

объединенный институт
 ядерных
 исследований
 дубна

E5-87-416
II. Neidhardt

ON THE ORTHOGONAL
DISSIPATIVE LAX - PHILLIPS
sCiATTERING THEORY

Sulbmitred to "Reports on Mathematical Physics"

1. Introduction

In 1973 P.D.Lax and R.S. Phillips [7] presented a further refinement of their scattering theory [5,6] allowing to handie dissipative hyperbolic systems. The generalization was based on the ideas developed in $[5,6]$. The main dipference of [7] to these papers consists in replacing of the governing unitary group by a contraction semigroup. This replacement was forced by the philosophy that dissipative systems can be described by maximal iissipative operators, which generate contraction semigroup 3 .

In [4] C.Foias started the characterization of the possible scattering matrices occurring in the dissipative Lax-Phillips scattering theory passing to a discrete Lax-Phillips framework. In this framework C. Foils gave a necessary and sufficient description in analytical terms of the possible scattering matrices. In [8] the investigations of C.Foias were continued and it was established that a strongly measurable contraction-valued function can be regarded as the scattering matrix of a dissipative LaxPhillips scattering theory if and only if the adjoint funclion admits an analytically unitary synthesis.

In the following we restrict our attention to the socalled orthogonal dissipative Lax-Phillips scattering theory. Moreover, in accordance with [4 se prefer the discrete framework of this scattering theory. For the convince of the reader we recall the assumptions. A triplet $A=\left\{T, D_{+}, D_{-}\right\}$ consisting of a contraction T define i on a separable tilbert space. \ngtr, subspaces χ_{+}and $\chi_{\text {. }}$ if forms

an orthogonal dissipative Lax-Phillips scattering theory, if the following conditions are fulfilled.
(h1) $T D_{+} \subseteq D_{+}, T^{*} D_{-} \subseteq D_{-}$,
(h2) $T \upharpoonright D_{+}$and $T * \upharpoonright D_{\text {_ }}$ are isometries,
(h3) $\bigcap_{n \in \mathbb{Z}_{+}} T^{n} D_{+}=\{0\}=\bigcap_{n \in \mathbb{Z}_{+}} T^{* n} D_{-}$,
(h4) $P_{\mathscr{H} \Theta D_{+}}^{\mathscr{H}} T^{n} \longrightarrow 0, P_{\mathscr{H} \Theta D_{-}}^{n^{*} \longrightarrow} \longrightarrow 0$ strongly for $n \longrightarrow+\infty$,
(h5) $D_{+} \perp D_{-}$
In the following we show that tivire is an one-to-one correspondence between the class of all triplets $A=\left\{T, D_{+}, D_{_}\right\}$forming an orthogonal dissipative Lax-Phillips scattering theory and a class 3 of 6-tuples consisting of isometries and contractions which act on or between certain separable Hilbert spaces. It is possible to describe this class $\mathcal{\beta}$ in a simple manner and, roughly speaking, it can be said that modulo the Hilbert spaces which are involved in the definitions of the isometries and contractions these operators can be freely chosen. In such a way we obtain a parametrization of all orthogonal dissipative Lax-Phillips scattering theorles which we denote by $\rho \ni F \longrightarrow A_{F} \in A$ and which is called the free parametrization of the orthogonal dissipative Lax-Phillips scattering theories. Moreover, introducing an equivalence relation into A generated by the unitary equivalence relation of operators on Hilbert spaces we are able to define a corresponding equivalence relation in the class of parameters ρ.

Let $A=\left\{T, D_{+}, D_{-}\right\}$be an orthogonal dissipative Lax-

Phillips scattering theory. Denoting by U on W the minimal unitary dilation of T and introducing the subspaces $\mathrm{H}_{ \pm}$

$$
\begin{equation*}
\mathcal{F}_{ \pm}=\bigvee_{n \in \mathbb{Z}} U^{n} \mathscr{D}_{ \pm} \tag{1.1}
\end{equation*}
$$

it is not hard to see that U is reduced by $\mathscr{H}_{ \pm}$. Let $U_{ \pm}=$ $=$ Ur $X_{ \pm}$. Because of (h3) the operators $U_{ \pm}$are bilateral shifts. The conditions (h1) - (h4) imply the existence of the wave operators $H_{-}(A)$,

$$
\begin{equation*}
W_{-}(A)=\underset{n \rightarrow+\infty}{s-\lim } T^{n} P_{D_{-}}^{Q_{-}} U_{-}^{-n} \tag{1.2}
\end{equation*}
$$

and $\mathbb{T}_{+}(A)$,

$$
\begin{equation*}
W_{+}(A)=\underset{n \rightarrow+\infty}{s-l i m} T^{* n} P_{\chi_{+}}^{-R_{+}} \cdot U_{+}^{n} . \tag{1.3}
\end{equation*}
$$

The scattering operator $S(A): \stackrel{T}{C} \longrightarrow \mathscr{H}_{+}$of the dissipative Lax-Phillips scattering theory A is defined by

$$
\begin{equation*}
S(A)=T_{+}(A)^{T_{-}}(A) \tag{1.4}
\end{equation*}
$$

By $\phi_{-}: \nVdash_{-} \longrightarrow L^{2}(g)$ and $\phi_{+}: \mathscr{H}_{+} \longrightarrow L^{2}(k)$ we denote the Fourier transformations of the bilateral shifts $U_{ \pm}$transforming U_{-}and U_{+}into the multiplication operators induced by . $e^{i t}, t \in[0,2 \pi)$, on $L^{2}(\mathcal{J})$ and $L^{2}(k)$, respectively. Te normalize these Fourier transformations by the conditions $\phi_{-} D_{-}=L^{2}\left(J_{u}\right) \Theta H^{2}\left(g_{)}\right)$and $\phi_{+} D_{+}=H^{2}(k)$. In the following we call these special representations of $U_{ \pm}$ the spectral representations of $U_{ \pm}$. In these spectral re-
presentations the scattering operator $\phi_{+} S(A) \phi_{-}^{-1}$ is represented by a multiplication operator induced by an opera--tor-valued function $\left\{g_{j}, k, S_{A}(t)\right\}$, which is usually called the scattering matrix of the dissipative Lax-Phillips scattering theory A.

Taking into account the parametrization $P \ni F \rightarrow A_{F} \in$ \& we obtain a parametrization of the scattering matrices $\rho \ni F \rightarrow\left\{g, k, S_{F}(t)\right\}$ via the map $P \ni F \longrightarrow\left\{g, k, S_{A_{F}}(t)\right\}$. The aim of the present note is to calculate all these parametrizations explicitly and, consequently, to obtain a detailed dependence on the parameters.

Furthermore, using Corollary 3.4 of [8] we get that $\left\{\notin, o f, S_{F}(t)^{*}\right\}$ admits a Darlington synthesis. Noreover, taking into account Corollary 4.2 of [8] we obtain that the $\operatorname{map} \rho \ni F \longrightarrow\left\{\hbar, g, S_{F}(t)\right\}$ establishes a parametrization of all analytical contraction-valued functions admitting a Darlington synthesis. But we remark that the parametrization may be not one-to-one. Nevertheless, on account of the explicit dependence of the scattering matrix on the operators of the 6-tuples of ρ we get a structure theorem of all those analytical contraction-valued functions admitting a Darlington synthesis in this way.

