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, 1. Introduction 

Cne of the most ~xtensively studied discrere dynamical systems 

is t~e eo-called Henon system /5/ given by the following 

pair of equations: 

Xn+ 1 Yn ~ 1 - Ax 
2 
n 

f 1 ) 

Yn+l : Bx n" 

This is one of the simplest nonlinear maps of the olane 1nto 

itself and it reflects a lot of impactant properties af dy

namieal systems. In /5/ tnere is descrfbed a strange attrae

tor for A = 1.4, B = O.~. An ex~austive investlgation of (i} 

was performed by Slmõ/8/. He described a lot of &ttractors 

(e.g. fixed oaints, periodic orbits, straRqe attraetors), 

their sha~e, development and 50 on in dependence qn the va

riation of A; 8 1s fixed to'be 0.3 . Most of t~e papers con

cerning (1) consider only strong dis8ipations (1.e. smoll t 81, 

for 181 = 1 the s.vs t em 1s conservat1ve, that means , the ma-f! 

----;~ 
i8 area-preserving). There are only few papers where the dy

I 
I 

I• 
namieaI behaviour of (1) 16 ipvestigated for larger (SI 

(e.g. /2/, there the casas B • -1 and B = -0.85 ara considered) • 

While systems with strong dissioation are very appropr1Rte 

to determine alI kinds of attreetors, systems with small 

dissipation show also interes~1ng features, e.g. transient 

chaos. In /3/ and /4/ Chirikov and Izrailev studied some 

discreta dynamical system on the torus. They were the firet 

wno observed the followinq phenomenon whíeh appears in course 

of the transit10n from the conservative to the dlssipative 

regime of the system: 

conservative regime: There exists a stocnastie component 

(formed by one ~1ngle trajectory) which 

has (smalit 1s1ands of stability, i.e. 

trajectories which stert with1n s~ch an 

~ f s Larrd cannot Le ave it ano the motion 

is confined on some ellipse lying inside 

th1s island. 

~ 
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sm~ll dissipation:	 lhe stochastic component is comoletely 

destroyed, a oeriodic orbit anpears. 

It is located in the former stable islAnds 

and attracts all points of the torus. 

Long transient chaos is posslble. 

Increasing dissipa~ion: lhe period-doubling scenario appears 

and a strange attra~tor arises. 

lhe point is, that there are systems in which the transi.ion 

from stochastic motion in the conservative regime to sto

chastic motion in the dissipative regime (nemely on a strange 

attractor) is discontinuous in the sense, that these two 

stochastic motions are separated by periodic motion. 

Moreover, in these papers of Ch1rikov and Izrailav there was 

numerically established the following reletion: 

N,S'E 3. .. 

Here the symbols have the following meaning: 

N - life time of transient chaos 

S - total area of 8table islands 

E dissipation,(i.e. E = 1 - 8 for 8>0 if wa consider the 

Henon system). For details see /6/. 

Subsequently in the l1terature there was repoetedly discussed 

the question whether or not such a discontinuou8 transition 

i8 universal or not (cf. /1/,/7/,/11/). In /9/,/6/ and /10/ 

we discussed the results of /7/ where a continuous transition 

in a truncated Henon system was postulated. The trouble was 

that the truncation was of such a kind that in reality the 
supposed transition was not at all studied. 

In the present paper we continue the investigation of the 
following generalized Henon system: 

Xn + 1 Yn + D Ax~ 
? 

, O D f 1 

(2) 
Yn+l = Bxn, 

In /6/ and /10/ we studied some properties of this genera
lized Henon system Qn a torus of period 4 (truncated in 
such a way tha~  ~ xn'Yn 2). Let us denote the corres
ponding system by (2 t) (t means truncation). In these pa

q. pers we found for (2 t) for A = B = 1., D = 0.1,0.2, ..• , 1 

• ~	 

2 

the stochast1c component w1th stable islands and the oheno


menon of discontinuous transition describe~ ebove. Moreover,
 

in alI these cases we verified the relation N'S'E ~ 1.
 

Now we investigate and compare some properties of (2) and
 

(2 t ) . Especially we give numerical results concerning the
 

appearance of periodic and strange attraetors, an interrup


ted period-do~bling scenario and an example of period doub

ling into two direetions (i.e. with increasing and decrea


sing parameter B starting with the same orbit).May be, this
 

15 new.
 

