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. INTRODUCTION AND SUMMARY ~

All the salient features of the so-called Hill determinant
method 7Y/ may be illustrated on the sextic anharmonic oscilla-
tor
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(1.1)
Vl(r)=glr2+ g2f4+g31'8, g3>0'

This was proposed by Singh at al.”?” and the problem (1.1) has

attracted much attention during the last few years (cf., e.g.,
the review by Hautot /%/y.In fact, a simple change of variables

r-r /P, oo opoonsty g+_2;_ - (¢ +_é_)/p’ p=23,4 (1.2)

may be used to convert the interaction V=V; in (l1.1) into the
other three equivalent forces Vp ,

Vo) = -é—«gor‘l+ 2g,r + 4g.r?,
Vy @ =g B34 g, 603 g (0?7 (1.3)

.1 -3/2, 1 -1_ 1 -1/2
V4(r) = ?gor + Tgir + > gl

with the new coupling 8g=-E and with the new respective de-
finitions of energies E = Ep,

E2 =—81, E3=~82. E4="g3(<0)- (1'4)

Hence, a number of the physically interesting situations may
be represented by a re-interpretation (1.2)-(1.3) of eq.(1.1)
as well as of the corresponding power series ansatz

Y@ = expP® I hyr 2o+l +1  pr) —purt+ur2, (1.5)
n=

In accord with Hautot 3/ the best numerical results may be
obtained with certain optimal values of ; and y in the poly-
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nomial P(@). In the alternative, less numerically oriented ap-
proach of Singh et al,’®’ emphasizing the simplicity of formu-
las, we have to consider Bg > 0 and choose P(r) as an exact
WKB asymptotic estimate of (). In the spirit of our prece-
ding paper 74/, we shall analyse here a compromise, with the
WKB value of 4 and with an arbitrary parameter at 12,

P(r)=—(—;—a)2r4-é-/3r2, at —g,. (1.6)

Such a choice of P(t) has also been made in the purely numeri-
cal study by Killingbeck’®-

A genuine merit of our amsatz (1.5) + (1.6) lies in the
straightforward numerical tractability of the eigenvalue prob-

lem (1.1) by means of the extended continued fractions (ECF' ).

As an alternative to the divergent perturbation series, the
ECP formalism will be described here in detail, with a parti-
cular emphasis laid upon a systematic acceleration of its con-
vergence. This will be our main result. Indeed, without such
an improvement, the Hill determinants seem to give a slowly
convergent results when compared with the standard variational
procedures. In this respect, we may recall the extensive nume-
rical analyses by Hautot/S/, Killingbeck’%/ and Tater’/7/ or
Znojil/s/ which motivated the present completion of the stan-
dard ECF construction’/9/,

2. THE ASYMMETRIC MATRIX SCHRODINGER EQUATION
AND ITS TRUNCATION

An insertion of (1.5) and (1.6) in (1.1) leads to our basic
set of linear equations ‘

h h o
Q(h:) =E<h10)- 2.1)

where
Qun=A,=0n+20 +3)B, -Q =B =@n+2)Rn+ 2f +3),

ii15=Cpyg = Un+20 +B)a? +g -B2, (2.2)

= =2q2 - - 2
0Q =D =2a%(B -B), B, =g,/@a%)

\ .
and n= 0, 1,. Obviously, this is a non—variational eigen-
value problem. For D = O, it coincides with the relations of
Ref.’®’ applicable for go >0 and B> O only. Hence, we shall

' assuge that D # O in what follows.

2

In a phenomenological context, the "'inadmissible" couplings
g,<0 (2.3)

correspond to the more interesting (e.g., double-well) inte-
ractions. Hence, after a discovery of a surprising failure of
the Singh's analytic continued-fractional construction /2:3/,
various attempts of its improvement may be quoted, ranging
from an analytic continuation 10/ up to the fixed-point expan-
sions /7 or non-WKB choices of P()’3/ 1In accord with our
study 74/, the choice (1.6) represents the simplest solution

of the above inadmissibility puzzle: We proved that the rest-
riction of f's,

B+Bo>0 . (2.4)

is sufficient for a possibility of truncating eq.(2.1).This
will be a starting point here.