2. The free parametrization

To obtain the announced free parametrization of all triplets $A=\left\{T, D_{+}, D_{-}\right\}$obeying (h1) - (h5) we introduce the subspace $\mathscr{R}_{0}=\nVdash \Theta\left(\mathcal{D}_{+} \oplus \mathcal{D}_{-}\right)$. With respect to the decomposition
we obtain a block-matrix representation of T. Because of (h1) we get that this block-matrix representation has a triangular structure, i.e.

$$
T=\left[\begin{array}{lll}
S_{+} & X & Y \tag{2.2}\\
0 & T_{0} & Z \\
0 & 0 & S_{-}^{*}
\end{array}\right]
$$

where we have $S_{+}=T \Gamma D_{+}$and $S_{-}=T^{*} \Gamma D_{-}$. The operators S_{+} and $S_{\text {_ }}$ are isometries and because of (h3) are unilateral shifts. The operator T_{0} is given by

$$
\begin{equation*}
T_{0} f=P_{\mathscr{P}_{0}}^{\mathscr{P}} T f \tag{2.3}
\end{equation*}
$$

$f \in \mathcal{H}_{0}$. Taking into account (h4) we get $T_{0} \in C_{0 O^{\circ}}$
It remains to determine the structure of X, Y, Z. To this end we remark that T is a contraction. Consequently, the operators $\operatorname{Tr}\left(D_{+} \oplus \not_{0}\right)$ and $T * Y\left(\mathscr{X}_{0} \oplus D_{-}\right)$are contractions, too. Setting $P_{+}=I_{D_{+}} \Theta S_{+} S_{+}^{*}$ and $P_{-}=I_{D_{-}}-S_{-} S_{-}^{*}$ we get that X and Z have the representations $X=\Gamma D_{T_{0}}$ and $Z=D_{T_{0}^{*}}^{*} \Lambda$, where $\Gamma: D_{T_{0}}=\left(i m a\left(D_{T_{0}}\right)\right)^{-} \longrightarrow P_{+} D_{+}$and $\Lambda: P_{-} D_{-} \longrightarrow\left(i m a\left(D_{\mathrm{T}_{0}^{*}}\right)\right)^{-}$are contractions.

Similarly, we find that Y has the representation $Y=$ $=\Omega P_{-}$, where $\Omega: P_{-} D_{-} \longrightarrow P_{+} D_{+}$is a contraction, too. Hence we get

$$
T=\left(\begin{array}{lll}
S_{+} & \Gamma D_{P_{0}} & \mathbb{U P}_{-} \\
0 & T_{0} & D_{R_{0}^{*}} \wedge P_{-} \\
0 & 0 & S_{-}^{*}
\end{array}\right) .
$$

Obviously, we have

$$
\begin{align*}
& \left\|S_{+} f_{+}+\Gamma D_{T_{0}} f_{0}+\Omega P_{-} f_{-}\right\|^{2}+ \\
& +\left\|T_{0} f_{0}+D_{T_{0}^{*}} \wedge p_{-} f_{-}\right\|^{2}+\| S_{-}^{*} f_{-}{ }^{2} \leqslant \tag{2.5}\\
& \leqslant\left\|f_{+}\right\|^{2}+\left\|f_{0}\right\|^{2}+\left\|f_{-}\right\|^{2}
\end{align*}
$$

for every $f=\left\{f_{+}, f_{0}, f_{-}\right\} \in D_{+} \oplus \operatorname{Hol}_{0} \oplus D_{-}$. Taking into account the structure (2.4) we find

$$
\left\|\Gamma h_{0}\right\|^{2}+2 R e\left(\Gamma h_{0}, \Omega_{h_{-}}\right)+\| \Omega_{h_{-}} i^{2}+
$$

$$
\begin{equation*}
+2 \operatorname{Re}\left(T_{o} h_{0}, \wedge h_{-}\right)+\left\|D_{T_{0}^{*}} \wedge h_{-}\right\|^{2} \leqslant\left\|h_{o}\right\|^{2}+\left\|h_{-}\right\|^{2} \tag{2.6}
\end{equation*}
$$

for every $h_{0} \in \mathcal{D}_{T_{0}}$ and every $h_{-} \in P_{-} \mathcal{D}_{-}$. But from (2.6) we get

$$
\begin{equation*}
\left\|\Gamma h_{0}+\Omega h_{-}\right\|^{2} \leqslant\left\|h_{0}-T_{0}^{*} \lambda h_{-} i^{2}+i D_{\lambda} h_{-}\right\|^{2} \tag{2.7}
\end{equation*}
$$

$h_{0} \in D_{T_{0}}, h_{-} \in P_{-} \infty_{-}$. Notice that $T_{o}^{*} D_{\mathrm{T}_{0}^{*}} \subseteq D_{T_{0}}$ and choosing $h_{0}=T_{0}^{*} \Lambda_{h_{-}}, h_{-} \in P_{-} D_{-}$, we get

$$
\begin{equation*}
\left\|\left(\Gamma T_{0}^{*} \Lambda+\Omega\right) h_{-}\right\|^{2} \leqslant a D_{i} h_{-} \|^{2} \tag{2.8}
\end{equation*}
$$

$h_{-} \in P_{-} D_{-}$. But (2.8) yields the representation

$$
\begin{equation*}
\Gamma \mathrm{T}_{0}^{*} \wedge+\Omega=\theta \mathrm{D}_{\wedge} \tag{2.9}
\end{equation*}
$$

where $\theta: D_{\Lambda} \longrightarrow P_{+} D_{+}$is a contraction. In such a way we find

$$
\begin{align*}
& \left\|\Gamma\left(h_{o}-T_{0}^{*} \wedge_{h_{-}}\right)+\theta D_{\Lambda} h_{-}\right\|^{2} \leqslant \\
& \leqslant\left\|h_{0}-T_{0}^{*} \wedge h_{-}\right\|^{2}+\left\|D_{\Lambda} h_{-}\right\|^{2} \tag{2.10}
\end{align*}
$$

$h_{0} \in \mathcal{D}_{T_{0}}, h_{-} \in P_{-} \mathcal{D}_{-}$. Obviously, the linear map

$$
\left(\begin{array}{l}
g_{0} \tag{2.11}\\
g_{-}
\end{array}\right]=\left[\begin{array}{ll}
I_{D_{I_{0}}} & -I_{0}^{*} \Lambda \\
0 & I_{P_{-} D_{-}}
\end{array}\right]\left[\begin{array}{l}
n_{0} \\
n_{-}
\end{array}\right]
$$

defines an one-to-one correspondence on the Hilbert space $\propto_{T_{0}} \oplus P_{-} D_{-}$. Hence using this transformation we obtain

$$
\begin{equation*}
\left\|\Gamma g_{0}+\theta D_{\wedge} g_{-}\right\|^{2} \leqslant\left\|g_{0}\right\|^{2}+\left\|D_{\wedge} g_{-}\right\|^{2} \tag{2.12}
\end{equation*}
$$

for every $g_{0} \in D_{T_{0}}$ and every $g_{-} \in P_{-} \mathcal{D}_{-}$. But this estimate yields the representation $\theta=D_{\Gamma *} \Pi$, where $\Pi: D_{\Lambda} \longrightarrow$ $\longrightarrow \dot{D}_{\Gamma}$ is a contraction.
Proposition 2.1. The triplet $A=\left\{T, D_{+}, D_{-}\right\}$ fulfils the assumptions (h1) - (h5) if and only if there are two unilateral shifts $S_{ \pm}$defined on $D_{ \pm}$, a contraction T_{0} of class C_{00} on $\mathscr{H}_{0}=\tilde{X} \Theta\left(D_{+} \oplus D_{-}\right)$and three contrac-
tions $\Gamma: D_{T_{0}} \longrightarrow P_{+} D_{+}, \lambda: P_{-} D_{\longrightarrow} \longrightarrow D_{T_{0}^{*}}$ and $\Pi: D_{\Lambda} \longrightarrow D_{\Gamma} *$ such that with respect to the decomposition (2.1) the operator T admits the block-matrix representation

$$
T=\left[\begin{array}{lll}
S_{+} & \Gamma D_{T_{0}} & D_{\Gamma *} \Pi D_{A}-\Gamma T_{0}^{*} \wedge P_{-} \tag{2.13}\\
0 & T_{0} & D_{T_{0}^{*}} \wedge P_{-} \\
0 & 0 & S_{-}^{*}
\end{array}\right]
$$

