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1. INTRODUCTION AND SUMMARY 

AlI the salient features of the so-called Hill determinant 
method/ 1/ may be illustrated on the sextic anharmonic oscilla­
tor 

2
 
d e(f+ 1) + V (r) 1t/J (r) = E 1 rj;(r) , f=O,l, ....
[- - + 2 1 
dr 2 r 

(1 . 1) 

V1 (r) = g 1r2 + g 2r 4 + gs r 6 gs> O. 

T~is was proposed by Singh at al./2/ and the problem (1.1) has 
attracted much attention during the last few years (cf., e.g., 
the review by Hautot/S/).In fact, a simple change of variables 

r -+" r IIp .1. r cons t.z (1 .2) 
, ~ -+ ~ , f +.1. ... (f +.1.) jp, p =2,3,4

2 2 

may be used to convert the interaction V =V 1 in (1.1) into the 
other three equivalent forces Vp , 

V2 (r) co ~ g Or -1 + 2g 2 r + 4g sr 2 , 

V (r) = g o(3r)-4/3 + g 1 (3r)-2/3 + g3 (3r)2/S (l .3)
3 

V (r) =.!...g r -3/2+ .!..g r -1 +.!...g r -1/2
1 24 8 O 4 2 

with the new coupling go =-E 1 and wi t.h the new respective de­
z:finitions of energies E E p , 

E 2 =-gl' Es --g2' E 4 = -s 3 «O). (1.4) 

Hence, a number of the physically interesting situations may 
be represented by a re-interpretBtion (1.2)-(1.3) of eq.(I. 1) 
as well as of the corresponding power series ansatz 

t/J(r) expP(r) ~ hnr 2n+f +1, Per) =~r4+vr2. (1.5)z: 

n=O 
In accord with Hautot /3/,the best numerical results may be 

obtained with certain optimal values of ~ and ~ in tne poly­
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nomial P(r). In the alternative, less numerically oriented ap­
proach of Singh et al. / 21 emphasizing the simplicity of formu­
las, we have to cons ider g 2 > O and choose Per) as an exac t 
WKB asymptotic estimate of ~(r). In the spirit of our prece­
ding paper 141 , we shall analyse here a compromise, with the 
WKB value of Jl and with an arbitrary parameter at r 2 • 

Per) = - (~ a) 2 r 4 _ ~ f3 r 2 , a 4 = g 3 •	 (1 o 6) 

Such a choice of P(~ has also been made in the purely numeri­
cal study by Killingbeck/ 5 / . 

A genuine merit of our ansatz (105) + (106) lies in the 
straightforward numerical tractability of the eigenvalue prob­

/ 60olem (lo 1) by means of the extended continued fractions (ECF
As an alternative to the divergent perturbation series, the 
ECP formalism will be described here in detail, with a parti ­
cular emphasis laid upon a systematic acceleration of its con­
vergenceo This will be our main resulto Indeed, without such 
an improvement, the Rill determinants seem to give a slowly 
convergent results when compared with the standard variational 
procedureso In this respect, we may recall the extensive nume­
rical analyses by Rautot / 3/, Killingbeck 151 and Tater / 71 or 
Znojil / SI which motivated the present completion of the stan­
dard ECF construction / 9 / . 

2.	 TRE ASYMMETRIC MATRIX SCRRODINGER EQUATION
 
~ND ITS TRUNCATION
 

An insertion of (105) and (106) in (lo 1) leads to our basic 
set of linear equations 

2 
Q C; ~ ) -E c;n ·	 (• I) 

where 

Q nn = A n = (4n + 2f + 3) f3, -Qnn+l= B n = (zn + 2)(2n + 2 e + 3) , 

Q 1 = C ~ = (4n + 2f + 5) a 2 + g - f3 2 , 
n+ n n+~ 1	 (202) 

2 
OI Qn+2n :: D = 2a 2 ( f3 O - (3), f3 O = g2 /(2 a ) 

-, 
and n = O, 1, .... Obviously, this is a non-variational eigen­
value yroblem. For D = O, it coincides with the relations of 
Ref. / 2 , appl icable for g 2 > O and f3 o> O onLy , Rence, we shall 

\ assume that D I- O in what f o l.Lows . 

