t 27Tikn 
h .... 1(-) I exp--.-, n > 1, k=I,2, ... ,t (2.8b)

n n t 

(with s for "subdominant" in the sense of eq. (2.7)). 
In a backward insertion of solutions (2.8) in the wavefunc

tions cP(r). (1.3), the subdominant components (2.8b) may be 
i8nored as irrelevant due to their asymptotic suppression by 
a huge factor (2. 7). For the first q + I components (2. 8a) ,. we 
may repeat the argumentation of our preceding paper/ 1/ - alI 
of them generate superpositions of the growing êxponentials. 
In the r» 1 asyrnptotic region, these growing exponentials 
may c ance I in a I I the k <q cases. For the real and positive 
coefficients h~,q+l), there is no way how to become compa
tible with the standard normalization requirement cP(r) -+ O at 
r -+ 00. Indeed, this is very similar to the special harmorri c 
oscillator case with the single root (2.6a) and with the ex
ceptional possibility to obtain h(d,q+l) = O indentically for 
alI n ~ noCE o) (cf., e.g., Flügge,n 1971). 

As a consequence of the above observation, the coefficients 
~~,q+l) must be d{scarded as unphysical from the very begin
ning. Of course, it is necessary thet their contribution does 
not become suppressed by the second-order corrections. In fact, 
this is an important and highly nontrivial assumption. Here, 
we shall take it for granted - in more detail, it will be ana
lysed in our forthcoming papers. 
~ From the remaining q+t independent solutions (2.8), we may 
form th~ gener a L "Jost" asymptotically adtrrí ss í.bl e solution of 
eq. (2.2) , . 

I! ~4 ~ 

q t 
h ( J ) = -e " 1 (d,m) ~ b h(s,m) 
1 n k aro in + k m n n > O. (2.9)

m=l m=l 

From the initial values «2.8) at some large subscripts) it 
is to be specified for alI n by a recurrent u&e of (2.2). Then, 
we may expect that its "physical" coefficients aro and b m as 
well as energy E will be fixed by the q+t boundary conditions 
(2.3) in the origino 

3. THE HESSENBERG· "HAMILTONIAN MATRICES" 

The difference Schrodinger equation (2.2) may be visualised 
as an infinite-dimensional matrix diagonalisation 

ho)
Qh = Eh. (3.1)

h = ( .~~ 

with a q+t+2 - diagonal Hessenberg structure of "Hamiltonian", 

AO -B o O 

C (1)
 
1
 A1 -B 1 

O ... (3.2)
Q = \ ... ... 

DC(t) ••• D(l) C(q) .•• C (1)O ... O A n -B n O••• 
n n 

and E-independent mat r í.x elements (A rr = (4n + 2f + 3) f3 1 , e t c i ) , 
Unfortunately, the standard truncation and further manipula
tions with (3.1) are not permitted in general (cf., e.g., the 
counterexample by Chaudhuri/4/ ) , due to an absence of its va
riational background. Here, we intend to connect eq.(3. 1) di
rectly with the results of the preceding paragraph. 

The special structure of Q implies that each set of the 
first Ns-Lcoe f f i c i ent s h o·' . ' . ' h N satisfies the first N rows of 
eq. (3. 1). The (N+I)-st row defines simply the new coefficient 
in an explicit manner, 

• Ao-E. -B o• O, ••• O 

hN+ ll. --
h
.' 
o 

det t ... ... I (3.3) 
BOB 1 • •• B N 

O ••• O D (t) ••• AN-E 

Hence, an exact restriction of the full equation (3.1) to 
a finite subspace or "projection" 

."\ 
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"t 

.... 
ph~;)	 (3.4)p(N) ( c:: ) 

may be given the (N + 1) x (N + 1) - dimensional form 

efr(N) ( h )Q ••• E	 (3.5) 
o 

( ~:)h N 

with the reduced or "effective" Hamiltonian Qefr(N) and exact 
energies E. Of course, up to certain similarity to the varia
tional construction of Fc shbachv ê/, an introduction of eq. (3.5) 
with Q~rr~N) == Qm n for' m< N and a completely unspecified last 
row, 

er r (N ) QeH(N) • (t) (t)
(Q NO' ••• , N N ) == (O, ""~' X N (== D 

(t-ll) (1) (q) y(l) Z· )

X N "'" X N ' Y N , ••• , N' N
 

will prove useful only pfter taking into 
riate boundary conditions at large n. 

) , 

(3.6) 

account the approp

Let us start from an arbitrary (e.g.,. asymptolic) Jost so
lution (2.9) as defined at all subscripts n > M. In principle, 

. (J) (J) f h -( ) we may define then h _ 1 • h ~-2' .•. rom teM +q + t-l st,
M 

(M+q+t- 2) - nd , ... respective rows of eq. (3. 1). In practice, 
this will be an unstable procedure - the subdominant components 
will spoil the precision of the numerical results after a few 
steps. 

In a syrrrrnetrically reverted formulation, the cornputa t i cn of 
the determinantal coefficients (3.3) "regular in the o r i.g i ri" 
corresponds to the recurrent process ho~ h

1 
~ ••• with the nu

merical instabilities introduced quickly by an admixture of 
errors proportional to the unphysical coefficients h(d,q+l) 
(cf., e.g., the numerical example given by Tater/9/). n He nc e , 
we have to match the pair of boundary copditions (2.3) and 
(2.9.) in a more s ymme t r i c manner. In this context, we may re
call eq. (3.5), the first q+t rows of which reflect the boun
dary conqitions in the origin, while a flexibility of the di
mension N enables us to relate the last row directly ~o the 
~asymptotic estimates (2.8). 

