

объединенный ИНСТИТ.УT ЯдерНых
исследований

дубна

E5-87-400

H.Neidhärdt

DISSIPATIVE LAX - PHILLIPS SCATTERING THEORY AND THE CHARACTERISTIC FUNCTION OF A CONTRACTION

Submitted to "Revue Roumaine de Mathematiques Pures et Appliques'".

1. Introduction

In [5] P.D.Lax and R.S.Phillips generalize their scat:tering theory developed in $[3,4]$ to include disalpative effects of the scattering process. Mathematically this generalization is reflected by the fact that instead of a selfadjoint operator to describe the scattering system now a maximal disaipative operator is used.

In [2] via the Cayley transform of a maximal dissipative operator the assumptions of P.D.Lex and R.S.Phil11ps [5] were necessarily and sufficiently carried over to contractions. For the convenience of the reader we repeat the assumptions of the disalpative Lax-Phillips scattering theory in terms of contrections. A triplet $\left\{T, D_{+}, D_{-}\right\}$ consiating of a contraction T on a separable Hilbert space $\not \mathscr{l}$ and two subspaces $D_{ \pm}$of \nVdash is called a disaipative Lax-Phillips acattering theory if the following assumptions are fulfilled.
(h1) $T D_{+} \subseteq D_{+}, T \cdot D_{-} \subseteq \mathcal{D}_{-}$, (h2) $T \upharpoonright D_{+}$and $T * \Gamma D_{-}$are isometries, (h3) $\bigcap_{n \in \mathbb{Z}_{+}} T^{n} D_{+}=\{0\}=\bigcap_{n \in \mathbb{Z}_{+}} T^{* n D_{-}}$, (h4) $P_{\partial 民 D_{+}}^{\partial R} T^{n} \rightarrow 0, P_{X \in D_{-}}^{\gamma} T^{* n} \rightarrow 0$ strongly for $n \rightarrow+\infty$.

Now every contraction T can be orthogonally decomposed into a unitary part T_{0} acting on, \mathcal{H}_{0} and a completely nonunitary part T_{1} acting on H_{1}, i.e.
(1.1) $T=T_{0} \oplus T_{1}$.

The completely nonunitery part is completely characterized by the so-called characteristic function of the contraction I defined in [8].
Definition 1.1. We say the contraction T admits a dissipative Lax-Phillips scattering theory if and only if there are subspaces D_{+}and D_{-}suoh that the triplet $\left\{T, D_{+}, D_{-}\right\}$ obeys the conditions (h1) - (h4).

In connection with this dofinition wo remark that it is not excluded that ono of the oubopaoos \mathcal{D}_{+}and \mathcal{D}_{-}or both subspacos aro zoro. Jor ingtanoe a oontraotion T belonging to tho olaoo O_{00} admita a diaaipativo Lax-Phillips soattoring thoory. To ohow this wo sot $D_{+}=D_{-}=\{0\}$.

Naturaliy, the question arises to describe those contraotiong admitting a dissipative Lax-Phillipa scattering thoory. In solving this problem it turns out that we can start with a completely nonunitary operator. For this class of operators we necessarily and sufficiently solve the problem in terms of the characteristic function. After that we describe those unitary operators which can be added to a completely nonunitary contraction admitting a diasipative Lax-Phillips scattering theory such that the sum admits such a scattering theory, too.

In the following the considerations are essentially based on a model developed in [6] in order to give an example of a disaipative Lax-Phillips scattering theory with a preacribed acattering matrix. As we will gee this modal can be regarded as new functional model for the class of contractions admitting a dissipative Lax-Phillips. scattering theory. We begin with the description of this model.

2. A functional model

Let $\left\{\mathscr{L}, \mathcal{L}_{n}, \theta(\lambda)\right\}$ be an analytioal contraotion-valued
function. We assume that there are analytical contractionvalued functions $\left\{\mathscr{L}, \mathcal{N}_{-}, C(\lambda)\right\}$ and $\left\{\mathcal{N}_{+}, \mathcal{L}_{k}, C_{*}(\lambda)\right\}$ as well as a strongly measurable function $\left\{\mathcal{N}_{-}, \mathcal{N}_{+}, S(t)\right\}$ such that
(2.1) $\quad S^{\prime}(t)=\left[\begin{array}{ll}\theta\left(e^{1 t}\right)^{*} & C\left(e^{1 t}\right)^{*} \\ C_{*}\left(e^{1 t}\right)^{*} & S(t)\end{array}\right]: \begin{aligned} & \mathscr{L}_{*} \\ & \mathcal{N}_{-}\end{aligned} \underset{\mathcal{N}_{+}}{\oplus}$
forms a unitary-valued function for a.e. $t \in[0,2 \pi)$.
Let \hat{U} be the multiplication operator induced by $e^{i t}$ on $K=L^{2}\left(Q_{+}\right), Q_{+}=\mathcal{L} \oplus \mathscr{N}_{+}$, and let S^{\prime} be the multiplication operator acting between $L^{2}\left(Q_{-}\right), Q_{-}=\mathcal{L}_{*} \oplus \mathcal{N}_{-}$, and $L^{2}\left(Q_{+}\right)$and induced by the unitary-valued function $\left\{Q_{-}, Q_{+}, S^{\prime}(t)\right\}$. Obviously, S^{\prime} is an isometry from $L^{2}\left(Q_{-}\right)$onto $L^{2}\left(Q_{+}\right)$.

