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1. Introduction

One of the most 'extensively studied discrete dynamical systems
is the so-called Henon system /5/ given by the following

pair of equations:

x yno-l—Axi

n+1

Yner = Bxg-

This is ome of the simplest nonlinear maps of the plane into
itself and it reflects a lot of important properties of dy-
namical systems. Ir /5/ there is described a strange attrac-
tor for A = 1.4, 8 = 0.3. An exhaustive investigation of (1}
was performed by Simé/8/. He described a lot of ettractors
(e.g. fixed points, periodic orbits, strange attractors),
their shape, development and so on in dependence on the va-
riation of A; B is fixed to'be 0.3 . Most of the papers con-
cerning (1) consider only strong dissipations (i.e. small 1BI,
for 1Bl = 1 the system is conservative, that means, the mep
is area-preserving). There are only few papers where the dy-
namical behaviour of (1) fs investigated far larger { B\
(e.g. /2/, there the cases B = -1 and B = -0.85 are considered).
¥hile systems with strong dissipation are very appropriate
to determine all kinds of attractors, systems with small
dissipation show also interesting features, e.g. transient
chaos. In /3/ and /&) Chirikov and Izrailev studied some
discrete dynamical system on the torus, They were the first
who observed the following phenomenon which appears in course
of the transition from the conservative to the dissipative
regime of the system:
conservative regime: FThere exists a stochastic e€omponent
(formed by one single trajectory) which
has (smali} fslands of stability, i.e.
trajectories which start within such an
island cannot leave it and the motion
s confined on some ellipse lying inside
this island.
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small dissipation: The stochastic component is completely
destroyed, a veriodic orbit anpears.
It is located in the former stable islands
and attracts all points of the torus.
Long transient chaos is possible.
Increasing dissipation: The period-doubling scenario appears
and a strange attractor arises.
The point is, that there are systems in which the transition
from stochastic motion in the conservative regime to sto-
chastic motion in the dissipative regime (nemely on a strange
attractor) is discontinuous in the sense, that these two
stochastic motions are separated by periodic motion.
Moreover, in these papers of Chirikov and Izrailev there was
numerically established the following relation:

N-s-E 1 .,

Here the symbols have the following meaning:

N - life time of transient chaos

S - total area of stable islands

E dissipation,(i.e. E =1 - 8 for 850 if we consider the
Henon system). For details see /6/.

Subsequently in the literature there was repeatedly discussed
the question whether or not such a discontinuous transition
is universal or not (cf. /1/,/7/,/11/). In /9/,/6/ and /10/
we discussed the results of /7/ where a continuous transition
in a truncated Henon system was postulated. The trouble was
that the truncation was of such a kind that in reality the
supposed transition was not at all studied.

In the present paper we continue the investigation of the
following generalized Henon system:

2
hei = Y * D = AX® .0 D£1

(2)

Y = an

n+1

In /6/ and /10/ we studied some proparties of this genera-
lized Henon system qn a torus of period 4 (truncated in
such a way that - ¢ X +¥, 2). Let us denote the corres-
ponding system by (Zt) ( t means truncation). In these pa-

pers we found for (2t) for A = B =21, D = g.1,0.2, ... , 1
'

<3

the stochastic component with stable islands and the pheno-
menon of discontinuous transition described.above. Moreover,
in all these cases we verified the relation N‘S'E ~ 1,

Now we investigate and compare some properties of (2) and
(Zt). Especially we give numerical results concerning the
appearance of periodic and strange attractors, an interrup-
ted period-doybling scenario and an example of period doub-
ling into two directions (i.e. with increasing snd decrea-
sing parameter B starting with the same orbit).May be, this
is new.

In section 3 we study the dependence of the number of un-
attracted trajectories in dependence on the number of itera-

.tions. It appears that for (2;)»this dependence is quali-

tatively the same (namely exponential decay) as for the dissi-
pative Fermi map studied in /11/. Moreover we add some cri-
tical comments to some assertions in /11/ concerning the dis-
continuous transition of the stochastic motion in (Zt) in the
course of changing from the conservative to the dissipative
regime.