In aeetion 3 we etudy the dependenee of the number of un


attraeted trajeetories in dependence on the number of itera

.tions. It appears that for (2~),this dependence is quali 

tat1vely,the same (namely exponential deeay) as for the dissi 

pat1ve Ferm1 map studied in /11/. Moreover we add some e~i

tical eomments to some assertions in /11/ concerning the dis

continuous traneit10n of the stoehastic motion in (2 ) in the 
t
 

course of ehanging from the conservative to the dissipative
 
regime. 

2. lhe generalized	 Henon system in the plane 

We eonsider sY9tem	 (2) in the plane, i.e. 

2 
Xn+1 a Yn + D - Ax o-. D " 1n 

(J) 
Yn+l .. Bxn , 

In all our considerations we fix A = 1. 

lhe fixed points of the map (2) in ite general form are
 

given by:
 

F 
c (1/2A)«B-1J) ! «B_l)2+4AD) 1/ 2 )" yi,2:11 Bxi,?_x1 , 2 

For B = 1 (conservative case) this means: 

F + 1/2 F F 
X,1,2 • - (D/A) • Yl,2 a )(1,2 . 

Moreover, it 1a easy to see, that the points 

«D/A)1/2 , _(D/A)1/2 ) and (_(D/A)1/2, (D/A)1/2) 

form an orb1t of period 2. 

:~ 
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First let us conelder the conservative system (8 ~ 1) and 

let D vary from 1 to 0.1 (A ie fixed to be 1). Among other 

things one observes thefollowing: 

the flxed polnts are unstable and therefore canno t be 

found numerlcally. If one coordinate of the fixed polnt 

ls a little bit perturbed from the true value (say by 

10-10), then thls point escapes to infinity after a small 

number. of lterations. 

- the 2-orblt is stable (more exactly: tranelently stable, 

see below ), and each of its polnta is surrounded by 

small etable lslands. Trajectorles startlng wlthln remaln 

there for ever and form ellipses. 

Clearly, the trajectory of a discrete eystem Call1lot form 

an elllpse in the strong sense of the word, but the polnte 

of the trajectory cover such an ellipee denseIy (l.e. with

out being periodlc). 

- lf one takes the lnltlal point near to the boundary of the 

stabla reglons, there can be observed more smaIler stable 

lslands surrounding the former stable reglon. 

Let us glve some exampIes: 

D • 1: 2 x 7 (l.e. any of the two stable regions ls sur

rounded by 7 smaller stable lelands) 

D • .9: 2 x 8; D ~O. 6: 2 x 11; D. 0.4: 2 x 5 

D = 0.3 : 2 x 6. 

q. 

Flg.1 glves an impresslon of the location of one part of the 

stable reglon for A = 8 = ~, D = 0.3 for the truncated syste~ 

(2t). The 6 pieces of the 12-harmonlc8 surrounding the stable 

lsland are very well seen. Thls flgure le formed by 3 tra

jectorias: two in the inner part of the ls1and and one (taka 

as lnltlal point e.g. (0.778,- 0.548» which forme the sto

chastlc component which has these 6 (resp. 12) small stable 

ls1ands. In the plane one would get almo~t the same pictur~ 

but wlth the difference that the lnitial point indicated 

above í s dlvergent •. Nevertheless, in t.he course o f iteratlon 

this polnt has yet time to indic~te clearly these 12 islands 

b e-f o r e it eecapes to lnfinity . 

, 
~ 

. ~ 

Because it may be not 50 easy to fi·nd these small aurroundrnq 
ls1ands numerlcally, we colleet some informatlon in the 

followlng table. The s~cond ~olumn contains lnitlal potnts 

which lead to ellipses w1th1n the i.s.lands eround the 2-orbit 

but already close to the boundary. The tnlrd column lndlcat~s 

in1tlal po í nt s -which traject~r1es form .r he surroundlng 8mall 

ls1ands. Flnally ln the last column we nave the number of these 

ls1ands. For some valu86 of D Wa did not found data because 
we dld not seek long enough. 

Table 1: A = B = 1, s vs tem (2) or (2
t 

) 

o ln1tial point 
l'1ear bounda rv 

ln11: lal -po.1nt fo.r 
surrounding is1. 

number of ls1ands 

1 (1, -O .975) (1, -0.955) 2 x 7 

0."9 (1.013,-0.948) (1.023,-0.948) 2 x8 

D.8 (0.939,-0.894) ? ? 

0.7 (O .947, -O .837) ? ? 

O.fi (0.925...-0.775) ('0.935,-0.7751 2 J( 11 

0.5 ( O .,817, -O .7-07) ? ? 