Introducing the subspaces G_{+},
(2.2) $\quad G_{+}=H^{2}(\mathcal{L})$,
and G_,
(2.3) $\quad G_{-}=S^{\prime}\left(L^{2}\left(\mathcal{Z}_{*}\right) \Theta H^{2}\left(\mathcal{Z}_{*}\right)\right)$,
as well as the subspace $\nVdash L^{2}\left(Q_{+}\right) \Theta\left(G_{+} \oplus G_{-}\right)$it is not hard to see that
(2.4). $\quad \hat{T}=P_{\partial}^{J W} \hat{U} \upharpoonright H$
defines a contraction on \mathcal{H}. Moreover, this contraction admite a disaipative Lax-Phillips scattering theory. To show this we introduce the subspaces $D_{+}=H^{2}\left(\Upsilon_{+}\right)$and $D_{-}=S^{\prime}\left(L^{2}\left(\mathcal{N}_{-}\right) \Theta H^{2}\left(\mathcal{N}_{-}\right)\right)$. Now taking into account the considerations of Theorem 4.1 of [6] it is not hard to see
that the triplet $\left\{\hat{T}, D_{+}, D_{-}\right\}$fulfils the assumptions (h1) (h4).

Further we remark that the operator \hat{U} is a unitary dilation of \hat{T}.

Our next step 1s to oalculate the oharaoteristio function of \hat{T}.
Proposition 2.1. If $\left\{\mathcal{L}, \mathcal{L}_{\mu}, \theta(\lambda)\right\}$ io a puroly analytioal contraotion-valued funotion, thon tho oharaoteriatio function of \hat{T} ooinoidoo with $\left\{\mathcal{L}, \mathcal{L}_{\mu}, \theta(\lambda)\right\}$.
Proof. To provo this propoaition we establish that \hat{U} is a minimal unitary dilation of \hat{M}. Wo consider the subspaces
 to 000 that we have $\mathcal{L} \leqslant H^{2}(\mathcal{L})$ and $\mathcal{L}_{*} \subseteq S^{\prime}\left(L^{2}\left(\mathcal{L}_{k}\right) \Theta\right.$ $\Theta \mathrm{H}^{2}\left(\mathcal{L}_{*}\right)$). Since we obtain
(2.5) $\quad \mathcal{L} \perp \hat{U H^{2}}(\mathcal{L})$
we can identify \mathcal{L} with a subspace $\tilde{\mathcal{L}}$ of \mathcal{L}. Because of
(2.6) $\quad \mathscr{L}_{*} \perp \hat{U}^{*} S^{\prime}\left(L^{2}\left(\mathcal{L}_{*}\right) \Theta H^{2}\left(\mathcal{L}_{*}\right)\right)$
there is a subspace $\tilde{\mathcal{L}}_{\#}$ of \mathcal{L}_{*} such that we have
(2.7) $\quad{\underset{J}{*}}=\hat{U}^{*} S^{\prime} \widetilde{\mathcal{L}}_{*}$.
where we have identified $\tilde{\mathscr{L}}_{*}$ with a subspace of the subspace of constants of $L^{2}\left(\mathcal{L}_{* *}\right)$. We set
(2.8) $\quad \tilde{J}_{K}=\tilde{G}_{+} \oplus \mathcal{H} \oplus \tilde{G}_{-}$
(2.9) $\quad \tilde{G}_{+}=M_{+}(\mathcal{Z})=H^{2}(\tilde{L})$
and
(2.10) $\quad \widetilde{G}_{-}=M\left(\mathcal{J}_{*}\right) \Theta M_{+}\left(\mathscr{L}_{*}\right)=S^{\prime}\left(L^{2}\left(\widetilde{\mathscr{L}}_{\star}\right) \Theta H^{2}\left(\tilde{\mathscr{L}}_{*}\right)\right)$.

On account of (2.8) - (2.10), the fact that \hat{T} fulfils the assumptions (h1) - (h4), Lemna 3 of [2] and the structure theorem 2.1 of [8, chapter II] we obtain
(2.11) $\quad \tilde{X}=L^{2}\left(\widetilde{Q}_{+}\right)=S^{\prime} L^{2}\left(\widetilde{Q}_{-}\right)$,
where we have set $\widetilde{Q}_{+}=\mathcal{K}_{+} \oplus \widetilde{\mathscr{L}}$ and $\widetilde{Q}_{-}=\mathcal{N}_{-} \oplus \widetilde{\mathscr{L}}_{*} \cdot \mathrm{Be}-$ cause of $K=L^{2}\left(Q_{+}\right)=S^{\prime} L^{2}\left(Q_{-}\right)$we find

$$
\begin{equation*}
\mathcal{K} \Theta \tilde{K}=L^{2}(\mathcal{L} \Theta \tilde{\mathcal{L}})=\operatorname{S}^{\prime} \mathrm{I}^{2}\left(\mathcal{L}_{*} \Theta \tilde{\mathcal{L}}_{*}\right) \tag{2.12}
\end{equation*}
$$

But (2.12) implies that $\left\{\mathcal{L} \in \tilde{\mathcal{L}}, \mathcal{L}_{*} \Theta \tilde{\mathcal{L}}_{*}, \mathrm{P}_{\mathcal{L}_{*}} \in \widetilde{\mathcal{L}}_{*} \theta(\lambda) \upharpoonright \mathcal{L} \Theta \tilde{\mathcal{L}}\right\}$
is an inner function of both sides. Further, taking into