2. The generalized Henon system in the plane

We consider system (2) in the plane, i.e.

2

X + D ~ Axn 0~D ¢ 1

n+st T Yn

(3)

Yne1 = Bxn:

In all our considerations we fix A = 1.
The fixed points of the map (2) in its general form are
given by: :

xilz = (1/2A)((B-1) % ((B-1)2%+4aD)1/2), y;'z - Bxilzy

For B = 1 (conservative case) this means:

F F

F
x =t (p/a)1/2 1,2 = x5,

1,2
Moreover, it 1s easy to see, that the points
((o/m2 , ~(o/m)1/2 ) and (-(o/a)1/2, (o/a)1/?)

form an orbit of period 2.
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First let us consider the conservative system (B = 1) and

let D vary from 1 to 0.1 (A is fixed to be 1). Among other

things one observes the following:

- the fixed points are unstable and therefore cannot be
found numerically. If one coordinate of the fixed point
is a2 little bit perturbed from the true value (say by

10-10), then this point escapes to infinity after a small
number of iterations.

- the 2-orbit is stable (more exactly: transiently stable,
see below ), and each of its points is surrounded by
small stable islands. Trajectories starting within remain
there for ever and form ellipses.

Clearly, the trajectory of a discrete system cannot form
an ellipse in the strong sense of the word, but the points
of the trajectory cover such an ellipse densely (i.e. with-
out being periodic).,

- if one takes the initial point near to the boundary of the
stable regions, there can be observed more smsller stable
islands surrounding the former stable region.

Let us give some examples:

D=1: 2x7 (i.e. any of the two stable reglons is sur-
rounded by 7 smaller stable ieslands)

D= ,9: 2x8; D=0.6: 2x11 ; D=0.4: 2x5

D=0.3: 2x6.

Fig.1 gives an impression of the location of one part of the-
stable region for A = B = 1, D = 0,3 for the truncated system
(Zt)‘ The 6 pieces of the 12-harmonics surrounding the stable
island are very well seen. This figure is formed by 3 tra-
Jectories: two in the inner part of the island and one (take
as initial point e.g. (0.778,- 0.548)) which forms the sto-
chastic component which has these 6 (resp. 12) small stable
islands. In the plane one would get almost the same picturae
but with the difference that the initial point indicated
above 1is divergent. Nevertheless, in the course of iteration
this point has yet éime to indicate clearly these 12 islands

before it escapes to infinity,
»

Because it may be not so easy to find these small surrounding
islands numerically, we collect some information in the
following table. The second column contains initial points
which lead to ellipses within the islands around the 2-orbit
but already close to the boundary. The third column indicates
initial points which trajectories form.the surrounding small
islands. Finally in the last column we -have the number of these
islands. For some values of D we did not found data because

we did not seek long enough.

Table 1: A = B = 1, gystem (2) or (Qt) -

o initial point initiel point for number of islands
fnear boundary surrounding isl.

1 (1, -0.975) (1, -0.955) 2 x7

0.9 (1.013,-0.948) (1.023,-0.948) 2 x8

0.8 (0.939,-0.894) ? ?

0.7 (0.947,-0.837) ? ?

0.6 (0.925,-0.775) (0.935.-0.775) 2 x 11

0.5 (0.817,-0.707) ? ?

0.4 (0.635,-0.532) (0.370,-~0,370) 2 x5 "

0.3 (0.758,~0.548) (0.240,-0.480). 2 x 6

0.2 (0.747,-0.447) {0.767,-0.447) ) 2 x09

0.1 (0.576,-0.316) ? ?