For a given triplet $A=\left\{T, D_{+}, D_{-}\right\}$obeying (h1) -(h5) the operators $S_{+}, S_{-}, T_{0}, \Gamma, \wedge$ and Π are uniquely determined.
$P r \circ \circ f$: It was shown that for every triplet $A=\left\{T, D_{+}, D_{-}\right\}$ obeying (h1) - (h5) there exist operators $S_{+}, S_{-}, T_{0}, \Gamma$, Λ and Π such that the desired block-matrix representation (2.13) of T is valid. Conversely, if with respect to a decomposition (2.1) the operator T admits the block-matrix representation (2.13), then a direct computation shows that T is a contraction and the triplet $A=\left\{T, D_{+}, D_{-}\right\}$fulfils. the assumptions (h1)' (h3). To prove $P_{\mathscr{H} \Theta}^{\nVdash D_{+} T^{n} \longrightarrow 0 \text { strong- }}$ ly for $n \rightarrow+\infty$ we establish

$$
\left[\begin{array}{ll}
T_{0} & D_{T_{0}^{*}} \wedge P_{-} \tag{2.14}\\
0 & S_{-}^{*}
\end{array}\right]^{n} \rightarrow 0
$$

strongly for $n \rightarrow+\infty$. Because of $T_{o} \in C_{o O}$ this is obvious
for every $\left\{\rho_{N}, 0\right\}, \rho_{0} \in \mathscr{\infty}$ for every $\left\{f_{0}, 0\right\}, f_{0} \in \mathscr{H}_{0}$. We set $f_{-}=\sum_{n=0} S_{-}^{n} f^{(n)}$, where
$p^{(n)} \in P_{-} D_{-}, n=0,1,2, \ldots$ A simple calculation proves

$$
\left[\begin{array}{ll}
\mathrm{T}_{0} & \mathrm{D}_{\mathrm{T}_{0}^{*} \wedge P_{-}} \tag{2.15}\\
0 & \mathrm{~S}_{-}^{*}
\end{array}\right]^{\mathrm{n}}\left[\begin{array}{l}
0 \\
\mathrm{P}_{-}
\end{array}\right] \rightarrow 0
$$

strongly for $n \rightarrow+\infty$ and for $N=0,1,2, \ldots$. Hence the relation (2.14) holds for every $\left\{f_{0}, \sum_{n=0}^{N} f^{n}\right\}, N=$ $=0,1,2, \ldots$, which implies the validity of (2.14) for every element of $\mathcal{H}_{0} \oplus D_{-}$. Similarly, we prove $P_{\neq \Theta}^{\mathscr{F}} \mathcal{D}_{-} T^{* n} \longrightarrow 0$ strongly for $n \rightarrow+\infty$. The condition (h5) is obvious.

It remains to ahow the uniqueness. Obviously, the operators $S_{+}, S_{-}, T_{0}, X, Y$ and Z are uniquely determined. But the uniqueness of X and Z implies the uniqueness of Γ and \wedge. Using this fact it is not hard to see that on account of the uniqueness of Y, T_{0}, Γ and Λ the contraction Π is uniquely determined, too.

In the following we denote by ρ the class of all those 6-tuples $F=\left\{S_{+}, S_{-} ; T_{0} ; \Gamma, \wedge, \Pi\right\}$ of contractions such that S_{+}and S_{-}are unilateral shifts, T_{0} is a contraction of class C_{00} and $\Gamma: D_{\mathrm{P}_{0}} \longrightarrow \mathrm{P}_{+} D_{+}, \wedge: P_{-} D_{-} \longrightarrow D_{\mathrm{T}_{0}^{*}}$ and $\Pi: D_{\wedge} \longrightarrow D^{\Gamma *}$ are contractions. Because of the converse part of Proposition 2.1.a triplet $A_{F}=\left\{T, D_{+}, D_{-}\right\}$ obeying (h1) - (h5) corresponds to every $F \in \mathcal{P}$. Now using again Proposition 2.1 we see that the correspondence $P \longrightarrow A_{F}$ establishes an one-to-one correspondence between ρ and the class of all possible orthogonal dissipative Lax-Phillips scattering theories A. In the following we
call this representation the free parametrization of the orthogonal dissipative Lax-Phillips scattering theories. The parametrization is called free because the operators S_{+}, S_{-}, T_{0} can be freely chosen in their classes of unilateral shifts and C_{00}-contractions, respectively, and the contractions Γ, \wedge, Π can be freely chosen up to the definition and range spaces, too.

We arrive at the case investigated by D.Z.Arov [1,2,3] demanding instead of $T_{0} \in C_{O O}$ the condition $T_{0} \in C_{0} \subset C_{O O}$. For the definition of the class C_{0} the reader is referred to $[9]$.

Further we remark that we obtain an orthogonal conservative Lax-Phillips scattering theory $[5,6]$ if T is a unitary operator. In terms of the parameter P this means that the corresponding scattering theory is a conservative one if and only if the operator Γ is an isometry, the operator \wedge is a co-isometry and Π is an isometry from D_{\wedge} onto $D_{\Gamma * *}$

We say the dissipative Lax-Phillips scattering theo-
ries $A=\left\{T, D_{+}, D_{-}\right\}$and $A^{\prime}=\left\{T^{\prime}, D_{+}^{\prime}, D_{-}^{\prime}\right\}$ are equivalent, if there is an isometry R from $\not \mathscr{X}$ onto \mathscr{H} such that we have $R D_{ \pm}=D_{ \pm}$and

$$
\begin{equation*}
T^{\prime}=R T R^{-1} \tag{2.16}
\end{equation*}
$$

Obviously, we define an equivalence relation in this way. Further, we say two 6 -tuples $P=\left\{S_{+}, S_{-}, T_{0} ; \Gamma, \Lambda, \eta\right\}$ and $F^{\prime}=\left\{S_{+}^{\prime}, S_{-}^{\prime}, T_{o}^{\prime} ; \Gamma^{\prime}, N^{\prime}, \Pi^{\prime}\right\}$ of S are equivalent if there is a triplet of isometries $\left\{R_{+}, R_{0}, R_{-}\right\}$such that the isometries R_{+}, R_{0} and R_{-}acting from D_{+}, \mathscr{F}_{0} and D_{-}onto
$\mathcal{D}_{+}^{\prime}, \chi_{o}^{\prime}$ and D^{\prime}, respectively, fulfil

$$
\begin{align*}
& S_{ \pm}^{\prime}=R_{ \pm} S_{ \pm} R_{ \pm}^{-1} \tag{2.17}\\
& T_{0}^{\prime}=R_{0} T_{0} R_{0}^{-1} \tag{2.18}\\
& \Gamma^{\prime}=R_{+} \Gamma R_{0}^{-1} \tag{2.19}\\
& \Lambda^{\prime}=R_{0} \wedge R_{-}^{-1} \tag{2.20}\\
& \eta^{\prime}=R_{+} \cap R_{-}^{-1} \tag{2.21}
\end{align*}
$$

Obviously, in this way we find an equivalence relation in P.

Proposition 2.2. The orthogonal disaipative Lax-Phillips scattering theories A_{F} and $A_{P^{\prime}}, F, F^{\prime} \in \mathcal{B}$, belong to the same equivalence class if and only if F and F^{\prime} belong to same equivalence class.

We left the proof to the reader.