- account (2.8) - (2.10) and $\mathrm{I}^{2}\left(Q_{+}\right) \Theta\left(\mathrm{H}^{2}(\mathscr{L}) \oplus\right.$
$\left.\oplus S^{\prime}\left(I^{2}\left(\mathscr{L}_{*}\right) \Theta H^{2}\left(\mathscr{L}_{*}\right)\right)\right)=\mathcal{H} \perp \mathfrak{K} \Theta \widetilde{K}_{w e}$ obtain
(2.13)

$$
\begin{aligned}
\mathrm{L}^{2}(\mathscr{L} \Theta \tilde{\mathcal{L}})= & \mathrm{H}^{2}(\mathscr{L} \dot{\Theta} \tilde{\mathscr{L}}) \oplus \mathrm{S}^{\prime}\left(\mathrm{L}^{2}\left(\mathscr{L}_{*} \Theta \tilde{\mathscr{L}}_{*}\right) \Theta\right. \\
& \left.\Theta \mathrm{H}^{2}\left(\mathscr{L}_{*} \Theta \tilde{\mathcal{L}}_{*}\right)\right),
\end{aligned}
$$

or, equivalently,

$$
\begin{equation*}
\mathrm{L}^{2}(\mathcal{L} \Theta \tilde{\mathcal{L}}) \Theta \mathrm{H}^{2}(\mathscr{L} \Theta \tilde{\mathscr{L}})= \tag{2.14}
\end{equation*}
$$

$=S^{\prime}\left(\mathrm{L}^{2}\left(\mathcal{L}_{*} \Theta \tilde{\mathcal{L}}_{k}\right) \Theta H^{2}\left(\mathcal{L}_{*} \ominus \tilde{\mathcal{L}}_{*}\right)\right)$,
which implies that $\left\{\mathscr{L} \Theta \widetilde{L}_{,} \mathscr{L}_{*} \Theta \widetilde{\mathscr{L}}_{*}, \mathrm{P}_{\mathscr{L}_{*}} \Theta \tilde{\mathscr{L}}_{*} \theta(\lambda) \Gamma \mathscr{L} \Theta \tilde{\mathscr{L}}\right\}$ 1s an outer function. Consequently,
$\left\{\mathcal{L} \in \tilde{\mathscr{L}}, \mathcal{L}_{*} \Theta \tilde{\mathcal{L}}_{*}, \mathrm{P}_{\mathcal{L}_{*}} \in \tilde{\mathcal{L}}_{4} \theta(\lambda) \mid \mathcal{L} \Theta \tilde{\mathcal{L}}\right\}$ 1ө a unitary constant. But $\left\{\mathcal{L}, \mathcal{L}_{*}, \theta(\lambda)\right\}$ is a purely analytical function. Consequently, we find $\mathcal{L}=\tilde{\mathcal{L}}$ and $\mathscr{L}_{*}=\tilde{\mathcal{X}}_{k}$, which shows that \hat{U} is a minimal unitary dilation of \hat{i}.

Now taking into acoount Proposition 3.1 of [6] we conclude that $\left\{\mathcal{L}_{,} \mathscr{L}_{*}, \theta(\lambda)\right\}$ is tho oharaoteriatio. function of $\hat{\mathrm{T}}$.

Our noxt aim is to caloulato the unitary part $\hat{\mathrm{T}}_{\mathrm{o}}$ of the contraction \hat{T}. In order to calculate this part we remarl that the intersection of the residual and the $*-x e-$ aidual subspace of the minimal unitary dilation of a contraotion coincides with the unitary subspace of this contraotion.

In the following we denote the multiplication operator induced by $\left\{\mathcal{L}, \mathcal{N}_{-}, \mathrm{c}\left(\mathrm{e}^{\mathrm{it}}\right)\right\}$ and acting between $\mathrm{L}^{2}(\mathcal{L})$ and $I^{2}\left(\mathcal{N}_{-}\right)$by C. Similarly, we denote the multiplication operator induced by $\left\{\mathcal{N}_{+}, \mathcal{L}_{*}, c_{*}\left(e^{i t}\right)\right\}$ by C_{*}.
Proposition 2.2. If $\left\{\mathcal{L}, \mathcal{L}_{*}, \theta(\lambda)\right\}$ is a purely analytical contraction-valued function, then the unitary subspace \mathscr{F}_{\circ} of \hat{T} is given by
(2.15) $\quad \operatorname{lo}_{0}=\operatorname{ker}\left(C_{*}\right)=S^{\prime} \operatorname{ker}\left(C^{*}\right)$.

Proof. Using the previous remark and Lemma 3 of [2] we find
(2.16) $\quad \forall l_{0}=L^{2}\left(\mathscr{r}_{+}\right) \cap S^{\prime} L^{2}\left(\mathscr{N}_{-}\right)$.

Consequently, $f \in L^{2}\left(\mathcal{X}_{+}\right)$belongs to \mathcal{F}_{\circ} if and only if there is an element $g \in L^{2}\left(r_{-}\right)$such that we have
(2.17) $\left[\begin{array}{c}0 \\ f(t)\end{array}\right]=\left[\begin{array}{ll}\theta\left(e^{i t}\right)^{*} & C\left(e^{i t}\right)^{*} \\ C_{k}\left(e^{1 t}\right)^{*} & S(t)\end{array}\right]\left[\begin{array}{c}0 \\ g(t)\end{array}\right]$
for a.e. $t \in[0,2 \pi)$. Hence we obtain
(2.18) $\quad H_{0}=S^{\prime} k \operatorname{ser}\left(C^{*}\right)$.