2 
L' 

In a phenomenological context, the "inadmissible" couplings 

g2::: O	 (2.3) 

correspond to the more interesting (eogo, double-well) inte­
ractions. Rence, after a discovery of a surprising failure of 
the Singh's analytic continued-fractional construction/ 2 • 3 ! , 
various attempts of its improvement may be quoted, ranging 
from an analytic continuation / lL OI up to the fixed-point expan­
sions 171 or non-WKB choices of Per) /3~ In accord with our 
study 14/, the choice (1.6) represents the simplest solution 
of the above inadmiss{bility puzzle: We proved that the rest ­
riction of {3's, 

f3 + f30 > O	 • (2 . 4 ) 

is sufficient for a possibility of truncating eq. (20I).This 
will be a starting point here. 

30	 TRE FACTORIZATION OF Q-E AND BINDING
 
ENERGIES
 

tor a large index M»1, we may replace all the coeffici ­
ents Q'M+m.M+n,m.n~l by zeros and obtain the truncated matrix 
form of our basic eqo (20 1), 

Q(M) (.~:) (.~: )_	 E(M) • (3. I) 

Due to Ref /4/, we obtain t he exact resul ts in the limit M.. ec , 

The basic assumption of the present p ap e r reads 

1 -BoFiM) O .,. 0\ /l/F~M) O ... O 
(M)

Q(MlE",,/ O 1 -B1Fe 000 O x O(r) l/F~M)o.. O 
(M)D O O
2 

o 1 G (M) l/F (M)O o D M M 
With an abbreviation (3.2) 

( M) (M)

G k = Ck + B k Fk + 1 D. k = 1 ,2" 0'" M , (303)
 

this becomes an algebraic identity whenever the ECF auxiliary 
sequence F(M) may be defined by the recurrences 

k 
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F (M) = 1/(A _ E + B F (M) G (M) ) k = 0,1 ,••• , M (3.4)k k k k+1 k+l •
 
from the initial values
 

F (M) = F (M) = O
 (3.5)
M+l M+2
 

in the limit M-+ 00.
 

The standard secular equation related to eq. (3.1)
 

det(Q (ML E (M») = O	 (3.6) 

may be given an alternative ECF form 

M 1 
TI - =0 (3.7)
 

k=O F(M)
 

since d~terminant of the first factor in (3.2) is equal to one. 
Moreover, an existence of the ECF quantities F~M). k ~ k O 

necessitates a regularity of the inversion (3.4), 
1 

(M)~O, k2: k + I>O.o	 (3.8)
F

k 
Rence, we may re-write our secular equation in the simplified 
form 

ko 1
'TI 

F(M) 
O	 (3.9)

k=Q 
k 

which is more suitable for an analysis of the M... 00 limito 
In-particular, we may often succeed in guaranteeing the 

regularity condition (3.8) with k o = O, e.g., via a small 
change qf the free parameter ~' Then, we obtain the simplest 
ECF eigenvalue condition in the form 

lim	 l/F(M) =0. 
O	 (3 .. 10)

M-~oo 

Below, its formal aspects are to be analysed in more detail. 

4.	 A REMOVAL OF SINGULARITIES IN TRE AUXILIARY
 
ECF SEQUENCE
 

Ou a set of measure zero, the values of couplings and
 
energies may imply a non-existence of our basic factorization
 
(3.2) in the limit M-+ 00. This may be handled as follows. 
~	 In a straightforward formulation, we may contemplate a di ­
rect lithiting transition M -+ 00. E -+ E criticaI' or a similar 
limit for some of the coupling constants. The violation of 
(3.10) (characterized by an appearance of a spurious zero 

~ o 

l/F k +1 ~ O 
o 

at some index would lead to a singularity in the mat­k o2: O) 
rix element Bk Fk + 1 • Then, from (3.4), it is necessary to 
derive the expli~it regularization rules of the type 

F k + 1F k ;" 1/(B k G k + 1 ).o o o o 
In the discussion it is in fact sufficient to distinguish 
between the following two cases. 