3. A special matrix representation

Next we transform (2.13) to a form in which the shift operators S_{+}and S_{-}are realized by a canonical shift representation. To this end we introduce the subspaces
$k=D_{+} \Theta S_{+} D_{+}$and $\circ=D_{-} \odot S_{-} \mathscr{x}_{-}$and define the Hilbert space み' by

$$
\begin{equation*}
\mathcal{R}^{\prime}=\bigoplus_{j=-\infty}^{-1} k_{j} \oplus \mathcal{Z}_{0} \oplus \stackrel{\oplus}{j=1}_{+\infty} \exists_{j} \tag{3.1}
\end{equation*}
$$

where $k_{1}=\dot{i}_{-1}=\dot{i}_{z_{-2}}=\ldots$ and $g_{y}=g_{1}=g_{2}=\ldots$.
In this Hilbert space every element $f \in \mathcal{H}$ is given by a sequence $\left\{\ldots, k_{-2}, k_{-1}, f_{0}, g_{1}, g_{2}, \ldots\right\}$, where $k_{j} \in \notin, j=$ $=-1,-2, \ldots$ and $g_{j} \in g_{i}, j=1,2, \ldots$. We define the operator T^{\prime} as follows.

$$
\begin{aligned}
& T \cdot\left\{\ldots, k_{-2}, k_{-1}, P_{0}, g_{1}, g_{2}, \ldots\right\}= \\
& =\left\{\ldots, k_{-2}, k_{-1}, D_{T_{0}} f_{0}+D_{\Gamma *} \cap D_{\wedge} g_{1}-\Gamma T_{0}^{*} \wedge g_{1},(3.2)\right. \\
& \left.T_{0} f_{0}+D_{T_{0}^{*}}^{*} g_{1}, g_{2}, g_{3}, \ldots\right\} . \\
& \text { Setting } \mathscr{D}_{+}^{\prime}={ }_{j=-\infty}^{-1} \dot{D}_{j} \text { and } \partial_{-}^{\prime}={ }_{j=1}^{+\infty} g_{j} \text { it is not hard to } \\
& \text { see that } A=\left\{T, \infty_{+}, D_{-}\right\} \text {and } A^{\prime}=\left\{T^{\prime}, D_{+}^{\prime}, D_{-}^{\prime}\right\} \text { are equiva- }
\end{aligned}
$$ lent orthogonal dissipative Lax-Phillips scattering theories. On account of this fact we trop the symbol ' in the following. We call the representation (3.2) the special matifix representation of $A=\left\{T, \hat{\chi}_{+}, \infty_{-}\right\}$.

The special matrix representation remembers at the matrix construction of a unitary dilation of a contraction. described by B.Sz.-Nagy and C.foias in [9, chapter I]. For further considerations we recall this construction. Let T_{0} be a contraction on \vec{F}_{0}. \#e set

$$
\begin{equation*}
K_{b}=\stackrel{+\infty}{\oplus}{ }_{j=-\infty}^{+\infty} \pi_{j}, \tag{3.3}
\end{equation*}
$$

where $\mathscr{R}_{0}=\bar{X}_{ \pm 1}=\mathcal{O}_{ \pm 2}=\ldots$. In accordance with [9] we define the unitary dilation U_{0} of T_{0} by

$$
\begin{align*}
& U_{0}\left\{\ldots, f_{-2}, f_{-1}, f_{0}, f_{1}, f_{2}, \ldots\right\}= \tag{3.4}\\
& =\left\{\cdots, f_{-2}, f_{-1}, D_{T_{0}} f_{0}-T_{0}^{*} f_{1}, T_{0} f_{0}+D_{T_{0} * f_{1}}, f_{2}, \ldots \cdot\right\} .
\end{align*}
$$

In the following we mostly work in this representation. Especially, we calculate the wave operators in this representation. In order to do this we need some further operators which we will introduce now. We assume $\operatorname{dim}\left(z_{0}\right) \geqslant \operatorname{dim}\left(g_{j}\right)$ and $\operatorname{dim}\left(\mathcal{F}_{0}\right) \geqslant \operatorname{dim}\left(k_{2}\right)$. This assumption is obviously fulfilled if H_{0} is an infinite dimensional Hilbert space. Because of this assumption there are isometries $\nabla_{+}: g \longrightarrow \mathcal{F l}_{0}$ and $\nabla_{-}: k \longrightarrow \mathcal{H}_{0}$. We' define the operators $\Gamma_{n}: \mathcal{K}_{0} \rightarrow \mathcal{H}^{\prime}$ by

$$
\begin{aligned}
& \Gamma_{n}\left\{\ldots, f_{-n}, f_{-(n-1)}, \ldots, f_{-1},{f_{0}}_{0}, f_{1}, f_{2}, \ldots\right\}=13 . \\
& =\left\{\ldots, V_{-}^{*} f_{-(n+1)}, \Gamma Q_{-} f_{-n}, \Gamma_{Q_{-} f_{-(n-1)}, \ldots,{ }^{Q_{-}} f_{-1},}\right. \\
& \left.f_{0}, V_{+}^{*} f_{1}, V_{+}^{*} f_{2}, \ldots\right\},
\end{aligned}
$$

where $Q_{-}=P P_{\mathcal{D}_{T_{0}}}^{\mathcal{H}_{0}}$, and the operators $\Lambda_{n}: \mathscr{H} \rightarrow \mathcal{K}_{0}$ by

$$
\begin{align*}
& \wedge_{n}\left\{\ldots, k_{-2}, k_{-1}, \dot{f}_{0}, g_{1}, \ldots, g_{(n-1)}, g_{n}, g_{(n+1)}, \ldots\right\} \\
& =\left\{\ldots, v_{-} k_{-2}, V_{-} k_{-1}, \dot{\rho}_{0}, \wedge g_{1}, \ldots, \wedge g_{(n-1)}, \lambda g_{n}, \nabla_{+} g_{(n+1)}, \ldots\right. \tag{3.6}
\end{align*}
$$

$n=1,2, \ldots$. Further we introduce the operators $I_{n}: H \longrightarrow \nVdash$,

$$
L_{n}\left\{\ldots, k_{-2}, k_{-1}, f_{0}, g_{1}, \ldots, g_{n}, g_{n+1}, \ldots\right\}=
$$

$=\left\{\ldots, 0, D_{\Gamma *} \cap D_{\Lambda} g_{1}, D_{\Gamma *} \cap D_{\Lambda} g_{2}, \ldots, D_{\Gamma^{*}} \cap D_{\wedge} g_{n}\right.$,
[0] $, 0,0, \ldots\}$,
n = 1,2,...
Lemma 3.1. Let $A_{P}=\left\{T, D_{+}, D_{-}\right\}, F \in S$, be an oxthogonal dissipative Lax-Phillips scattering theory. Using. the special matrix representation of A_{F} the operator T^{n} can be represented by

$$
\begin{equation*}
T^{n}=\Gamma_{n} U_{0}^{n} \Lambda_{n}+I_{n} \tag{3.8}
\end{equation*}
$$

$\mathrm{n}=1,2, \ldots$.
The proof is straightforward. Therefore we omit it .
4. Tave operators

In the special matrix representation we can identify the subspaces
$+\infty$ \mathbb{H}_{+}and \mathbb{H}_{-}with the subspaces $\oplus_{j=-\infty}^{+\infty} k_{j}$ and $\stackrel{+\infty}{+\infty} g_{j}$, respectively. We recall that the subspaces D_{+} and $D_{\text {_ }}$ are given by $\underset{j=-\infty}{-1} k_{j}$ and $\underset{j=1}{+\infty} g_{j}$, respectively. The operator U_{-}acts now as follows.

$$
\begin{aligned}
& U_{-}\left\{\cdots, g_{-2}, g_{-1}, g_{0}, g_{1}, g_{2}, \ldots\right\}= \\
& =\left\{\cdots, g_{-2}, g_{-1}, g_{0}, g_{1}, g_{2}, \ldots\right\}
\end{aligned}
$$

Similarly, the operator U_{+}is given by

$$
\begin{gather*}
U_{+}\left\{\ldots, k_{-2}, k_{-1}, k_{0}, k_{1}, k_{2}, \ldots\right\}= \tag{4.2}\\
=\left\{\ldots, k_{-2}, k_{-1}, k_{0}, k_{1}, k_{2}, \ldots\right\} \cdot
\end{gather*}
$$

To calculate the wave operators $T_{+}(A)$ it is necessary to introduce some new operators. We set $L_{-}: ~ \mathscr{H}_{-} \longrightarrow \mathcal{H}$,

$$
\begin{align*}
& L_{-}\left\{\ldots, g_{-2}, g_{-1}, g_{0}, g_{1}, g_{2}, \ldots\right\}=\left\{\ldots, D_{\Gamma *} \cap D_{\wedge} g_{-2}\right. \tag{4.3}\\
& \left.D_{\Gamma *} \cap D_{\Lambda} g_{-1}, D_{\Gamma *} \cap D_{\wedge} g_{0}, 0,0,0, \ldots\right\}
\end{align*}
$$