Next we consider small dissipations. Let us mention only two
cases in detail further informations are contained in table 2
below. » ' .
Aul,ﬂ-l‘

As already mentioned Bbove {see also /6/), the 2-orbit is
stable, but this stability is Just a transient one. More
exactly, the eigenvalues of the linearized. system at the 2-
Srbit are both equal to -1. Thus,already the weakest dissi-
pation leads immediately to ® bifurcation and a stable 4-or-
bit arises. We give some data of the ctorresponding period-
doubling scenario:

¥ v




B = 0.999 999 ... 0.86. 4-orbit
0.85 +eo 0.835 8-orbit
0.830 cee 0.827 16-orbit
0.8269 «es 0.8262 32-orbit
0.826 ... 0.825 86 64-orbit
0.825 85 ... 0.825 82 128-orbit
0.825 81 ... 0.825 808 256-orbit
0.825 806 512-orbit
0.825 strange attractor with Lyapunov exponent 0.038,

Let us remark that for 0.5 B < 0.825 we could not find any
non-divergent point.

A=1,D=0.95

Here we find for small dissipations the 2-orbit, and then
the period-doubling goes as usual, e.g.

B = 0,85 2-orbit
0.9 ... 0.8 4-orbit
0.716 066 512-orbit

0.7 strenge attractor with Lyapunov exponent 0.086.
In the following table we collect some information sbout the
whole range of D. Thé entries of this table indicate the most
dominant periodic orbits/sttractors, i.e. those to which
most of the non-divergent initial points are attracted,
The symbols have the following meaning: a - strange attractor,
d - only divergent pointe are observed. in our celculations.

Let us comment & little bit on this table 2.

i) The firet rows (D = 1 ... D=0.94) express the usual perioa-
doubling scenario for increasing B'(e.g. 0.1 ... 0,4) 88 well
as for decreasing B (e.g. 0.95 ... 0.8). The corresponding
strange attractors evaolve further and change their shspe snd
size. As already remarked, there is a range of B-values where
we found only divergent points.

ii) An interesting phenomenon is indicated in the first row
for B = 0.5, There an 8-orbit and a strange attractor coexist.,
And this 8~0rbit undergoes period-doubiing for increesing as
well as for decreasing B. Such a bifurcation of one orbit into

two directions of perameter changes seems to be very seldom,
L]
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A = 1, system (2)
0.35 0.9 0.85 0.8 0.75 0.7 0,65 0.6 0.55 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1

Table 2:

S\?

1.00
0.98
0,96
0.95
c,%4
0.92
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A =1, system (2t)

0.95 0,9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 0.3 0.25 0,2 0.15 0.1

Table 3

5\?

1,00
c.98
c.96
0.95
0.94

16



We cannot give any other example from the literature. We give

" some details of these bifurcations:
B = 0.503 16-orbit, B = 0,5037 32-orbit, B = 0.50411 64-0rbit
on the other hand:

B = 0.46 16-orbit, B = 0.4598 32-orbit, B = 0.4596 64-orbit

iit) with decreasing D (starting approximately with D =n92) the
period-doubling .-scenario for the indicated periodic orbits is .
interrupted. A similar phenomenon we already described in /9/.

But there the reason for the interruption was another one. Nemely,
the orbit wanders to the boundary of the square and then falls into
the domain of attraction of another orbit. More exactly, any period-
doubling was prevented even by this fact.

Here we find quite another reason for this'interruption. Let us
consider the case of increasing B. If - say for 0 = 0.92 - the
8-orbit arises from the 4-orbit, we have two groups of four

points. Now in the course of increasing B we can observe, that

the change (of the coordinates)of the points of the two groups

takes place with different velocity., The effect is, that in the
course of the evolution of this 8-orbit, these two groups get

closer and «loser, and finally they fuse before the 8-orbit
succeeds to bifurcate. Just this difference can be very clearly

seen if one follows the development of the mentioned 8-orbit

for D = 0,92 and 0.94.

tet us yet remark that the fixed point which appears,e.g. for

D = 0.5 and B = 0.1 can be observed also for larger D if one

admits also negative B-values.