(i) we assume that 

~ -Cko+1~(B k +lD ) ,F k o+ 2	 o 

i.e., Gko+i t- o. Then, we have also l/(F k F k +1) t- O. The auxi­
liary ECF quantities remain well def i.ued sfhceo Fk = O. Equation 
(3.4) remains applicable for a I I k <ko in princiople. 

(ii) provided that 

F k +2=-C k +1/(B k +lD)o o o 

we get G k +1 = O and l/F k =A k • Now, equation (3.4) implies 
o o o
 

that F k 0- 1 = O and the rest (F ko - 2 ' e t c , ) may be evaluated
 

without difficulties. In the indeterminate .ECF product, we 
have to omit the ill-defined quantities and employ the regula­
rization rule 

l/(Fk +l Fk F k -1) =-B k _1 Bk D ~ O. o o o o o 

Again, the rest of our recurrences remains regular and well 
defined. 

In the light of the preceding analysis, we may expect that 
ko is always smaller than some maximal value dependent on a 
range of couplings. Thus, an alternative and quite universal 
remedy of the singularity appearance may be found in a re-par­
titioning of the factorization. In the simplest case, we may 
eliminate a need of one singular matrix' B k Fk +1 by mere re­

o o
 

partitioning of the criticaI 3x3-dimensional submatrices in
 
our factorization prescription - putting
 

An - 1 -B n-I O ••• 

C n A n -B n • • • 

O C + 1 A n+ 1 •••n

.... 
5 4 



k ~ kl' There, the estimate (5.3) ceases to be reliable and
1 -B n - 1 F ii O we arrive at
 
O 1 O ••• •.• C A -B n •••
 

-~n 000) ( ... l/Fn-l O 

n n 1 + 0(1 /y'N) 
FN _ 2k ~ FN - 2k - 1 (5.4)O O 1 ••• ••• D Q n+1 l/Fn+1'" 4a N 3/2 

we may interpret the off-triangular matrix element	 where we have to put sign(fJ + f3 
0 

) = sígn IX. When we insert 
(5.3) in the left-hand side here, we obtain also the explicit 

Bn-l 1, range of the admissible indices 
if>n	 n = k o ,~ 2	 --- 1/20n+1 +A / (B nn Fn+ 1) r, k 1 = --[-fJ +(a +O(k 1/N» y'N] =N /y + 0(1) 

f3 +fJ oas the needed regularization factor. The same "trick may be re­

peated at a smaller singular index or extended to more dimen- 1 •
 

y = --- (fJ + f3 O ) > O. 
s~ons . 2a 

In the k > k 1 domain of nd íce s , we may use a natural re­í 

5. AN ACCELERATIDN OF THE ECF CONVERGENCE	 parametrization of the present ECF quantities 
AND	 AN OUTLINE DF IT8 RIGOROU8 PROFF 

F (N) = 1 (1 + f / y'Ii) , n > Ti. , N < ()O (5.5)• 

n 3/2 n -In the n > 1 asymptotic region, we may write 4an 
An insertion of this formula converts our n» 1 ECF recurren­

B = 4n2 (1 + o(l/n»). A = 4fJn(1 + O(l/n»). C z= 4a2n(1 + 0(1/n»(5.]) ces (5.2) into equivalent relationsn n 

and, omitting the superscipts, replace the exact ECF recurren­ f n	 f3-f3 
___ - y + f + A O (f f M f )
1 + M - n + 1 2 n + 1+ n +2 + n + 1 n + 2 ' ces (3.4) by their asymptotic approximation of the leading-or­


der form 
n a
 

n=n , n - 1 , ... ,n ,o o 1 (5.6)T =: 4f3n. + 16 a 2nS Fn + 1 + 32 a 2( fJ O - ~) n 4 F D + 1 F n + 2 ' n >>1 . (5.2) 
n 