0.4 (D.835,-0.532) (O .37-0., -O .37-0). 2 x 5 

0.3 (0.758.-0.548} (O .240, -O .48-0) 2 x 6 

0.2 (O ~747 r -O .44n ~Ó.767 ,-0.447), 2 x 9 

0.1 (0.576,-0 ..316) ? ? 

Next we conslder small dl~slpation5. Let us mentlon only ~wo 

casa~ in de t a a L, further lnformatlons are contaln~d ln table 2 
.be Low, 

A • 1, D • 1 

As already menUoned above {sea also /6/). the 2-orbit 18 

s'tabIa.. but thls stabillty 15 just a tran-sient erre , M9r -e , 

eXBctly, t.he elgenvalues of the 11naar~zed. system a-t the 2,.. 

ôrb1t are both equal t~ -1. Thus,Blre&dy the weakest dlesl

pat10n leads lmmedlately ~o 8 b1fúrcation and a ~~able 4-or

bit arises. m:J giv-e some data of the corresp-ondlng perlod ;,.. 

doublin9 acenario: 

5 
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B 0.999 999 0.86, 4-orbit 
0.85 0.835 8-orbit 
0.830 0.827 16-orb1t 
0.8269 0.8262 32-orb-1t 
0.826 0.825 86 64-orbit 
0.825 85 0.825 82 128-0 rb1 t 
0.825 81 0.825 808 256-0 rbit 
0.825 806 512-orbit 
0.825 strange attractor w1th Lyapunoy exponent 0.038. 

Let us remark that for 0.5' B ,., 0.825 we could not find any 

non-divergent point. 

A • 1 , O a 0.95 

Here we f1nd for small d1ss1pations the 2-orb1t, and then 

the per10d-doubling goes as usual, e.g. 

B a 0.95 2-orbit 

0.9 ••• 0.8 4-orbit 

0.716 066 512-orb1 t 

0.7 strange attractor w1th Lyapunov exponent 0.086. 

In the follow1ng tabIe we collect some 1nformat10n about the 

whole range of O. The entr1es of th1s table 1nd1cate the most 

dom1nant per1crd1c orb1ts/a~~ractors, 1.e. thoee to wh1ch 

most of the non-d1vergent 1n1t~al P?1nts are ettracted. 

The &ymbo16 have th~ follow1ng mean1ng: a - strenge attractor, 

d - only d1 vergent p01nt6 áre ob-served, 1n our colculat10ns. 

Let U6 comment a l1ttle b1t on th1s table 2.
 

1) The f~r6t rows (O • 1 ••• DaO.94} express the usual pe r o d
í 

doubl1ng e cenar o for 1ncreas1ng B' (e.g. 0.1 ••• 0.4) as wellí 

86 for decreas1ng B (e.g. 0.95 ••• O.S). The correspond1ng 

str8nge ettractors evolve further and change the1r shape and 

s1ze. As already ramarked, there 1s a rànge of B-valuee where 

we found only d1vergent p01nts. 

11) An 1nterest1ng phenomenon 1s 1nd1cated 1n the f1rst row 

for B • 0.5. There ah 8-orb1t and a strange attractor coex1st. 

And th1s 8~drb1t undergoes per10d-doub11ng for 1ncreas1ng as 

we 11 86 fo rdec rea's1ng B. Such 8 b1 fu rcat 10n o f or-e o rb-í t 1nt o 
q. 

two d1rect10ns ~f perameter changes 8eems to be very seldom. 

• 6 
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We cannot give any other example from the literature. We give
 

some details of these bifurcations:
 

B = 0.503 16-orbit, B = 0.5037 32-orbit, B == 0.50411 64-orbit
 

on the other hand:
 

[3 = 0.46 16-orbit, U == 0.4598 32-orbit, B = 0.4596 64-orb1t 

iii) With decreasing O (starting approximately w1th O ::'\.92) the 

period-doubling·scenario for the indicated periodic orbits is 

irterrupted. A similar phenomenon we already described in /9/. 

But there the reason for the interruption was another one. Namely, 

the orbit wanders to the boundary of the square and then falls into 

the domain of attracti?n of another orbit. More exactly, any period

doubling was prevented even by this facto 

Here we find quite another reason for this interruption. Let us 

consider the case of increasing B. If - say for O == 0.92 - the 

8-orbit arises from the 4-orbit, we have two groups of four 

points. Now in the course of increasing B we can observe, that 

the change (of the coordinates)of the points of the two groups 

takes place with different velocity. The effect is, that in the 

course of the evolution of this 8-orbit, these two groups get 

closer and ~loser, and finally they fuse before the 8-orbit 

succeeds to bifurcate. ~ust this difference can be very clearly 

seen if one follows the developmen~ of the mentionad 8-orbit 

for O :: 0.92 and 0.94. 