Taking into account (5.3) and (5.6) of [6] we obtain
(2.19) $\quad S^{\prime}(t) \operatorname{ker}\left(C\left(e^{1 t}\right)^{*}\right)=\operatorname{ker}\left(C_{*}\left(e^{i t}\right)\right)$.
for a.e. $t \in[0,2 \pi)$, which implies $S ' k e r\left(C^{*}\right)=\operatorname{ker}\left(C_{*}^{*}\right)$.
From Proposition 2.2 we easily obtain that the operator
if completely nonunitary if and only if we have
(2.20) $\quad \operatorname{ker}\left(C_{*}\left(e^{i t}\right)\right)=\{0\}$
or, equivalently,
(2.21)

$$
\operatorname{ker}\left(c\left(e^{1 t}\right)^{*}\right)=\{0\}
$$

for a.e. $t \in[0,2 \pi)$ provided $\left\{\mathcal{L}, \mathcal{L}_{\sharp}, \theta(\lambda)\right\}$ is purely analytical.

3. Dissipative Lax-Phillips scattering theory and charac-

teristic function

Let T be a contraction on a separable Hilbert space \mathcal{H}. Lemma 3.1. If T admits a dissipative Lax-Phillips scattering theory, then the completely nonunitary part T_{1} of T admits a diselpative Lax-Phillips scattering theory, too. Proof. By ' \mathcal{l}_{1} we denote the completely nonunitary subspace
of T. We introduce the subspaces $\sigma_{ \pm}$of $7 R_{1}$ defined by
(3.1) $\quad a_{ \pm}=\left(P_{\mathcal{H}_{1}}^{\mathcal{D}_{ \pm}}\right)^{-}$.

Next we show that $\left\{T_{1}, a_{+}, a_{-}\right\}$forms a dissipative LaxPhillips scattering theory. Obviously, the condition (h1) is fulfilled. Because of
(3.2) $\quad\|f\|^{2}=\|T f\|^{2}=\left\|P{ }_{\mathcal{H}_{0}}^{\mathcal{P}_{0}} T f\right\|^{2}+\left\|P_{\mathcal{H}_{1}}^{\mathcal{F}_{1}} T f\right\|^{2}$,
$X_{0}=J \Leftrightarrow l_{1}$, we obtain
(3.3)

$$
\|f\|^{2}=\left\|P_{\mathcal{J}}^{\mathfrak{J}} \mathrm{f}\right\|^{2}+\left\|\mathrm{T}_{1} \mathrm{P}_{\mathfrak{J}}^{\mathfrak{J}} \mathrm{f}_{1}\right\|^{2}
$$

or, equivalently,

for every $f \in D_{+}$. Consequently, $T_{1} \Gamma \sigma_{+}$is an isometry. Similarly, we establish the second part of (h2). The condition (h3) follows from the fact that $T_{\mathcal{1}}$ ia completely nonunitary. To prove (h4) we note that $f \in \mathscr{H}_{1} \ominus a_{+}$implies $f \in \mathscr{H} \Theta D_{+}$. This yields' $\mathscr{H}_{1} \Theta \sigma_{+} \subseteq \mathscr{H} \Theta D_{+}$or, equivalently, $P_{\not \mathscr{P}_{1}}^{\nVdash} \Theta \sigma_{+} \leqslant P_{\nVdash \Theta}^{\nVdash D_{+}}$. Hence we get

$=0$
for every $f \in \mathscr{H}_{1}$. Similarly, we prove $P_{H_{1}}^{H_{1}} \Theta \sigma_{-} \mathbb{T}^{* n} \rightarrow 0$ strongly for $n \rightarrow+\infty$.

We note that it is quite possible that one of the subepaces a_{+}and $q_{\text {_ }}$ or both are zero.

Lemma 3.1 allows us to reduce the investigations to those completely nonunitary contractions admitting a dissipative Lax-Phillips scattering theory.
Theorem 3.2. The completely nonunitary contraction T admits a dissipative Lax-Phililips scattering theory if and only if there exist two analytical contraction-valued functions $\left\{\mathcal{L}, \mathcal{K}_{-}, C(\lambda)\right\}$ and $\left\{\mathcal{N}_{+}, \mathcal{L}_{*}, C_{*}(\lambda)\right\}$ such that the characteristic function of $T\left\{\mathscr{L}, \mathscr{L}_{*}, \theta(\lambda)\right\}$ obeys the conditions
(3.6) $I=\theta\left(e^{i t}\right) \theta\left(e^{i t}\right)^{*}+C_{*}\left(e^{i t}\right) C_{*}\left(e^{i t}\right)^{*}$
and
(3.7) $I=\theta\left(e^{i t}\right)^{*} \theta\left(e^{i t}\right)+C\left(e^{i t}\right)^{*} C\left(e^{i t}\right)$
for a.e. $t \in[0,2 \pi)$.
Proof. Let us suppose that T admits a dissipative LaxPinillips scattering theory. Applying Proposition 3.1, Theorem 3.3 and Proposition 5.1 of [6] we obtain the existence of analytical contraction-valued functions $\left\{\mathcal{L}, \mathcal{r}_{-}, C(\lambda)\right\}$ and $\left\{\mathscr{r}_{+}, \mathscr{L}_{*}, C_{*}(\lambda)\right\}$ such that (3.6) and (3.7) are valid.