3. THE FACTORIZATION OF Q-E AND BINDING
ENERGIES

For a large index M »>>!, we may replace all the coeffici-
ents Qy4m, M+nMm021 by zeros and obtain the truncated matrix
form of our basic eq.(2.1),

b0 o [ 0
Q(M) hl - E h1 R (3-])
hy hy

Due to Ref./®“ we obtain thé exact results in the limit Moo,
The basic assumption of the present paper reads

1 -BFM™ o o0 /FM o 0
1 B rM_ o M (M

aMLig. O 1 —Byfg e x 01 1/F'2 )., 0

D aQh ... 0
0... o 1flo ...oDp aMipM™
With an abbreviation (3.2)

(M) (M)

G, '=C, +B,F | D, k=1,2,. .M, (3.3)

this becomes an algebraic identity whenever the ECF auxiliary
sequence Fg ) may be defined by the recurrences



(M) _ - (M) o (M) - i/F =0 -
Fk _1/(Ak E-+Bka+1Gk+1), k=0,1,...,M (3.4) kotl

from the initial values at some index k,> 0) would lead to a singularity in the mat-
FOD_p®) o ) (3.5) rix‘elementBkoFy +1 Then? fr9m (3.4), it is necessary to

M+1 M+2 . derive the explicit regularization rules of the type
in the limit M- . F P L 1/(B G )

The standard secular equation related to eq.(3.1) kotl ko ko' kot
M)_ g (M) In the discussion it is in fact sufficient to distinguish

det(@™)-E ) =0 (3.6) ! between the following two cases.
may be given an alternative ECF form ‘ (i) we assume that

1 L _o (3.7) Fyr2#~Cx 41/ By 41D),
k=0 FM .
since determinant of the first factor in (3.2) is equal to one. i.e., Gko+1¢ 0. Then, we have 3150_1/(FKOF k +1) ¥ 0. The auxi-
Moreover, an existence of the ECF quantities F(M),ltz kg liary ECF quantities remain well defined sihceoFk; 0. Equation
necessitates a regularity of the inversion (3.45, (3.4) remains applicable for all k <kp in principle.

1 (i1i) provided that

F(M);éo, k>kg+1>0. (3.8)
k de+2=‘cko+1/(Bko+1D)

Hence, we may re-write our secular equation in the simplified

f%?m | we get de+1= 0 and 1/Fk0==Ako . Now, equation (3.4) implies
?HO tM =0 (3.9) that ch71= 0 and the rest(Fko_z, etc.) may be evaluated
k=0 Fk ) without difficulties. In the indeterminate ECF product, we
which is more suitable for an analysis of the Moo limit. have to omit the ill-defined quantities and employ the regula-
In-particular, we may often succeed in guaranteeing the rization rule
regularity condition (3.8) with kg = 0, e.g., via a small
change Qf the free parameter B. Then, we obtain the simplest 1/(Fk¢+1FkoF1ko—1) ="Bk,,-lBkoD £ 0.

ECF eigenvalue condition in the form

lim l/an =0. Again, the rest of our recurrences remains regular and well

M- o0 (3.10) defined.
In the light of the preceding analysis, we may expect that
Below, its formal aspects are to be analysed in more detail. k, is always smaller than some maximal value dependent on a

range of couplings. Thus, an alternative and quite universal
remedy of the singularity appearance may be found in a re-par-
titioning of the factorization. In the simplest case, we may
eliminate a need of one singular matrix~BkoFko+1by mere re-—

4. A REMOVAL OF SINGULARITIES IN THE AUXILIARY
ECF SEQUENCE

On a set of measure zero, the values of couplings and partitioning of the critical 3x3-dimensional submatrices in
energies may imply a non—existence of our basic factorization our factorization prescription - putting
(3.2) in the limit M-e. This may be handled as follows. )
® In a straightforward formulation, we may contemplate a di- v Bpoy =Bypoy 0.
rect lithiting transition M- e, ESE ..., or a similar C A -B
limit for some of the coupling constants. The violation of i ttt Ta n neee =
(3.10) (characterized by an appearance of a spurious zero ... D C A

n+1 n+1°°°
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1 -B,_,F; -¢, v 1/F 1 0 0 ...
s 0 1 o ... .. €y, A, -B,...
. 0 0 1 ... e D Qpy UF, ...