$\mathrm{L}_{+}: \mathscr{H}_{+} \nVdash$,

$$
\begin{equation*}
I_{+}\left\{\ldots, k_{-2}, k_{-1}, k_{o}, k_{1}, k_{2}, \ldots\right\}= \tag{4.4}
\end{equation*}
$$

$$
=\left\{\ldots, 0,0,0,0, D_{\Lambda} \Pi^{*} D_{\Gamma} k_{0}, D_{\Lambda} \Pi^{*} D_{\Gamma^{*}} k_{1}, \ldots\right\}
$$

$\Lambda_{-}: \mathscr{H} \Rightarrow K_{0}$,
$\wedge_{-}\left\{\cdots, g_{-2}, g_{-1}, g_{0}, g_{1}, g_{2}, \ldots\right\}=$
$=\left\{\ldots, \wedge_{g_{-2}}, \wedge g_{-1},\left[\wedge g_{0}\right], \nabla_{+} g_{1}, \vee_{+} g_{2}, \ldots\right\}$,
$\Lambda_{+}: K_{0} \rightarrow \mathbb{Z}$,

$$
\begin{aligned}
& \wedge_{+}\left\{\cdots, f_{-2}, f_{-1}, f_{0}, f_{1}, f_{2}, \ldots\right\}= \\
& =\left\{\cdots, V_{-}^{*} f_{-2}, V_{-}^{*} f_{-1}, f_{0}, \wedge^{*} Q_{+} f_{1}, \Lambda^{*} Q_{+} f_{2}, \ldots\right\}
\end{aligned}
$$

$$
\begin{align*}
Q_{+}= & P_{\mathcal{D}_{\mathrm{T}_{0}^{*}}^{*}}^{\mathscr{R}_{0}, \Gamma_{-}: \mathscr{K}_{0} \rightarrow \mathscr{H},} \\
& \Gamma_{-}\left\{\ldots, \mathcal{P}_{-2}, \mathcal{P}_{-1}, \mathscr{P}_{0}, \mathcal{P}_{1}, f_{2}, \ldots\right\}= \tag{4.7}
\end{align*}
$$

$$
=\left\{\cdots, \Gamma Q_{-} f_{-2}, \Gamma Q_{-} f_{-1}, f_{0}, V_{+}^{*} f_{1}, \nabla_{+}^{*} f_{2}, \ldots\right\}
$$

and $\Gamma_{+}: X_{+} \longrightarrow \pi_{0}$,

$$
\begin{align*}
& \Gamma_{+}\left\{\ldots, k_{-2}, k_{-1}, \Gamma_{0}, k_{1}, k_{2}, \ldots\right\}= \\
= & \left\{\ldots, v_{-} k_{-2}, v_{-} k_{-1}, \Gamma^{*} k_{0}, \Gamma^{*} k_{1}, \Gamma^{*} k_{2}, \ldots\right\} . \tag{4.8}
\end{align*}
$$

The incoming and outgoing subspaces of the unitary dilation U_{0} are defined by

$$
\begin{equation*}
\mathcal{K}_{-}=\stackrel{+\infty}{\stackrel{+}{\oplus}=1} \mathcal{J}_{j} \tag{4.9}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{+}=\oplus_{j=-\infty}^{-1} \mathbb{Z}_{j} \tag{4:10}
\end{equation*}
$$

Further we define the shift operator s_{o} on K_{0} by

$$
\begin{align*}
& s_{0}\left\{\ldots, f_{-2}, f_{-1}, f_{0}, f_{1}, f_{2}, \ldots\right\}= \tag{4.11}\\
& =\left\{\ldots, f_{-2}, f_{-1}, f_{0}, f_{1}, f_{2}, \ldots\right\}
\end{align*}
$$

Theorem 4.1. Let $A_{F}=\left\{T, D_{+}, D_{-}\right\}, F \in \mathcal{P}$, be an orthogonal dissipative Lax-Phillips scattering theory. In the
special matrix representation of A_{F} the wave operators $W_{ \pm}\left(A_{F}\right)$ are given by

$$
\begin{equation*}
\mathbb{W}_{-}\left(A_{P}\right)=\Gamma_{-}\left(\underset{n \rightarrow+\infty}{ } U_{0}^{n} P_{Z_{-}}^{N_{0}} S_{0}^{-n}\right) \Lambda_{-}+I_{-} \tag{4.12}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{+}\left(A_{F}\right)=\Lambda_{+}\left(\underset{n \rightarrow+\infty}{\left(s-11 m_{0}\right.} U_{o}^{-n} P_{X_{+}}^{X_{o}} S_{o}^{n}\right) \eta_{+}+L_{+} \cdot \tag{4.13}
\end{equation*}
$$

Proof. Taking into account Lemma 3.1 we'get

$$
\begin{equation*}
W_{-}\left(A_{P}\right)=\underset{n \rightarrow+\infty}{s-\lim _{n}}\left(\Gamma_{n} U_{o}^{n} \Lambda_{n}+L_{n}\right) P_{J}^{j e}-U_{-}^{-n} . \tag{4.14}
\end{equation*}
$$

Using (4.1) and (3.7) we obtain

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty} I_{n_{n}} P_{D_{-}}^{\mathcal{L}_{-}} U_{-}^{-n}\left\{\ldots, g_{-2}, g_{-1}, g_{0}, g_{1}, g_{2}, \ldots\right\}= \\
& \lim _{n \rightarrow+\infty} I_{n}\left\{\ldots, 0,0,\left[0, g_{-(n-1)}, \ldots, g_{-1}, g_{0}, g_{1}, g_{2}, \ldots\right\}=\right. \\
& \lim _{n \longrightarrow+\infty}\left\{\ldots D_{\Gamma *} \cap D_{\wedge} g_{-(n-1)}, \ldots, D_{\Gamma *} \cap D_{\wedge} g_{0}, 0,0,0, \ldots\right\}= \\
& I_{-}\left\{\ldots, g_{-2}, g_{-1}, g_{0}, g_{1}, g_{2}, \ldots\right\} .
\end{aligned}
$$

Further we find

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty} \Gamma_{n} U_{0}^{n_{0}} \Lambda_{n} P^{\mathscr{R}} D_{-} U_{-}^{-n}\left\{\ldots, g_{-2}, g_{-1}, \bar{g}_{0}, g_{1}, g_{2}, \ldots\right\}= \\
& \lim _{n \rightarrow+\infty} \Gamma_{n} U_{0}^{n} \Lambda_{n}\left\{\ldots, 0,0,\left[0, g_{-(n-1)}, \ldots, g_{-1}, g_{0}, g_{1}, g_{2}, \ldots\right\}=\right.
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty} \Gamma_{n} U_{0}^{n}\left\{\ldots, 0,0,0, \wedge g_{-(n-1)}, \cdots,\right. \\
& \left.\wedge g_{-1}, \wedge g_{0}, \nabla_{+} g_{1}, \nabla_{+} g_{2}, \ldots\right\}= \\
& \lim _{n \rightarrow+\infty} \Gamma_{n} U_{0}^{n_{0}} P_{\mathcal{L}_{-}}^{\alpha_{0}} S_{0}^{-n} \Lambda_{-}\left\{\cdots, g_{-2}, g_{-1}, g_{0}, g_{1}, g_{2}, \ldots\right\}= \\
& \Gamma_{-} \lim _{n \rightarrow+\infty} U_{0}^{n} P_{\alpha_{-}}^{\alpha_{0}} S_{0}^{-n} \Lambda_{-}\left\{\cdots, g_{-2}, g_{-1}, g_{0}, g_{1}, g_{2}, \ldots\right\} . \\
& \text { Both formulas imply (4.12). Similarly, we prove (4.13). }
\end{aligned}
$$

5. Scattering operator

Our next aim is to calculate the scattering operator $S(A)$ of $A=\left\{T, D_{+}, D_{-}\right\}$in the special matrix representation. We introduce the wave operators ${ }^{\circ}{ }_{ \pm}$,
which exist. The corresponding scattering operator is denoted by S_{o},

$$
\begin{equation*}
S_{0}=\stackrel{0}{W_{+}^{*}}{ }_{+}^{o} \tag{5.2}
\end{equation*}
$$