Let $\left\{\mathscr{L}, \mathscr{L}_{*}, \theta(\lambda)\right\}$ be the characteristic function of a completely nonunitary contraction T which fulfils (3.6) and (3.7). We show that there is a strongly measurable contraction-valued function $\left\{\mathcal{N}_{-}, \mathcal{N}_{+}, S(t)\right\}$ such that (2.1) forms a strongly measurable unitary-valued function for a.e. $t \in[0,2 \pi)$.

For this purpose we suppose without lose of generality that $\left\{\mathscr{L}, \mathcal{N}_{\ldots}, C(\lambda)\right\}$ is an outer function and
$\left\{r_{+}, \mathscr{L}_{*}, C_{*}(\lambda)\right\}$ is an*-outer function. Both funotions are uniquely determined by (3.6) and (3.7) in this case.

Next we establish that the relation
(3.8) $\quad S(t) C\left(e^{1 t}\right)=-C_{*}\left(e^{i t}\right)^{*} \theta\left(e^{i t}\right)$
uniquely defines (modl.1) a strongly measurable contractionvalued function $\left\{r_{-}, \mathcal{N}_{+}, S(t)\right\}$. To prove this it is sufficient to show that the inequality
(3.9) $\quad \theta\left(e^{i t}\right)^{*} C_{*}\left(e^{1 t}\right) C_{*}\left(e^{i t}\right)^{*} \theta\left(e^{i t}\right) \leqslant C\left(e^{i t}\right)^{*} C\left(e^{i t}\right)$
is valid for a.e. $t \in[0,2 \pi)$. From $0 \leqslant\left(I-\theta\left(e^{i t}\right)^{*} \theta\left(e^{i t}\right)\right)^{2}$ for a.e. $t \in[0,2 \pi)$ we obtain

$$
\begin{equation*}
\theta\left(e^{i t}\right)^{*}\left(I-\theta\left(e^{i t}\right) \theta\left(e^{i t}\right)^{*}\right) \theta\left(e^{i t}\right) \leqslant \tag{3.10}
\end{equation*}
$$

$$
\leqslant I-\theta\left(e^{1 t}\right)^{*} \theta\left(e^{i t}\right)
$$

for a.e. $t \in[0,2 \pi)$. Taking into account (3.6) and (3.7) we obtain (3.9) for a.e. $t \in[0,2 \pi)$. To verify that (2.1) is a unitary-valued function for a.e. $t \in[0,2 \pi)$ it is necessary to prove that the relations (5.1) - (5.6) of [6] are valid. The relations (5.1), (5.4) and (5.5) of [6] coincide with (3.6), (3.7) and (3.8). To establish (5.2) of [6] we multiply (3.8) on the left by $C_{*}\left(e^{1 t}\right)$. We find

$$
\begin{equation*}
C_{*}\left(e^{i t}\right) S(t) C\left(e^{1 t}\right)=-C_{*}\left(e^{i t}\right) C_{*}\left(e^{i t}\right)^{*} \theta\left(e^{1 t}\right) \tag{3.11}
\end{equation*}
$$

for a.e. $t \in[0,2 \pi)$. Using (3.6) and (3.7) we get

$$
c_{*}\left(e^{1 t}\right) s(t) C\left(e^{1 t}\right)=-\theta\left(e^{1 t}\right) C\left(e^{1 t}\right)^{*} c\left(e^{1 t}\right)
$$

for a.e. $t \in[0,2 \pi)$. But $\left\{\mathcal{L}, \mathcal{H}_{-}, c(\lambda)\right\}$ is an outer function, which proves (5.2) of [6]. Further, we find from (3.8)

$$
\begin{align*}
& C\left(e^{1 t}\right)^{*} S(t)^{*} S(t) C\left(e^{1 t}\right)=\theta\left(e^{1 t}\right)^{*} C_{*}\left(e^{1 t}\right) \tag{3.13}\\
& \cdot C_{*}\left(e^{1 t}\right)^{* *} \theta\left(e^{1 t}\right)
\end{align*}
$$

for a.e. $t \in[0,2 \pi)$. Taking into account (3.6) we obtain
(3.14) $C\left(e^{1 t}\right)^{*} S(t)^{*} S(t) C\left(e^{1 t}\right)=$
$=\theta\left(e^{i t}\right)^{*}\left(I-\theta\left(e^{i t}\right) \theta\left(e^{i t}\right)^{*}\right) \theta\left(e^{i t}\right)$
for a.e. $t \in[0,2 \pi)$. Because of (3.7) we conclude
(3.15) $C\left(e^{1 t}\right)^{*} S(t)^{*} S(t) C\left(e^{1 t}\right)=$

$$
=C\left(e^{i t}\right)^{*}\left(I-C\left(e^{i t}\right) C\left(e^{1 t}\right)^{*}\right) C\left(e^{i t}\right)
$$

for a.e. $t \in[0,2 \pi)$. The function $\left\{\mathscr{L}, \mathcal{N}_{-}, c(\lambda)\right\}$ is an outer one. Consequently, (3.15) implies (5.3) of [6]. Similarly we prove (5.6) of [6]. Hence $\left\{\mathcal{L}_{\star} \oplus \mathcal{K}_{-}, \mathcal{L} \oplus \mathcal{K}_{+}, S^{\prime}(t)\right\}$ is unitary-valued.