3. The generalized Henon system on a torus of period 4

Let us now consider system (2t), i.e, the generalized Henon
system confined onto a torus of period 4. One of the advantages
of such truncated systems is the fact that there are non di-
vergent points. The stable islands and the surrounding harmo-
nics were already mentioned in section 2 and some overview was
given in table 1. The same table is also valid for the trun-
cated system. Moreover, one can give some impression about the
relative area of the stable islands ( relatively to the squa-

re 42 = x,y € 2). To calculate this relative area one can

proceed as follows. Teke a lattice of initial points on the
torus (i.e.in the square -2§x,y§2) and then calculate with

the help of system (2) (i.e. the non-truncated system!) the
portion of initial points which do not escape to infinity.
Then this portion is a good measure of the relative area.

Let us give the results in the following table. In the columns
the numbers indicate the % of the square which gives the rela-
tive area of the stable regions. In the first column we give
the different D-values, the second column contains the relati-
ve area for a lattice consisting of 200 x 200 points, and
always 1000 iterations are done to decide whether or not the
point escapes (if it does not give overflow already earlier).
The third column contains the results for a 100 x 100 lattice
and 10 00O iterations.

D 200x200 points, 1000 it. 160x100 points,10000 it.
1 0.5 0.5
0.9 0.68 0.69
0.8 0.013 0.02
0.7 1.9 1.8
0.6 : 2.55 2.5
0.5 3.4 3.0
0.4 3.3 3.2
0.3 5,8 4.7
0.2 7.6 6.6

6.3

0.1 6.6

As it can be seen the results coincide very well.

Next let us consider systenm (2t) in more detail. Table 3 con-
tains the related results for the seme parameter ranges as in
table 2. It is enough to write down only the parameter range
0.94 € D £ 1, because for the other values of D the tables
coincide. Most of 'the remarks relasted to table 2 can be re-
peated here word for word. But there are some necessary changes
which are caused by the truncation. For example, there are of
course no divergent points. Thus, in the first row of table 3
we have instead of divergent points strange attractors, but

of very different shape, size and origin. There are such strange

attractors, which are obtained in the course of the period-doub-
ling .For @xample, for 8 = 0,825, the strange attractor has a



Lyapunov expgnent equal to 0.038, It develops further, the
Lyapunov exponent increases a little bit, but then, say for
B = 0,324

attractor. This is a kind of explosion. The former shape is yet

there is an sbrupt change of the size of the strange

well seen, but the Lyapunov exponent is now already 0,155,

Similar remarks could be made aslso for other parameter values. ]l
In Figs.2 ... 4 we give some impression of other attractors, ‘!

1
while those, shown in f;gures 2 and 3 can salso be observed in l

-

the plane (cf. table 2), the large attractor in Fig.4 is only .
present on the torus. It corresponds to divergent points in the
plane. )

Now let us return to the phenomenon of transient chaos. This
means: - roughly speaking - the following. Some initial points

in systems with weak dissipation lead to trajectories which

are for a long time apparently cheotic but finally they are
attracted by some periodic orbit, This eratic wandering of the
trejectory can extend over several hundred thousand iterations.
In /11/ th;re was considered the following problem for the
dissipative Fermi map. Take 100 randomly chosen initial points
from the stochastic component of the conservative system.

Then, far different very small dissipations study the dependence
of the number of unattracted trajectories on the number of
iterations. Here "unattracted” means, that for a given number

of iterations the trajectory is not yet in some ¢ -neighbour-
hood of a periodic orbit. For the Fermi map it appears that
this dependence is exponential (exponential decay).

In Fig. 5 ... 8 we give some results for system (2t). The ver-
tical axis is divided logarithmic and indicates the number Nu

of unattracted trajectories.

The numerical calculations were performed for the following
parameter values: A = 1, D=1, 0,95, 0.9 , 0.6 and for small
dissipations: B = 0,9995, 0.999 0.995 and 0.99. .