Let us yet remark that the fixed point which appears,e.g. for 

O :: 0'.5 and B = 0.1 can be observed also f o.r largar O i fone 

admits also negative B-values. 

3. The generalized Henon system on a torus of period 4 

Let us now consider system i.e. the generalizad Henon(2 t)·, 
system confined anta a torus of period 4. One of the advantages 

of such truncated systems is the fact that there are non di

vergent points. The stable islands and the surrounding harmo

nics were already mentioned in section 2 and some overview was 

given in table 1. The same table is also valid for the trun

cated system. Moreover, one can give some impression about the 

relative area of the stable islands ( relat~vely to the squa
9' 

re 12:: x,y f: 2). To calculate this relative area one can 

•
 H
 
~ 

proceed as follows. Take a lattice of initial points on tee 

torus (i.e.in the square -2~x,y~2) and then calculate with 

the help of system (2) (i.e. the non-truncated system!) the 

portion of initial points which do not escape to infinity. 

Then this portioo is a guod measure of the relative area. 

Let us give the results in th~ fo110wing table. In the columns 

the numbers indicate the % of the square which gives the rela

tive area of the stable regi-ons. In the first column we give 

the different D-values, the second column contains the relati 

ve area f-or a lattice consisting of 200 x 200 ~oints, ano 

always 1000 iterations are done to decide whether or not the 

point escapes (if it does not give overflow already earlier). 

The third column contains the results for a 100 x 100 lattice 

and 10 000 iterations.
 

D 200x200 points, 1000 i e , 100xl00 po~nts,10000 it.
 

0.51 0.5 
0.690.9 0.68 

0.8 0.013 0.-02 

1.80.7 ~.9 

0.-6 2.55 2.5 

3.00.5 3.4 
3.20.4 3.3 
4.70.3 5.8 
6.60.2 7.6 
6.30.1 6.6 

As it can be seen the resulte coincide very w~ll.
 

Next let ue consider system {2tl ~n more detai1. Table 3 con

tains the related resulta for ~he same parameter ranges as in
 
table 2. It i8 enough to write down only the parameter range
 
0.94 , O ~ 1, becauae for the other va1ues of O the tables 
coincide. Most of 'the remarks related to table 2 can be re
peeted here word for word. But there are some necessary changes 
which are caused by the truncetlon. For exemple, there are of 
courSB no divergent points. Thus, in the first row of table 3 

wa have instead óf divergent points strange attractors, but 
of very different shape, size and origino There are 8uch strange 
attractors, which are obtained in the course.of the period-doub
ling.For example, for 8 :: 0.825, the strange attractor has a 

9 



Lyapunov expqnent equal to 0.038. It develops further, the for B = 0.995 and 0.99 there coexist yet other periodic attrac

Lyapunov exponent incresses a little bit. but then, say for tors which therefore pertur~ the behaviour of the curves. 

B = 0.824 there (s an abrupt chAnge of the size of the strange Moreover, the horizontal parts of the curves in the figures 

attractor. This is a kind of explosion. The former shape i9 yet indicate long transient chaos or/and also the coexistence qf 

well seen, but the Lyapunov exponent is now already 0.155. 

Similar remarks could be made also for other parameter values. 

In I!'igs.2 ••• 4 we give some impression o f other a r t r a c r o r s , 

While those, shown ih figures 2 and 3 can also be observed in 

the plane (cf. table 2), the large attractor in Fig.4 is only 

present on the t o r us , It corresponds to divergent points in the 

plane. 

Now l~t us return to the phenomenon of transient chaos. This 

means· - roughly speaking - the following. Some initial points 

in systems with weak dissipation lead to trajectories which 

are for a long time apparently chaotic bu t finally they are 

attracted by some periodic orbit. This eratic wandering of the 

trajectory.can extend over several hundred thousand iterations. 

In /11/ there was considered the following problem for the 

dissipative Fermi map. Take 100 randomly chosen initial points 

from the stochastic component of the conservative system. 

Then. for different very small dissipations study the dependence 

of the number of unattracted trajectories on the number of 

iterations. Here "unattracted" means, that for a given number 

of iterations the trajectory is not yet in some E -neighbour

hood of a periodic orbit. For the Fermi map it appears that 

this dependence is exponential (exponential decay). 

II r 
~ 

other periodic attractors. Se that as it may, also in system 

(2
t) 

with sufficient precision the decay is exponential. 