Beside these notations we need the following operators. $\hat{\wedge}: H \longrightarrow K_{0}$,

$$
\begin{aligned}
& \hat{\wedge}\left\{\ldots, g_{-2}, g_{-1}, g_{0}, g_{1}, g_{2}, \ldots\right\}= \\
& =\left\{\ldots, \wedge g_{-2}, \wedge g_{-1}, \therefore g_{0}, \lambda g_{1}, \wedge g_{2}, \ldots\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \hat{\Gamma}: \mathcal{W}_{0} \rightarrow \mathcal{Y}_{+}, \\
& \hat{\Gamma}\left\{\ldots, f_{-2}, f_{-1},{f_{0}}_{0}, f_{1}, f_{2}, \ldots \cdot\right\}= \\
&=\left\{\ldots, \Gamma Q_{-} f_{-2}, \Gamma Q_{-} f_{-1}, \Gamma Q_{-} f_{0}, \Gamma Q_{-} f_{1}, \Gamma Q_{-} f_{2}, \ldots\right\}
\end{aligned}
$$

and $\hat{L}: \mathscr{H}_{-} \mathscr{H}_{+}$,

$$
\hat{L}\left\{\ldots, g_{-2}, g_{-1}, g_{0}, g_{1}, g_{2}, \ldots\right\}=
$$

$$
=\left\{\cdots, D_{\Gamma^{*}} \cap D_{\lambda} g_{-2}, D_{\Gamma^{*}} \cap D_{\lambda} g_{-1}, D_{\Gamma^{*}} \cap D_{\lambda} g_{0},\right.
$$

$$
\left.D_{\Gamma *} \cap D_{\Lambda} g_{1}, D_{\Gamma *} \cap D_{\Lambda} g_{2}, D_{\Gamma *} \cap D_{\lambda} g_{3}, \ldots\right\}
$$

Theorem 5.1. Let $\left.A_{F}=\dot{\{ } T, \hat{\omega}_{+}, \dot{\alpha}_{-}\right\}, F \in \mathcal{P}$, be an orthogonal dissipative Lax-Phillips scattering theory. In the special matrix representation of A_{P} the scattering operator $S\left(A_{F}\right)$ equals

$$
\begin{equation*}
S\left(A_{F}\right)=\hat{\Gamma} S_{0} \hat{\Lambda}+\hat{L} \tag{5.6}
\end{equation*}
$$

Proof. To prove this theorem we use (4.12) and (4.13). We find

To calculate the first sumand πe introduce the operator

$$
\begin{align*}
& +\quad{ }^{7 *}{ }^{0} W_{+}^{*} \Lambda_{+}^{*} L_{-}+I_{+}^{*} L_{-} . \tag{5.7}
\end{align*}
$$

$\because \because=\pi_{0} \rightarrow \pi_{0}$

$$
\begin{align*}
& \left.\Gamma \geq\left\{\cdots, f_{-2}, f_{-1}, \tilde{f}_{0}\right], \dot{f}_{1}, f_{2}, \ldots\right\}= \\
& =\left\{\cdots, \nabla_{-} \Gamma Q_{-} f_{-2}, \nabla_{-} \Gamma Q_{-} f_{-1}, \bar{f}_{0}, f_{1}, f_{2}, \ldots\right\} . \tag{5.8}
\end{align*}
$$

We find

$$
\begin{aligned}
& \Lambda_{+}^{*} \Gamma_{-} U_{0}^{n} P_{K_{2}}^{K_{0}} S_{o}^{-n} \Lambda_{-}\left\{\ldots, g_{-2}, g_{-1}, g_{0}, g_{1}, g_{2}, \ldots\right\}= \\
& \text { (5.9) } \\
& =\Gamma: U_{0}^{n} P_{y_{L_{-}}}^{\nu_{0}} S_{o}^{-n} \hat{\wedge}\left\{\ldots, g_{-2}, g_{-1}, g_{0}, g_{1}, g_{2}, \ldots, \ldots\right\},
\end{aligned}
$$

$\mathrm{n}=1,2, \ldots$. Similarly we prove

$$
\begin{align*}
& \Gamma_{+}^{*} S_{o}^{-n} P_{x_{x_{+}}}^{x_{0}} U_{0}^{n} \Gamma_{-}^{\prime}\left\{\ldots, f_{-2}, f_{-1}, f_{0}, f_{1}, f_{2}, \ldots\right\}= \tag{5.10}\\
= & \hat{\Gamma} S_{0}^{-n} P_{x_{+}}^{T x_{0}} U_{0}^{n}\left\{\ldots, \dot{f}_{-2}, f_{-1}, f_{0}, f_{1}, f_{2}, \ldots\right\}
\end{align*}
$$

From (5.9) and (5.10) we obtain

$$
\Gamma_{+}^{*} W_{+}^{0} \Lambda_{+}^{*} \Gamma_{-} \stackrel{W}{W}_{-} \Lambda=\hat{\Gamma} \mathrm{s}_{0} \hat{\Lambda}_{-}
$$

Next we calculate the second summand of (5.7). From (4.4) we conclude that the operator $I_{+}^{*}: \nVdash \longrightarrow \mathscr{H}_{+}$acts as follows.

$$
\begin{aligned}
& L_{+}^{*}\left\{\ldots, k_{-2}, k_{-1}, f_{\Omega}, g_{1}, g_{2}, \ldots\right\}= \\
& =\left\{\ldots, 0,0, D_{\Gamma *} \cap D_{\wedge} g_{1}, D_{\Gamma *} \cap D_{\wedge} g_{2}, \ldots\right\} .
\end{aligned}
$$

Hence we find

$$
\begin{align*}
& L_{+}^{*} \Gamma_{-} U_{0}^{n} P_{K_{-}}^{K_{o}} S_{0}^{-n} \wedge{ }_{-}\left\{\ldots, g_{-2}, g_{-1}, g_{0}, g_{1}, g_{2}, \ldots\right\}= \\
& =\left\{\ldots, 0,0, D_{\Gamma^{*}} \cap D_{\wedge} g_{1}, D_{\Gamma^{*}} \cap D_{\wedge} g_{2}, \ldots\right\}, \tag{5.13}
\end{align*}
$$

$n=1,2, \ldots$. Similarly we prove

$$
\begin{aligned}
& \Gamma_{+}^{*} S_{0}^{-n} P_{\lambda_{+}}^{Z_{0}} U_{0}^{n} \Lambda_{+}^{*} L_{-}\left\{\ldots, g_{-2}, g_{-1}, g_{0}, g_{1}, g_{2}, \ldots\right\}= \\
= & \left\{\ldots, D_{-} \cap D_{\Lambda} g_{-2}, D_{\Gamma} \cap D_{\Lambda} g_{-1}, D_{\Gamma} \cap \cap D_{\wedge} g_{0}, 0,0,0, \ldots\right\},
\end{aligned}
$$

$\mathbf{n}=1,2, \ldots$. Summing up (5.13) and (5.14) we get

$$
\begin{equation*}
L_{+}^{*} \Gamma_{-}^{0}{ }_{-}^{0} \Lambda_{-}+\Gamma_{+}^{*} \stackrel{W}{W}_{+}^{*} \Lambda_{+}^{*} L_{-}=\hat{L_{0}} \tag{5.15}
\end{equation*}
$$

Taking into account (4.3) and (4.4) we obtain $L_{+}^{4} L_{-}=0$. Hence (5.7), (5.11) and (5.15) prove the representation (5.6).