Now we consider the funotional model of section 2. In accordance with Proposition 2.1 we obtain a contraction \widehat{T} characteriatio function of which coincides with $\left\{\mathcal{L}, \mathcal{L}_{\neq}, \theta(\lambda)\right\}$. Further taking into account that $\left\{\mathcal{L}, r_{-}, \sigma(\lambda)\right\}$ is an outer function and $\left\{\gamma_{+}, \mathcal{L}_{k}, c_{k}(\lambda)\right\}$ is an *-outer function we get that the relations (2.20)
and (2.21) are fulfilled. Hence Proposition 2.2 implies that \hat{T} is a completely nonunitary contraction. Consequently, the contractions T and $\hat{\mathrm{T}}$ are unitarily equivalent. But Th admits a disalpative Lax-Phillips scattering theory. Hence T admits such a scattering theory, too.

Next we turn our attention to the unitary part. On account of Lemma 3.1 we assume that there is a completely nonunitary contraction T_{1} admitting a dissipative LaxPhillips scattering theory. Which unitary operators T_{0} can be added such that $T_{0} \oplus T_{1}$ admits a dissipative Lax-Phillips scattering theory, too? To answer to this question we need two lemmas.
Lerma 3.3. Let $\{P(t)\}_{t \in[0,2 \pi)}$ be a strongly measurable family of projections acting on the separable Hilbert space \mathcal{V}_{+}such that we have

(3.16) $\quad \operatorname{dim}(P(t))=n \leqslant+\infty$

for a.e. $t \in[0,2 \tilde{\pi})$. Then there is a separable Hilbert space Q of dimension n and a strongly measurable family of isometries $\left\{Q, \mathcal{S}_{+}, V(t)\right\}$ such that we have

$$
\text { (3.17) } \quad P(t)=V(t) V(t)^{*}
$$

for a.e. $t \in[0,2 \pi)$.
We left the proof of Lemma 3.1 to the reader.
In the following we introduce two enalytical contrac-tion-valued functions $\left\{G, r_{-}, G(\lambda)\right\}$ and $\left\{r_{+}, G_{*}, G_{*}(\lambda)\right\}$. In a natural way we associate with these functions two multiplication operators acting from $L^{2}(g)$ into $L^{2}\left(r_{\sim}\right)$ and $L^{2}\left(r_{+}\right)$into $L^{2}\left(g_{*}\right)$, which we denote by G and G_{*},
reapectively. By R and $\mathrm{R}_{\text {* }}$ we denote multiplication operators induced by $e^{1 t}$ on $L^{2}\left(\mathcal{N}_{-}\right)$and $L^{2}\left(\mathcal{N}_{+}\right)$, respectively. Lemma 3.4. Let T_{0} be an absolutely continuous unitary operator. Then there is an inner function $\left\{G, \mathcal{N}_{-}, G(\lambda)\right\}$ and there is an *-inner function $\left\{\mathcal{F}_{+}, \mathcal{G}_{*}, G_{*}(\lambda)\right\}$ such that

$$
\text { (3.18) } \quad \operatorname{dim}\left(\operatorname{ker}\left(G_{*}\left(e^{i t}\right)\right)\right)=\operatorname{dim}\left(\operatorname{ker}\left(G\left(e^{i t}\right)^{*}\right)\right)
$$

for a.e. $t \in[0,2 \pi)$ and, moreover, the unitary operators $R \upharpoonright k e r\left(G^{*}\right)$ and $R_{\star} P k e r\left(G_{\#}\right)$ are unitarily equivalent to T_{0}. Proof. The proof is based on Satz 4.4.4 and Korollar 4.4.5 of [7]. Transforming the maximal dissipative operator H of these theorems to a contraction via the Cayley transform $H \rightarrow \frac{H+1}{H}-1$ we find from Satz 4.4 .4 and Korollar 4.4.5 that for every absolutely continuous operator T_{0} there is a contraction D of class C_{10} and there is a contraction D_{*} of class C_{01} such that $*$-residual part of the minimal unitary dilation of D and the residual part of the minimal unitary dilation of D_{*} are unitarily equivalent to T_{0}. Let $\left\{G_{0}, \mathcal{r}_{\ldots}, G(\lambda)\right\}$ and $\left\{r_{+}, G_{*}, G_{*}(\lambda)\right\}$ be the characteristic functions of D and D_{*}, respectively. In virtue of Proposition 3.5 of $[B$, chapter VI $]\left\{G, \mathcal{r}_{-\rho} G(\lambda)\right\}$ is an inner function and $\left\{\mathcal{r}_{+}, y_{*}, \mathrm{G}_{*}(\lambda)\right\}$ is an*-inner function. Taking into account the functional model of a contraction introduced by B.Sz.Nagy and C. Foias [8, chapter VI, Theorem 2.3 and Theorem 2.3 ${ }^{\text {¹ }}$] we find that*-residual part of the minimal unitary dilation of D is unitarily equivalent to Rrker (G^{*}). Similarly, we get that the residual part of D_{*} is unitarily equivalent to $R_{*} r \operatorname{ker}\left(G_{*}\right)$. Consequently, both operators Riker $\left(G^{*}\right)$ and $R_{*} \upharpoonright i \operatorname{ser}\left(G_{*}\right)$ are unitarily equivalent to T_{0}. But this implies that the operators $\operatorname{Rrker}\left(G^{*}\right)$ and $R_{*} \upharpoonright \operatorname{ker}\left(G_{*}\right)$ are unitarily
equivalent. Hence there is a partial isometry $V: L^{2}\left(\mathcal{N}_{-}\right) \rightarrow$ $\rightarrow L^{2}\left(\mathcal{N}_{+}\right)$such that $\left.V^{*} V=P_{\operatorname{ker}}^{L^{2}\left(\mathcal{N}_{-}\right)} G^{*}\right), V V^{*}=P_{\operatorname{ker}}^{L^{2}\left(\mathcal{N}_{+}\right)}$) and