We calculated 50 x 4000 iterations, and after any 4000 itera-
tions we tested whether or not the trajectory is in an ¢ -neigh-
bourhood of a periodic orbit, namely, a 4-orbit for D = 1,

8 2-orbit for D = 0.95, 0.9, 0.6 ; £ was taken to be 0,001,
The deviation from e straight line is pertially caused by the T
fact that we took into account only one periodic orbit, but

, 4

>

for B = 0.995 and 0.99 there coexist yet other periodic attrac-
tors which therefore perturb the behaviour of the curves.
Moreover, the horizontal parts of the curves in the figures
indicate long transient chaos or/end also the coexistence of
other periodic attractors. Be that as it may, also in system
(2t) with sufficient precision the decay is exponential.

Finally we comment on an assertion made in /11/ concerning the
discontinuous transition from chaotic motion in the conserva-
tive regime of (2t) to motion on a strange attractor in the
dissipative regime. In /11/ the authors found a pgriod six
attractor for A = 1,4, B = 0.9 and D = 1, For these parameters
there are initial values with very long transient chaos. The
pictures obtained in the course of the iteration of such ini-
tial value seem to represent a strange attractor, but in reali-
ty this is transient chaos. The authors conclude that this is
numerical evidence for the fact that chaos do not exist persistent
when the Hamiltonian system is smoothly transformed into a
strongly dissipative system. But there is some trouble with
this conclusion. The point is, that for a smooth tranformatioq
one must investigate B-values very close to 1 (cf, the results
of section 2 for the 4-orbit at B = 0.999 999...). In that sen-
sé, B = 0.9 is clearly too far from 1! Indeed, if one incresses
B8, this 6-orbit undergoes the usual period-doubling scenario,
namely: B = 0.9 6-orbit, B = 0.9009 12-orbit,

8 = 0.9008 24-orbit, B = 0.900 004 48-orbit, ...

... B = 0,901 010 1312 768 orbit,
Then one observes & strange attractor.
Let us remark, that we could not find the typical features
for a discontinuous transition, namely stable islands for B = 1.
The conclusion may be the following (cf. also /10/): if for
B = 1 (or more general, for the conservative cese) there exist
stable regions, then the transition is non-continuous. But there
does not seem to exist any method to decide & priori whether or
not steble islands exist at all.In practice they can be -so small,

that it is impossible (or at leaSt hopeless) to find them by
simple computer experiments.

11
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TumMmepMaHH B., TumMepmaHH B, E5-87-458
Hekotopeie cBoiicTBa 0606meHHOiI cHCTeMbl XeHoHa

Hccnenyioresn HeKOTOphie cBolicTBaA 0600mMeHHOIT cHCTeMn XeHo—
Ha Ha INIOCKOCTH H Ha Tope. OTMe4YeHO HECKOJIbKO HHTepecCHbIX
COBHCTB KapTHHH yABOeHHA nepuopma. O6cyxmeH nepexon, xaoTH-
YeCKOro ABHXeHHWA B KOHCEpPBATHBHOH CHCTeMe B OBHXeHHe Ha
CTPAaHHOM aTTpaKTope B AHCCHNATHBHOH cHcTreMe. [ns cnabo-
OUCCUNATUBHON CHCTEMbI YHUCIIO HEeNnpUTArHBAWNHUX TPAEKTOPHH VObH
BaeT 3KCHOHEHIHAJIbBHO B 3aBHCHMOCTH OT UYHCJIa HTEpalui.

PaGora BsmomHeHa B JlaGopaTopuH TeOpeTHYECKOH GH3IHUKH
OUsIHn.

Coo6menne O6beqHHEHHOro HHCTHTYTA ANEPHBIX HCcIenoBaHui. JyGuna 1987

Timmermann B., Timmermann W. E5-87-458
Some Properties of a Generalized Henon System

Some properties of a generalized Henon system in the
plane and on a torus are studied. There are mentioned some
interesting aspects of the period doubling scenario. The
transition from chaotic motion in the conservative regime
to motion on a strange attractor in the dissipative regi-
me is discussed. For the weakly dissipative system the
number of unattracted trajectories decays exponential in
dependence of the number of iterations.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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