Remark 5.2. In the previous and in this section we have assumed $\operatorname{dim}\left(\varkappa_{0}\right) \geqslant \operatorname{dim}\left(k_{1}\right)$ and $\operatorname{dim}\left(\varkappa_{0}\right) \geqslant \operatorname{dim}\left(g_{j}\right)$. Looking at the formula (5.6) and the definitions of the operators $\hat{\Lambda}, \hat{\Gamma}$ and \hat{L} we see that this formula makes sense independent on the assumptions $\operatorname{dim}\left(\mathcal{H}_{0}\right) \geqslant \operatorname{dim}(k)$ and $\operatorname{dim}\left(\mathcal{H}_{0}\right) \geqslant \operatorname{dim}(g)$. In such a way it seems naturally to expect that formula (5.6) holds in every case. This can be really proved. We left the proof to the reader.
6. Scattering matrix

To calculate the scattering matrix of $A_{P}=\left\{T, D_{+}, D_{-}\right\}$we introduce the Fourier transformations $\phi_{-}: \mathcal{H} \longrightarrow L^{2}(g)$,

$$
\begin{align*}
& \phi_{-}\left\{\cdots, g_{-2}, g_{-1}, g_{0}, g_{1}, g_{2}, \ldots\right\}= \\
& =\sum_{n=-\infty}^{+\infty} g_{-n} e^{i n t}, \tag{6.1}
\end{align*}
$$

and $\phi_{+}: H+L^{2}(k)$,

$$
\begin{align*}
& \phi_{+}\left\{\cdots, k_{-2}, k_{-1}, k_{a}, k_{1}, k_{2}, \ldots\right\}= \\
= & \sum_{n=-\infty}^{+\infty} k_{-(n+1)} e^{i n t} . \tag{6.2}
\end{align*}
$$

Obviousiy, we have $\phi_{-} D_{-}=L^{2}(g) \Theta H^{2}(g)$ and $\phi_{+} \mathcal{D}_{+}=H^{2}(k)$. Moreover, we find

$$
\begin{equation*}
\phi_{-} U_{-}=k_{g} \phi_{-} \tag{6.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi_{+} \sigma_{+}=u_{k} \phi_{+}, \tag{6.4}
\end{equation*}
$$

where M_{g} and H_{k} denote the multiplication operators induced by $e^{i t}$ on $L^{2}(o g)$ and $L^{2}(k)$, respectively.. Theorem 6.1. Let $A_{F}=\left\{T, D_{+}, D_{-}\right\}, F \in S$, be an orthogonal dissipative Lax-Phillips scattering theory. Then the operator $\phi_{+} S\left(A_{F}\right) \phi_{-}^{-1}$ acts from $L^{2}(o g)$ into $L^{2}(k)$ as
a multiplication operator $:\left(S_{A_{P}}\right)$ induced by the operatorvalued function $\left\{g, k, S_{A_{P}}(t)\right\}$,

$$
\begin{equation*}
S_{A_{F}}(t)=D_{\Gamma^{*}} \Pi D_{\Lambda}+\Gamma \theta_{T_{o}}\left(e^{i t}\right)^{*} \wedge, \tag{6.5}
\end{equation*}
$$

$t \in[0,2 \pi)$, where $\left\{D_{T_{0}}, D_{\mathbb{T}_{0}^{*}}, \theta_{T_{0}}(\lambda)\right\}$ is the characteristic function of the contraction T_{0}.
Proof. Te introduce the Pourier transformations $\stackrel{\circ}{\phi}_{-}: \mathcal{H}_{-} \longrightarrow \mathrm{L}^{2}\left(\mathcal{H}_{0}\right)$,

$$
\begin{align*}
& {\stackrel{\circ}{\phi}-\left\{\ldots, f_{-2}, f_{-1}, f_{0}, f_{1}, f_{2}, \ldots\right\}=}_{=\sum_{n=-\infty}^{+\infty} f_{-n} e^{i n t}}
\end{align*}
$$

and $\stackrel{\circ}{\phi_{+}}: \mathcal{H}_{+} \longrightarrow \mathrm{L}^{2}\left(\mathscr{H}_{0}\right)$,

$$
\stackrel{\circ}{\phi}_{+}\left\{\ldots, p_{-2}, p_{-1}, f_{0}, p_{1}, p_{2}, \ldots\right\}=
$$

$$
\begin{equation*}
=\sum_{n=-\infty}^{+\infty} f_{-(n+1)} e^{i n t} . \tag{6.7}
\end{equation*}
$$

By a straightforward calculation we find that $\stackrel{\circ}{\Phi}_{+} S_{0} \stackrel{\circ}{\phi}_{-}^{-1}$ equals the multiplication operator induced by the operatorvalued function $S_{0}(t)=\underset{r \uparrow 1}{s-l i m} \widetilde{\theta}_{T_{0}}\left(r \cdot e^{i t}\right)^{*}: \nVdash \longrightarrow \mathscr{X}_{0}$, $t \in[0,2 \pi)$,

$$
\begin{equation*}
\widetilde{\theta}_{T_{0}}(\lambda)=-T_{0}+\lambda D_{T_{0}^{*}}\left(I-\lambda T_{0}^{*}\right)^{-1} D_{T_{0}}, \tag{6.8}
\end{equation*}
$$

$|\lambda|<1$. The restriction $\widetilde{\theta}_{\mathrm{T}_{0}}(\lambda) \Gamma^{\bar{\alpha}} \mathrm{T}_{0}$, $|\lambda|<1$, defines
an operator－valued function $\theta_{T_{0}}(\lambda),|\lambda|<1$ ，acting from $D_{T_{0}}$ into $D_{T_{0}^{*}}$ ．This function $\left\{D_{T_{0}}, D_{T_{0}^{*}} \hat{\nabla}_{T_{0}}(\lambda)\right\}$ is usually called the characteristic function of T_{0} ．

Taking into account Theorem 5.1 and the previous considerations we calculate the operator $\phi_{+} S\left(A_{F}\right) \phi_{-}^{-1}$ ． We Pind

$$
\begin{align*}
& \phi_{+} S\left(A_{F}\right) \phi_{-}^{-1}= \\
& =\phi_{+} \hat{I} \phi_{-}^{-1}+\phi_{+} \hat{\Gamma} \dot{\phi}_{+}^{-1} \phi_{+} S_{0} \dot{\phi}_{-}^{-1} \dot{\phi}_{-} \hat{\Lambda} \dot{O}_{-}^{-1} . \tag{6.9}
\end{align*}
$$

It is easy to see that $\phi_{+} \hat{L} \phi_{-}^{-1}: L^{2}(g) \rightarrow L^{2}(\ell)$ is a multiplication operator induced by the constant operator－ valued function $D_{\Gamma *} \Pi D_{\wedge}: g \rightarrow k$ ．Similarly，we obtain that $\phi_{+} \hat{\Gamma} \dot{\phi}_{+}^{-1}: L^{2}\left(\mathcal{H}_{0}\right) \rightarrow L^{2}(k)$ and $\dot{\phi}_{-}^{\circ} \hat{\Lambda}_{-1}^{-1}: L^{2}(\sigma) \rightarrow$ $\rightarrow I^{2}\left(\mathscr{f}_{0}\right)$ are multiplication operators induced by the constant operator－valued functions $\Gamma \mathrm{P}_{D_{T_{0}}}^{\mathcal{L}_{0}}: \mathcal{H} \longrightarrow k$ and ＂$\wedge: ~ \mathcal{G} \rightarrow D_{T_{0}^{*}} \subseteq \mathcal{Z}_{0}$ ，respectively．Taking into account the previous considerations we obtain（6．5）．

Obviously，the map $\mathcal{P} F=\left\{S_{+}, S_{-}, T_{0} ; \Gamma, \lambda, \Pi\right\} \longrightarrow$ ． $\rightarrow\left\{P_{-} \mathcal{D}_{-}, P_{+} \mathcal{D}_{+}, S_{F}(t)\right\}$ ，where $\left\{P_{-} \mathcal{D}_{-}, P_{+} \mathcal{D}_{+}, S_{P}(t)\right\}$ is given by

$$
\begin{equation*}
S_{F}(t)=D_{\Gamma *} \Pi D_{\Lambda}+\Gamma \theta_{T_{0}}\left(e^{i t}\right)^{*} \Lambda \tag{6.10}
\end{equation*}
$$