we may interpret the off-triangular matrix element

" Bn-1
¢ﬂ = » n'=k0
G, +A /(B F )

n+1

as the needed regularization factor. The same ‘trick may be re-
peated at a smaller singular index or extended to more dimen-—
sions.

5. AN ACCELERATION OF THE ECF CONVERGENCE
AND AN OUTLINE OF ITS RIGOROUS PROFF

In the n>>1 asymptotic region, we may write

B, = 401 +0(1/m), A = 46n(1 +01/m)), C_ =4a®n(l+0(1/m)(5.1)

and, omitting the superscipts, replace the exact ECF recurren-
ces (3.4) by their asymptotic approximation of the leading-or-
der form

1 2 3 2 4
—f‘:; =4Bn.+16a n°F , ,+32a (Bg-B)n Fo i1 F

In fact, this is equivalent to considering the parameters as
accompanied by the implicit error-estimate factors,

a? =a? (1 +0@Qn)), B=B1+001/M), ...

Such a notation is very useful - we may solve exactly the
asymptotic ECF recurrences (5.2) now,

0+ ,n>>1, (5.2)

o 2 (5.3)
Fy_gx—1 =L2k(B+ By) +4B1/ (18a®N®) , k =0,1,.. k.

¢ The limitation k<k; in (5.3) stems from the fact that we
must alsp take into account some (linear) propagation of er-
rors. Hence, the large and decreasing quantity Fy_gyshould
not become smaller than the small and increasing values of

F y_pk—y+ They become comparable just in the domain of indices
4

6 4

k=k;. There, the estimate (5.3) ceases to be reliable and
we arrive at

1+0(1/VN)
Fy—ex= Fy_ok-1 = 355’ (5.4)
4a N

where we have to put sign(B8 +Bo) =sign « . When we insert
(5.3) in the left-hand side here, we obtain also the explicit
range of the admissible indices

1/2

k [-B +(a +0k,;/N)) VN1 =N "%/y + 01) ,

1=

B"'Bo
y=2_(B+By)>0.
2a

In the k >k; domain of indices, we may use a natural re-
parametrization of the present ECF quantities

r™_ 1 L.t ym, 0>k, N<w. (5.5)
n ‘lcms/2 " - -

An insertion of this formula converts our n>>1

ces (5.2) into equivalent relations

ECF recurren-

t B~ B
_—n ='y+fn+1+)\ 0

n

Cpprt Tnee +Mos1fnye )

n=no,n0—l,m,n1, (5.6)

ng=N-2ky>>n>1, A=1/Vny+0), y=y(1+0()), e<<1l.

Here, a new error estimate e¢= Q(A) propagates again with the
change of indices n. In the rough approximation, we may expect
that our subtracted sequence f, (which changed sign in the
domain of indices n =N-2k, k <k,) will be small for
k>k,, i.e.,

fn/\/?=0(e), 1> ¢ »0(), nzn,.

Thus, we may drop all the higher—order corrections in (5.6)

and get a new simplification of the original ECF mapping,
_.fn

—_— =y 4+ f , ne&(m,,n.). (5.7)
1+ Af, n+1 1 0



This already has a sufficiently trivial geometric interpreta-

tion: when we iterate it once, it loses its oscillatory charac-

ter and may be written as a simple rational mapping

’ uZ + v ’
2= ———, z=y+fp 1,2 =y+f ¢ , (5.8)

1+ Az
p=1-@~-M)v, v=Av/U+M).