In ~ concise formulation, the physical solution will be 
given by eq. (2.9), provided that this formula satisfies eq. 

J
 

ment - by the construction, the matrix elements XN , YN and Z N 

should not vary for any variation in the upper rows of QerqN) 

Of course, the latter variation would change also the coeffi 
cients a m and b rn in (2.9). As a consequence, the last row of 
eq. (3.5) must be satisfied by all the individual components 
of h (J) separately, 

n 

D (t) h (x, k) t-l 
+ ~ X 

N-q-t j = 1 

+	 q;:l y(q-f) h(X.k) 
f=o N N-q+f 

= 

(t-j) (x,k)
h _ _ +N N q t +j 

(3.7) 
+	 (Z _E)h(X,k) =0.
 

N N
 

With k 1, 2, •.. , q for x = d , and k = 1,2, ... , t for x = s , 
this formula is our most importa~t result - as a set of the 
q+t independent linear a algebraic equations, it defines the 
q + t unknown effective matrix elements of Q eH(N) in terms of 
the	 ·physical .Io s t components h(s,j) and h(d,j) with jl:-q+l

n n
and n ~ N - q - t , 

4. THE HILL DETERMINANTS 

In an intermediate do~ain of i nd i ce s, 1 « fi «DO , a gene
ral (q + t + 1) - parametric solu t ion of (2.2) 

q+t
 
~ a h[ m] (4. 1)
 

m=O m n
 

may	 be specified, e.g., by the requirements 

h [k] == h [k] ==.•• = h [ k] == O , M == M . (4.2) 
M -1 M-2 M-q - t k 

With some q +t+l different .integers M» 1 (M i I:- MJ for i I:- j), 
it is easy to derive the small-dimensional dete5minantal ana
logues of (3.3) for the separate components h m , and try to 
match (4.1) to both the boundary conditions (2~3) and (2.9).	 . 
in an entirely syrrrrnetric manner. In a way, the preceding pa
ragraph has described a large-M limit of this procedure. Now, 
1e t u s cons i de r t he o ppo 's i t e c a se, wi t h M O= O and a 11 a m = O, 
m f O due to (2.3). Obviously, an asymptotic matching of the 

1 "regu l ar" so lu t ion 
q + 1 (dh {o] 

n 
~ Y h ,m) + corrections, n » 1 (4.3)

m=! m n. 
, (3.5) wi th some N~ q + t , Th i s i s qui te a strong require,	 1 

~ 
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•will be equivalent now to the condition 

(4.4)Yq+l=O 

(cf. the text preceding eq.(2.9) above). 
After an inclusion of the second order corrections in (4.3), 

the dominant Jost components hc:,m), m = 1,2, ... , q-s I may be 
further ordered in accord with their rate of decrease with the 
increasing index n '> 1. We shall restrict our attention to the I: 
cases where h~,q+l) becomes asymptotically dominant in this 
new sense. In fact, alI the solutions considered in the prece ql 

ding paper 121 and restricted to the "superconfining" potenti  I 

aIs belong to this class with 

Ih ~d,q+l) I » Ih~' m) I, n» I, m= 1.,2, ••. , s .	 (4.5) 

As a consequence .of our assumption (4.5), the physical re
quirement (4.4) acquires ·an extremely simple interpretation: 

In a vicinity of the binding energy E, the asymptotics 
(4.3) of coefficients h~O] must change signo Hence, {w~ may
 
identify the energies with roots of determinants h~+l
 
(cf. (3.3)) in the infinite-dimensional limit,
 

A 0'- E , - Bo ' o , •••, O ) 
= oq"det •••	 O, M ... (4.6)

( O,	 ••• , O , O(t) , ••• , A M - E 

In this way, we arrive at the so-called Hill-determonant al 
goritpm as proposed, e.g., by Biswas et al!lOI on the purely 
intuitive grounds. In the present setting, a rigorous speci
fication of its validity is achieved. 

5.	 SUMMARY 

In contrast to the method of paper /2/, we started our analy
sis of the rigorous difference Schrõdinger equation (2.2) by 
emphasizing its asymptotically solvable, two-term character. . 
For an arbitrary polynomial interaction, this enabled us to I 
complement the natural boundary conditions "in the origin" 
(h n = ° for n < O) by the rigorous and universal physical t 
boundary cond i t ions "in inf ini ty" (n --+ 00 ). In this way, the ..	 wavefunctions are transformed in a new, discrete-variable re
presentation hn,n ~ 0, and may be constructed by the straight 1.forward álgebraic techniques. 

The simple realisation of such a programme was described l 
here as a matc.hing of the "discrete Jost solutions" (correct 

~ . 
\'
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at	 n » 1), to the boundary conditions imposed at n = O( I). 
In the trivial zero-order approximation, this approach de

generates to the simple Hill determinant method if applicable. 
As a modification of the whole technique, we could obtain and 

/ 111 prove also the analytic continued fractional technique of 
Wilson 112/ and Singh et aI/li, as well as its simple-minded ge
neralisations as described in our paper / 2 / • 
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