$$
\begin{equation*}
R_{*} V=V R . \tag{3.19}
\end{equation*}
$$

But R and R_{*} are multiplication operators induced by $e^{i t}$. Consequently, V can be represented by a multiplication opera-
tor induced by a strongly measurable family $\left\{\mathcal{N}_{-}, N_{+}, V(t)\right\}$ of partial isometries which fulfil $V(t)^{*} V(t)=I_{r_{-}}-G\left(e^{i t}\right) G\left(e^{i t}\right)^{*}$ and $V(t) V(t)^{*}=$ - $I_{\mathcal{N}_{+}}-G_{*}\left(e^{1 t}\right)^{*} G_{*}\left(e^{i t}\right)$ for a.e. $t \in[0,2 \pi)$. Both relations imply (3.18).

Corollary 3.5. Let T_{0} be an absolutely continuous unitary operator. Then there is an inner function $\left\{g, \mathcal{N}_{-}, G(\lambda)\right\}$ and there 1s an *-inner function $\left\{r_{+}, g_{*}, G_{*}(\lambda)\right\}$ such that (3.18) and

$$
(3.20) \quad \operatorname{dim}\left(y_{y}\right)=\operatorname{dim}\left(y_{*}\right)=+\infty
$$

hold and, moreover, the unitary operators Rrker(G*) and $\mathrm{R}_{4} \mathrm{rker}\left(G_{*}\right)$ are unitarily equivalent to T_{0}.

We left the proof to the reader. Now we come to the solution of the proposed problem.
Theorem 3,6. Let T_{1} be a completely nonunitary contraction on \mathscr{H}_{1} admitting a diseipative Lax-Phillips scattering theory $\left\{T_{1}, a_{+}, a_{-}\right\}$. Let T_{0} be a unitary operator on \mathcal{H}_{0}. (1) If one of the unilateral shifte $T_{1} \upharpoonright a_{+}$or $T_{1}{ }^{*} P a_{\infty}$ hes a finite multiplicity, then $T_{0} \oplus T_{1}$ admits a dissipa-
tive Lax-Philifps scattering theory if and only if T_{0} is
a bilateral shift.
(11) If both unilateral shifts $T_{1} \Gamma a_{+}$and $T_{1}{ }^{*} \Gamma a_{-}$have
an infinite multiplicity, then $T_{0} \oplus T_{1}$ admits a dissipative Lax-Phillips scattering theory if and only if T_{o} is absolutely continuous.
Froof. (i) Let $T_{1} \Gamma a_{+}$be a unilateral shift of finite multiplicity. By $R_{1 *}$ we denote the *-residual subspace of the minimal unitary dilation U_{1} of T_{1}. Let $R_{1 *}$ be the *-residual part of $U_{1}, \quad R_{1 *}=U_{1} \upharpoonright \mathscr{R}_{1 *}$. Taking into account Lemma 3 of [2] we find that $R_{1 *}$ is a bilateral ghift of finite multiplicity.

Let $T=T_{0} \oplus T_{1}$: We denote the *-residual subspace and*-residual part of the minimal unitary dilation U of T by R_{*} and R_{n}, respectively. Because of Lemma 3 of [2] R_{*} is a bilateral shift.

Regarding U_{1} as a part of U we obtain $X_{1 *} \subseteq D_{*}$. Moreover, the subspace $\chi_{1 *}$ reduces R_{*} and we have $R_{1 *}=$ $=R_{*} \upharpoonright \bigotimes_{1 *}$. Representing the bilateral shift R_{*} as the multiplication operator induced by $e^{i t}$ on $L^{2}\left(r_{+}\right)$it is not hard to see that in this representation the projection $P_{R_{1 *}}^{R_{*}}$ is represented as the multiplication operator induced by a strongly measurable family of projections $\{P(t)\}_{t \in[0,2 \pi}$. Obviously, we have $\operatorname{dim}\left(P(t) \mathcal{N}_{+}\right)=n<+\infty$ for a. $\theta . t \in[0,2 \pi)$. Consequently, we find $\left.\operatorname{dim}\left(I_{\mathcal{N}_{+}}-P(t)\right) \mathcal{N}_{+}\right)=m \leqslant+\infty$ for a.e. $t \in[0,2 \pi)$. Using now Lemma 3.3 we find that $R_{*} \Gamma N_{*} \Theta \alpha_{1 *}$ is a bilateral shift, too. But $\mathscr{X}_{\star} \odot \mathscr{R}_{1 *}$ coincides with \mathcal{X}_{0} and $R_{*} \Gamma R_{*} \Theta R_{1 *}$ equals T_{0}. Hence T_{0} is a bilateral shift. Similarly, we prove this assertion assuming $T_{1}^{*} r \sigma_{\text {_ }}$ has a finite multiplicity.