Finally we comment on an 8ssertion made in /11/ concerning the 

diSCDntinuous transition from chaotic motion in the conservn

tive regime of (2 t) to motion on a strenge attractor in the 

dissipative reQime. In /li/ the euthors found a ppriod six 

attractor for A = 1.4, 8 = 0.9 and O = 1. For these parameters 

there are initial values with very long transient chaos. The 

pictures obtained in the course of the iteration of such ini

tia~ value seem t~ represent a strange attractor, but in reali

ty this is transient chaos. The authors conclude that this is 

numerical evidence for the fact that chaos do not exist persistent 

when the Hamiltonian system is smoothly transformed into a 

strongly dissipative system. But there is some trouble with 

this conclusion. The point is, that for a smooth tranformation. 

one must investigate B-values very close to 1 (cf. the results 

of section 2 for tho 4-orbit at B = 0.999 999 .•. ). In thát sen

sé, B = 0.9 is clearly toa far from 1! Indeed. if ono increases 

B. this 6-orbit undergoes the usual period-doubling scenario, 

0.9 6-orbit. B = 0.9009 12-orbit. 

0.9008 24-orbit, B = 0.900 004 48-orbil, 

B = 0.901 010 1312 7680rbit. 

namely: 8 

8 

9' 

In Fig. 5 ••• 8 we give some results for system (2
t). 

The ver

tical axis is divided logarithmic and indicates the number Nu • 

of unattracted trajectories. 

The numerical calculations were performed for the following 

parameter values: A = 1, O ~ 1, 0.95 ,0.9 , 0.6 and for small 

dissipations: B .. 0.9995, 0.999 0.995 and 0.99. 

We calculated 50 x 4000 iterations,and after any 4000 itera

tions we tested whether or not the trajectory is in an é -neigh

bourhood of a periodic orbit, nemely, a 4-orbit for O = 1, 

a 2-orbit for O .. 0.95, 0.9, 0.6; t. was t ak en to be 0.001. 

The deviation from a straight li~e is partially caused by the 

fact thet we took into account only ~ periodic orbit, but r. 

Then one observes a strange attractor. 

Let us remerk, ~hat we could not find the typical features 

for a discontinuous transition. namely stable islands for B = 1. 

The conclusion may be the following (cf. also /10/): li for 

B .. 1 (or more general, for the conservative c~6el there exist 

stable regions, then the transition is non-continuous. But there 

does not seem to exist any method to decide a priori whether or 

not stable islands exist at all.In practice they can be 'so small, 

that it is impossible (or at least hopeless) to find them by 

simple computer experiments. 

1; 
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THMMepMaHH B., THMMepMaHH B. ES-87-458 
HeKOTOpbJe csoiicTBa o6o6~eHHOH cHcTeMbi XeHoHa 

Hccne,n.yJOTC.fl HeKOTOpbJe CBOHCTBa o6o6~eHHOH CHCTeMbl XeHo
Ha Ha llJIOCKOCTH H Ha TOpe, 0TMetJeHO HeCKOJihKO HHTepeCHbJX 
COBHCTB KapTHHbl YABOeHH.fl nepHO,U.a. 06CYJK,U.eH nepexo,u. XaOTH
'leCKOf'O ,U.BIDKeHH.fl B KOHCepBaTHBHOH CHCTeMe B ,U.BHJKeHHe Ha 
CTpaHHOM aTTpaKTOpe B ,U.HCCHnaTHBHOH CHCTeMe. _nrr.fl CJ!aEio
,U.HCCHnaTHBHOH CHCTeMbi 'IHCJIO HenpHT.flf'HBaJO~HX TpaeKTOpHH y6bJ 
BaeT 3KCllOHeH~HaJihHO B 3aBHCHMOCTH OT 'IHCJia HTepa~HH, 

Pa6oTa BbillOJIHeHa B na6opaTopHH TeopeTH'!eCKOH $H3HKH 
OIUIH. 

Coo6meHHe 06oe,ll;HHeHHoro HHCTHTYTa .R,ll;epHbiX HcCJieAOBaHHH. ,ny6aa 1987 

Tinnnermann B., Tinnnermann \.J. E5-87-458 
Some Properties of a Generalized Henoo System 

Some properties of a generalized Henan system in the 
plane and on a torus are studied. There are mentioned some 
interesting aspects of the period doubling scenario. The 
transition from chaotic motion in the conservative regime 
to motion on a strange attractor in the dissipative reei
me is discussed. For the weakly dissipative system the 
number of unattracted trajectories decays exponential in 
dependence of the number of iterations. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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