In fact, this is equivalent to considering the parameters as n o =.N - 2k 1»n1»1, A=l/y'--n;(l +O(d), y=y(l+O(d), «<1. 
accompanied by the implicit error-estimate factors, 

a 2 = a 2 (l + O(l:1n»). f3 I: fJ(l + O(l/n», ••.• Here, a new error estimate (= OCA) propagates again with the 
change of indices n. In the rough ap~roximation, w~ may expect8uch a notation is very useful - we may solve exactly the 

asymp~otic ECF recurrences (5.2) now, that our subtracted sequence f o (which changed sign in the 
domain of í nd í.c e s n = N - 2k, k < k 1) will be small for 

F N.- 2k=: 1/{[2k({J+flo ) + 4f3]N I, k »k l' i. e. , 

(5.3) r n/ y'n = o (l), 1» e ~. o (A) , n ~ n 1 • 
F - 1 =[2k(,8+ (3 0 ) +4f311(16a 2N 2) , k =0,1 , ... ,k 1 •N 2k ­ Thus; we may drop ali the higher-order corrections in (5.6)(1 and get a new simplification of the original ECF mapping, 
~ The limitation k~kl in (5.3) stems from the fact that we 
must alsp take into account some (linear) propagation of er­ -f n 
rors. Hence, th~ large and decreasing quantity FN_ 2k Shou l d J n ~ (n1 ' no) • (5.7) 

1 + Af nnot become smaller than the small and increasing values of 
- 1 . They become comparable just in the domain of indicesF N- 2k 

~ 

6 
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I

l In general, the prescription
This a1ready has a sufficient1y trivial geometric interpreta­

F(k+l]=F(k]_p(k) (62)tion: when we iterate it once, it loses its osci11atory charac­ '\ n n n • 
ter and may be written as a simp1e rationa1 mapping and its efficiency depends on our specification of the subse­

quent approximants p(k). For examp1e, when we reca11 (6.1) and 
Z' JlZ + 11 d demand, in the 1 ight nof eq. (3.4) ,z =y + f n + 1 I Z' =y + f n - 1 , (5.8)

1 + ÀZ i j 8 2 (6.3)
Jl = 1 - (2 - Ày) 11, 11 = Ày / (1 + Ày) • P DB lB + P C 1 B + P(A - E) -1 = On+ n n+ n n 

On the present O(f) 1eve1 of precision, the convergence of 
the mapping Z -+ Z' is obvious - the initia1 va1ues z = O(f/À) 'I 
1ie sufficient1y far from the unstab1e fixed point z(-) 
= y-2/À of t h i s mapping. Hence, a simp1e geometry of (5.8) ~ )' 
Irnp'l i es an accumu1ation of our ECF va1ues near Z::s z(+).", y/2. ,I 
i. e. , I 

i.f n "" f n+ 1 "" - "2
1 

y, n "" n 1· (5.9) 

This becomes a good approximation after a few iterations of 
(5.8). 

From a pure1y a1gebraic point üf view, a contractive beha­
viour (convergence z -+ z (+)) of our mapping is based on the 
standard geometric-series majorization with 

az'
I --I < 1, z > - l/À 11• az 

A decrease of index n imp1ies a1so a decrease of our new 
error estimate up to a new 1eve1 of precision neg1ected in 
the preceding considerations. We may write 

F(oo) _ lo 1 y 1 
n - 3/2 ---2 + O(--:gj2). (5.10)

4an Ban n 

and 1inearise the ECF mapping. The rest of the proof is Eri­
via1 19/. 