On the present Of(e) level of precision, the convergence of
the mapping z-+z’° is obvious — the initial values z=0(/A)
lie sufficiently far from the unstable fixed point z5) =
= y-2/X of this mapping. Hence, a simple geometry of (5.8)
implies an accumulation of our ECF values near z =z(+)z'wQ,
i.e.,
t’nzfn+1"‘——1—}’ n=n,. (5.9)

5 Vo 1 .
This becomes a good approximation after a few iterations of
(5.8).

From a purely algebraic point of view, a contractive beha-
viour (convergence Z » z‘'/) of our mapping is based on the
,tandard geometric—series majorization with
1—‘22-—1 <1,

9z

A decrease of index n implies also a decrease of our new
error estimate up to a new level of precision neglected in
the preceding considerations. We may write
() 21 y 1

= - + O
n T /2 gan? L57R

z>-1/Av,

F ). (5.10)
and linearise the ECF mapping. The rest of the proof is tri-
vial”/®

6. A SYSTEMATIC ACCELERATION OF CONVERGENCE

The idea of the preceding paragraph, namely, a systematic
subtraction of the fixed point approximations, may be employed
also in the re-formulation of the ECF formalism itself. For
example, assuming that

oF =F  =F <pP® 6.1)
say, in' the n>>1 asymptotic region, we may replace the auxi-
liary ECF sequence F_ Fno by a sequence of ECF differences
F[l] Fl [o] P(O)

4
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In general, the prescription
F[k+1] F[k] P(Il‘&) (6.2)

and its efficiency depends on our specification of the subse-
quent approximants P(k) For example, when we recall (6.1) and
demand, in the light Tof eq. (3.4),

p°pB_ B, +P%C__ B +P(A -E)-1 -0 (6.3)

n+1"n n+1

we may define P“D by the Cardano formulas/11/

In the latter constructlon, a representation of p(9 in the
form of Taylor series leads to a use of p=n 0172 as5"a natu-
ral variable, while the numerical considerations suggest
a replacement of (6.1) by similar relations for a new quanti-
ty By 1{F,. Summarising these two indications, we shall repla-
ce here the recurrences (6.2) and equations of the type (6.3)

by a simpler though equally general ansatz to be used in
(3.4),

{m}
B, ,F_ = " mzo¢ p™ +B P, p=1/YyTl, (6.4)
where ¢g = 1 and, presumably, B {ML-O( My

A detailed derivation of the coeff&c1ents ¢,1is a little
bit nontrivial. It may significantly be simplified, when we
proceed as follows.

(1) We employ the Taylor formula

=pm s (_jpz)k W]Em)’
k=0

@+ )™ = (o)™
wioresl m)/(k! F(—é—m))

and complement (6.4) by the expansions with shifted indices

1 2 m < (m~1) 2.k
Bovj—1Fnyy = e m2=0 PP kfo Wy (=ipT)n
Of course, the variable p=1/4/n remains the same.

(2) We avoid the multiple multiplications in (3.4) by
means of the inversion formula

-1

(Bn—lpn) = ap mz_'__ol»[’mpm ¢0=1! ¢1=_¢1y'"'

Here, the tilded quan-tit%es Ype1=¥ m_l(gbi.,qbg yores @)
= wnﬁ'¢m denote the m—~dimensional determinants



by bg ne Bp_y O
~ 1 ¢ ¢ ¢
m 1 m-2 m=1
¢m_1=04)
0 1 <#m.—3 ¢m_2 ’ m=2,3,..-
o ... 0 1 . ¢1
and ¢¥g=0
(3) We re-write the coefficients as polynomials
p4Bn_1=4+461p2, 8y = f+—%~,
p3AL = 4a(8yp +8508), 5, = Bla, B, =i—[(2z+a)¢3_m,
P20, = 4aB(14+840%), &, =—-[(A+1a?-p2 +g],
4a
3 1
pD, =4a"85p, 55=?(B0—B).
a «

(4) We convert (3.4) into a power-series condition

(1+81p2) ;Zl//mpm=(32 +83p2)p + (1 +54p2) x

x T (-DFg w(PTpmEER,
m, k ’
k+k” k’ (m=1) (m™~1) m+m’+ 2k + 2k~
v 8.0 s (<D By By W lvk, »
mm
kk

and re-arrange it in such a way that

—2m§1 ¢>mpm = 8,0 +53p3 +84p2 2 G ) o+

m, k
+8 p = (..)-8p2 s Y p™ - X &';lpm+
5 mm” 17 p=g¢ m m=2 m
kk”
% tz3 t-m . 2t (2m-1) 2t+1 (2m)
TORED T A w ¢
° t=1 p=0 [p t—m 2m P t—m 2m+1

i.e., the left hand side coefficient 1 p™ becomes defined
‘by its rlght hand side counterparts.