$t \in[0,2 \pi)$ ，defines a parametrization of the occurring
scattering matrices of the orthogonal dissipative Lax－
Phillips scattering theory．Horeover，participating the
point of $⿴ 囗 十$ ew that the main object of the Lax－Phillips scattering theory is the scattering matrix we can regard the $\operatorname{map} P \ni P \rightarrow\left\{P_{-} D_{-}, P_{+} D_{+}, S_{F}(t)\right\}$ as the Lax－Phillips scattering theory itself forgetting the definitions of the wave and scattering operators．

We remark that $\left\{P_{+} D_{+}, P_{-} D_{-}, S_{F}(t)^{*}\right\}$ is an analytical contraction－valued function．This fact is a consequence of the assumption $D_{+} \perp D_{-}$．

Further we note that if F and F^{\prime} belong to the same equivalence class，then the scattering matrices $\left\{P_{-} D_{-}, P_{+} D_{+}, S_{F}(t)\right\}$ and $\left\{P_{-}^{\prime} D_{-}^{\prime}, P_{+}^{\prime} D_{+}^{\prime}, S_{F},(t)\right\}$ are equivalent， too．This means there exists a pair of isometries $\left\{V_{+}, V_{-}\right\}$ such that V_{+}and V_{-}acting from $P_{+} D_{+}$and $P_{-} D_{-}$onto $P_{+}^{\prime} \infty_{+}^{\prime}$ and $P_{-}^{\prime} D_{-1}^{\prime}$ ，respectively，and fulfilling

$$
\begin{equation*}
V_{+}^{-1} S_{F}(t) V_{-}=S_{F}(t) \tag{6.11}
\end{equation*}
$$

for a．e．$t \in[0,2 \widetilde{X})$ ．Unclear is the converse of this con－ clusion．This means，if P and F^{\prime} belong to P and $\left\{P_{-} \mathcal{D}_{-}, P_{+} D_{+}, S_{F}(t)\right\}$ and $\left\{P_{-}^{\prime} D_{-}^{\prime}, P_{+}^{\prime} D_{+}^{\prime}, S_{F},(t)\right\}$ are equivalent what can be said with respect to F and F^{\prime} ．

Moreover，we remark that in accordance with［8］an ana－ lytical contraction－valued function can be regarded as the adjoint scattering matrix of an orthogonal dissipative Lax－Pbillips scattering theory if and only if this function admits a Darlington syathesis．It can be directly shown that $\left\{P_{+} D_{+}, P_{-} D_{-}, S_{F}(t)\right\}$ admits a Darlington synthesis． In such a way $\left\{P_{-} \mathcal{D}_{-}, P_{+} \hat{D}_{+}, S_{F}(t)\right\}$ fulfils the assumptions of C．Foias［4］．

References

[1] Arov,D.z.: On Darlington's method in the investigation of dissipative systems, Dokl. Akad. Nauk SSSR 201 (1971), 3, 559-562.
[2] Arov, D.Z.: Realization of a matrix-function in accordance with Darlington, Izv. Akad. Nauk SSSR, math. ser., 37 (1973), 6, 1295-1331.
[3] Arov,D.z.: On unitary couplings with losses (scattering theory with losses), Funct. Analysis Applications 8(1974), 4, 5-12.
[4] Foias,c.: On the Lax-Phillips nonconservative scattering theory, J.funct.Analysis 19 (1975), 273-301.
[5] Lax,P.D. and Phillips,R.S.: "Scattering Theory", Academic Press, New York, 1967.
[6] Lax,P.D. and Phillips,R.S.: Scattering theory for the acoustic equation in an even number of space dimensions, Indian Univ. Math. J. 25 (1972), 85-101.
[7] Lax, P.D. and Phililips,R.S.: Scattering theory for dis-

- sipative byperbolic systems, J. Funct.Analysis 14 (1973), 172-235.
[8] Neidhardt,H.: On the dissipative Lax-Phillips scattertng theory, to appear.
[9] Sz.-Nagy,B. and Foiss,C.: "Harmonic Analysis of Opera- tors on Hilbert space", Akademiai Kiado, Budapest, 1970.

Will you fill blank spaces in your library?
You can receive by post the books listed below. Prices - in uS $\$$, including the packing and registered postage

D7-83-644	Proceedings of the International School-Seminar on Heavy Ion Physics. Alushta, 1983.	11.30
D2,13-83-689	Proceedings of the Workshop on Radiation Problems and Gravitational Wave Detection. Dubna, 1983.	6.00
D13-84-63	Proceedings of the XI International Symposium on Nuclear Electronics. Bratislava, Czechoslovakia, 1983.	12.00
E1,2-84-160	Proceedings of the 1983 JINR-CERN SChool of Physics. Tabor, Czechoslovakia, 1983.	6.50
D2-84-366	Proceedings of the VII International Conference on the Problems of Quantum Field Theory. Alushta, 1984.	11.00
D1,2-84-599	Proceedings of the VII International Seminar on High Energy Physics Problems. Dubna, 1984.	12.00
D10,11-84-818	Proceedings of the V International Meeting on Problems of Mathematical Simulation, Programming and Mathematical Methods for Solving the Physical Problems, Dubna, 1983.	50
D17-84-850	Proceedings of the III International Symposium on Selected Topics in Statistical Mechanics. Dubna, 1984. (2 volumes).	22.50
	Proceedings of the IX All-Union Conference on Charged Particle Accelerators. Dubna, 1984. (2 volumes).	25.
D11-85-791	Proceedings of the International Conference on Computer Algebra and Its Applications in Theoretical Physics. Dubna, 1985.	2.00
D13-85-793	Proceedings of the XIl International Symposium on Nuclear Electronics. Dubna, 1985.	14.00
D4-85-851	Proceedings on the International School on Nuclear Structure. Alushta, 1985.	11.00
D1, 2-86-668	Proceedings of the VIII International Seminar on High Energy Physics Problems, Dubna, 1986. (2 vol.)	23.00
D3,4,17-86-747	Proceedings on the V International School on	5.00

Orders for the above-mentioned books can be sent at the address:
Head Post Office, P.O.Box 79101000 Moscow, USSR

Received by Publishing Department on June 12, 1987.

SUBJECT CATEGORIES OF THE JINR PUBLICATIONS

Index
1. High energy experimental physics
2. High energy theoretical physics
3. Low energy experimental physics
4. Low energy theoretical physics
5. Mathematics
6. Nuclear spectroscopy and radiochemistry
7. Heavy ion physics
Q. Crynnonirc
9. Accelerators
10. Automatization of data processing
11. Computing mathematics and technique
12. Chemistry
13. Experimental techniques and methods
14. Solid state physics. Liquids
15. Experimental physics of nuclear reactions
at low energies
16. Health physics. Shieldings
17. Theory of condenced matter
18. Applied researches
19. Biophysics

Найдхардт X.

E5-87-416
Об ортогональной диссипативной теории рассеяния

Лакса-Филлипса

Работа посвящена так называемой ортогональной диссипативной теории рассеяния Лакса-Филлипса. Получена параметризация всех возможных ортогональных диссипативных теорий рассеяния Лакса-Филлипса в терминах упорядоченного шестикратного семейства, состоящего из ортогональных сдвигов и сжимающих операторов, которые можно, вообще говоря, свободно выбирать. В этой параметризации волновые операторы, оператор рассеяния, а также матрица рассеяния явно вычисля ются. Более того, дано описание всех аналитических сжимающих операторозначных функций, допускающих синтез по Дерлингтону.
Работа выполнена в Лаборатории теоретической физики ОИЯИ. Препринт Объединенного института лдерных исследований. Дубна 1987

Neidhardt H.
E5-87-4 16
On the Orthogonal Dissipative Lax-Phillips Scattering Theory

The paper is devoted to the so-called orthogonal dissipative Lax-Phillips scattering theory. It is obtained a parametrization of all possible orthogonal dissipative Lax-Phillips scattering theories in terms of ordered 6-tup les consisting of unilateral shifts and contractions which can be roughly speaking freely chosen. In this parametrization the wave and scattering operators as well as the scattering matrix are explicitly calculated. Moreover, a description of all analytical contraction-valued functions admitting a Darlington synthesis is found.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1987