6. A SYSTEMATIC ACCELERATION OF CONVERGENCE 

The idea of the preceding paragraph, name1y, a systematic 

we may define p~) by the Cardano formulas 111/. 
In the 1atter construction, a representation of p(O) in the 

form of Taylor series 1eads to a use of p = n-1/2 as na na tu­
ra1 variab1e, whi1e the numerica1 conside!ations suggest 
a rep1acement of (6.1) by similar re1ations for a new quanti ­
ty Bn_1F n• Surnrnarising these two indications, we sha11 rep1a­
ce here the recurrences (6.2) and equations of the type (6.3) 
by a simp1er though equa11y general ansatz to be used in 
(3.4) , 

1 M m {M} .rz:
B 1 F = - ~ cP p + B 1 F , p = l/v n .« 1. , (6.4)n- n m n- n ap 'm=O 

where q;o = 1 and, presumab1y, B -1 F{M}=O(pM). 
A detai1ed derivation of the ~oefttcients cP is a 1itt1em 

bit nontrivia1. It rnay significant1y be simp1ified, when we 
proceed as fo11ows. 

(1) We emp10y the Taylor formula 

,)-m/2 (,)m m ~ ( . 2)k (m)(n + J = P = P k -J P W k '
 
k=O
 

W (m) = r (k + ..!.m)/(k! r(.!..m»
k 2 2 

and comp1ement (6.4) by the expansions with shifted indices 

1 00 
00 (m-l). 2 kmB n + j "" - ~ cPmP ~ W k (-Jp).+1- 1 F n : ap m=O k=O 

Of course, the variab1e p =V-y'n remains the same , subtraction of the fixed point approximations, may be emp10yed J 
(2) We avoid the mu1tip1e mu1tip1ications in (3.4) by

a1so in the re-formu1ation of the ECF formq1ism itse1f. For I 
means of the inversion formula

examp1e, assuming that t 
-1 00 m 

~ F "" F "'" F s::s P (O) (6. 1) (B _ ) =ap ~ t/JmP , t/Jo=l, t/Jl=-cP 1,···n 1F nn n+ 1 n+ 2 m=O
 
say, iri' the n» 1 asymptotic region, we may rep1ace the auxi­
 li Here, the ti1ded quantities $m-l = -ri m-l(cPl,cP2 , ••• , cP m-l)
1iary ECF sequenc e Fn = F ~ o] by a sequence of ECF differences " 

.: = t/; m+ cP m denote the m-dimensiona1 determinantsF[ 1]= F [0]_ p(O) •
 
n n n
 

~ 
\' 
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1I 
:l
,

<P1 cP2 ••• cP m-1 o 
(5) We employ the power-by-power independence of these re­

1 cP 1 ••• <P m-2 <p m-I quirements and get the explicit formulasl/I-m-1 = (-1) m det {
 
O 1 ...
 -2cP 1 = 8 2 + S 5 ' <P m- 3 <P m-2 J , m= 2,3 •... 

... 
.;I 

- 2 <p 2 = 8 4 + 2<p 1B5 - Ô 1 - cb r + ~ ,O ... O 1 r:P1 
and 1/10 = o. 

- 24>3 = + cP 1 8 + (cP; + 2cP + ~)8 5 + cP! 8 1 + c;D31 ­(3) We re-write the coefficients as polynomials	 83 4 2 2cP 1cP2 ,1I
 
p 4 B O _ 1 = 4 + 4Ô1P 2, 81 = e + ~ , 1\ re-expressing them at p 1,p 2, 'P 3, e t c . , respectively.
 

(6) Finally, we convert the recurrent definitions <P 
1 m
 

p 'JA 4a (8 2 P + 8 3 p 3 ), Ô == {3/a, = -( (2e + 3) {3 - E] , </> m(</>m- l'rp m-2"'" </>1) into the explicit :formulas
 
n	 2 8 3 4a 

{3+/30 

p 2 c 4a2 (l + 8 4 P 2 ) , 8 4 = _1_ (2f + l) a 2 - f3 2 + gl] ,	 <p =---­
n	 1 4a

4a 2 

1pD "",4a38
5 P , 8 5 = -(13 0 -{3).n 

2a	 <P ~(4e-2)a2 +({3+13 ) 2 +413 2 -4g ] , 
2	 0 tt6a	 O 

(4)	 We convert (3.4) into a power-series condition 
etc, by the repeated insertions. 