10 ¢

- —

erm———— — &
- ——r ¥ P r—————_

e - —

——

(5) We employ the power-by-power independence of these re-
quirements and get the explicit formulas

-2¢1=82+85,

—2¢2= 54 +2¢185 —51-¢f +

1
2’
-2 =6 5 + (242 +2

by =0y + ¢80, +($] +20, +

re-expressing them at p1,p% 53, etc., respectively.
(6) Finally, we convert the recurrent definitions ¢

By + 8,8, + 3% -24 4,

= ¢ (S _41bp_orr y) into the explicit formulas
B+B

¢1='_ 0,
4a
1 2 2 2 _

é, 18a2ﬂ42—2h1 +(B+B,) +4B0 4g1],

etc, by the repeated insertions.

The resulting formulas seem rather cumbersome. We may recom—
mend their computer generation: The definitions are linear,
so that the manipulations leading to the final results are
straightforward.
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3Houn M. E5-87-480
HBoiiHON aHrapMOHHUYECKHil MOTeHIHAJ

ax2 + bx“* + cx® u pacmMpeHHwe LemHbne Opo6H

PaccMaTpuBaeTcs mpoblieMa CBsi3aHHbIX COCTOSHHi C3KCTHYEC—
KOro aHrapMOHH4YeCcKOro ocimuiatopa. PemeHune /Singh et al.,
Phys.Rev., 1978, DI8, p.1901/ ¢ b > O ¥ uenHsMH ApO6AMH
pacmMpsieTCs Ha BCe KOHCTAaHTH CBAsu. HaumHas ¢ XHIUIOBCKOTO
noctpoennss /Znojil,Phys.Rev., 1986, D34, p.1224/, ucnonbay-
eTCsl pPeKyppPeHTHas GaKTOPH3aIMA U MOJNYYAaeTCs IMOJIHOe pemeHHd
B TepMMHax TakK HasblBaeMbiX DacCHMPeHHbIX LeNHbX ppobeii. Hekxo-
TOpble MaTeMaTHYeCKHe BOMPOCH /CHHIYIADHOCTH, CXOOMMOCTE/
PasbACHALTCA [HeTalbHO H, B YaCTHOCTH, MNpemiaraeTCs CHCTeMa-
THYeCKoe YyCKOPeHHe CXOOMMOCTH. JoCcTHraeTcsi MOmoJIHeHHe
U ynydmeHHe OPHIHHAITBHBIX KOHCTDPYKIIHMH.

PaBora BrinmoiHeHa B Jla6opaTOpPHH TeopeTHUYECKOH GH3IHKH
OUAH .

CoobGuienne O6benMHEHHOTO HHCTHTYTa ANEPHRIX HcenenoBauuii. JlyoHa 1987

Znoiil M. E5-87-480 |
The Double Anharmonic Potential
ax? + bx"* + cx® and the Extended Continued
Fractions

The sextic anharmonic-oscillator bound-state problem
is considered, with an intention to extend its nonpertur-
bative continued-fractional b > 0 solution to all coup-~
lings. Starting from its specific Hill-determinant treat-
ment we employ a recurrent factorization of the related
non-hermitean Hamiltonian and arrive at a complete nonper-
turbative solution represented in terms of the so-called
extended continued fractions. The underlying less standard
mathematical questions (singularities, convergence) are
also clarified and, in particular, a systematic algebraic
acceleration of convergence is proposed. In this way, both
complection and improvement of the original constructions
is achieved.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
Communication of the Joint Institute for Nuclear Research. Dubna 1987