0+ 81P 2) k t/JmP m = (8 + 8 SP 2) p + (l + ô P ~ x The resulting formulas seem rather cumbersome. We may recom­
m 2 4 mend their computer generation: The definitions are linear, 

so that the manipulations leading to the final results are 
x	 L (-1) k <P mW ~rr,t~1 bm+ 2k + straightforward.
 

m, k
 . (_1)k+k'2 k ' <p cb ,w(m-l~(m"-l) m+m"+2k+2k" 
+	 ô6P L rn rn k k' Pp	 REFERENCES 

m.m'
 
k , k'
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and re-arrange it in such a way that Ginsburg C.A. - Phys.Rev.Lett., 1982, 48, p.839.
 
2. Singh V., Biswas S.N., Datta K. - Phys.Rev., 1978, D18, 

00 

p.1901; M.Znojil M. - Phys.Rev., 1932, D26, p.3750.- 2 ! <p rn p m :r= 82P + 8sP 3 + B4P 2 I. (. .. ) + 
m"",l m,k	 3. Hautot A. - Phys.Rev., 1986, D33, p.437. 

00	 
4. Znojil M. - Phys.Rev., 1986, D34, p.1224.... 

+	 8 P L ( ... ) - 8 p 2 ! t/J pm ­L tP - 1 pm + 5. Killingbeck J. - Phys.Lett., 1986, A115, p.301.
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3HoHJI M. ES-87-480 
Asoftaoft aarapMoaaqecKHH noTeH~an 
ax2 + bxl+ + cx6 H pacmapeHHhie u;enHbre p;pooa 

PaCCMaTpHBaeTCfl npooneMa CBR3aHHbiX COCTORHHH C3KCTHqec­
KOro aarapMoHaqecKoro ocn;annRTopa. PemeHae /Singh et al., 
Phys.Rev., 1978, Dl8, p.l901/ C b > 0 H u;enHblMH APOORMH 
pacmHpReTCfl Ha BCe KOHCTaHTbl CBfl3H. HaqHHafl C XHnllOBCKOrO 
TIOCTpoeHHR /Znojil,Phys.Rev., 1986, D34, p.1224/,acnonb3y­
eTCfl peKyppeHTHafl ~aKTOpH3aiJ;HR H nonyqaeTCfl TIOllHOe pemeHHE 
B TepMHHax TaK Ha3biBaeMbrx pacmapeHHbrx u;enHbiX p;pooeft. HeKo­
Tophle MaTeMaTHqeCKHe BOTipOCb! /CHHrynRpHOCTH, CXO~HMOCTb/ 

pa3~flCHfliDTCfl p;eTanbHO H, B qacTHOCTH 0 npep;naraeTCfl CHCTeMa 
TaqecKoe ycKopeHHe cxop;HMOCTH. AocTaraeTcR nononHeHHe 
H ynyqmeHHe OpHrHHanbHbiX KOHCTPYKIJ;HH. 

Pa6oTa BbrnonHeHa B JlaoopaTopHH TeopeTaqecKoft ~H3HKH 
OIDU1. 
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The Double Anharmonic Potenti~l 
ax2 + bx4 + cx6 and the Extended Continued 
Fractions 

The sextic anharmonic-oscillator bound-state problem 
is considered, with an intention to extend its nonpertur­
bative continued-fractional b > 0 solution to all coup­
lings. Starting from its specific Hill-determinant treat­
ment we employ a recurrent factorization of the related 
non-hermitean Hamiltonian and arrive at a complete nonper­
turbative solution represented in terms of the so-called 
extended continued fractions. The underlying less standard 
mathematical questions (singularities, convergence) are 
also clarified and, in particular, a systematic algebraic 
acceleration of convergence is proposed. In this way, both 
complection and improvement of the original constructions 
is achieved. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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