To show that $T=T_{0} \oplus T_{1}$ admits a dissipative Lax-Phillips scattering theory is obvious provided T_{o} is a bilateral shift.
(11) It is easy to see that T_{0} is absolutely continuous if $T_{0} \oplus T_{1}$ admits a dissipative Lax-Phillips scattering theory. To prove the converse we use the functional model developed in section 2. Let $\left\{\mathcal{L}_{,} \mathcal{L}_{*}, \theta(\lambda)\right\}$ be the characteristic function of T_{1}. On account of Theorem 3.2 there is an outer function $\{\mathcal{L}, \mathcal{Y}, B(\lambda)\}$ and there is an *-outer function $\left\{y_{*}, \mathcal{L}_{*}, B_{*}(\lambda)\right\}$ such that we have

$$
\begin{equation*}
I=\theta\left(e^{i t}\right) \theta\left(e^{1 t}\right)^{*}+B_{*}\left(e^{1 t}\right) B_{*}\left(e^{1 t}\right)^{*} \tag{3.21}
\end{equation*}
$$

and
(3.22) $\quad I=\theta\left(e^{1 t}\right)^{*} \theta\left(e^{1 t}\right)+B\left(e^{1 t}\right)^{*} B\left(e^{i t}\right)$
for a.e. $t \in[0,2 \pi)$. In accordance with (3.8) the relation
(3.23) $\quad S_{0}(t) B\left(e^{i t}\right)=-B_{*}\left(e^{i t}\right)^{*} \theta\left(e^{i t}\right)$
defines a strongly measurable contraction-valued function $\left\{G_{,}, G_{*}, S_{0}(t)\right\}$. Using the considerations of Theorem 3.2 and the contraction-valued functions $\left\{\mathscr{L}, \mathcal{L}_{*}, \theta\left(e^{i t}\right)\right\}$, $\left\{\mathcal{L}, \mathcal{G}, B\left(e^{i t}\right)\right\},\left\{\mathcal{Y}_{*}, \mathcal{L}_{*}, B_{*}\left(e^{i t}\right)\right\}$ and $\left\{G_{i}, \mathcal{G}_{*}, S_{0}(t)\right]$ w perform a functional model of a completely nonunitary contraction $\hat{T}_{c . n}$. which is unitarily equivalent to T_{1}.

The infinite multiplicity of the unilateral shifts $T_{1} r \sigma_{+}$and $T_{1}^{*} r \sigma_{-}$yields that the Hilbert spaces G and y_{*} are infinite dimensional, i.e. $\operatorname{dim}\left(G_{)}\right)=\operatorname{dim}\left(y_{*}\right)=+\infty$. In the following we modify the conaiderations of Theorem 3.2 to obtain not only a oompletely nonunitary contraction, but also a contraction with a prescribed unitary part which admits a diasipative Lax-Phillips scattering theory.

On account of Corollary 3.5 there is an inner function $\left\{y, \mathscr{r}_{-}, G(\lambda)\right\}$ and there is an $*$-inner function $\left\{\mathcal{N}_{+}, G_{*}, G_{*}(\lambda)\right\}$ such that (3.18) and $R r \operatorname{ker}\left(G^{*}\right)$ and $R_{*} \upharpoonright \operatorname{ker}\left(G_{*}\right)$ are unitarily equivalent to T_{0}.

We introduce the analytical contraction-valued functions $\left\{\mathcal{L}, r_{-}, c(\lambda)\right\}, '$
(3.24) $C(\lambda)=G(\lambda) B(\lambda)$,
and $\left\{\mathcal{N}_{+}, \mathcal{L}_{*}, c_{*}(\lambda)\right\}$,

$$
\begin{equation*}
C_{*}(\lambda)=B_{*}(\lambda) G_{*}(\lambda), \tag{3.25}
\end{equation*}
$$

$\lambda \in\{z \in \mathbb{C}:|z|<1\}$.
Because of (3.18) and Lemma 3.3 there is a strongly measurable family of partial isometries $\left\{\mathcal{r}_{-}, r_{+}, V(t)\right\}$ obeying $V(t)^{*} V(t)=I_{r_{-}}-G\left(e^{i t}\right) G\left(e^{i t}\right)^{*}$ and $V(t) V(t)^{*}=$
$=I_{\mathcal{K}_{+}}-G_{*}\left(e^{i t}\right)^{*} G_{*}\left(e^{i t}\right)$ for a.e. $t \in[0,2 \pi)$. Introducing
the strongly measurable contraction-valued function $\left\{r_{-}, r_{+}, s(t)\right\}$,

$$
\begin{align*}
& S(t)=\left(\begin{array}{cc}
V(t) & 0 \\
0 & G_{* *}\left(e^{1 t}\right)^{*} S_{0}(t) G\left(e^{1 t}\right)^{*}
\end{array}\right): \tag{3.26}\\
& : \quad \begin{array}{l}
\operatorname{ker}\left(G\left(e^{1 t}\right)^{*}\right) \\
\left.\operatorname{ima}(G)\left(e^{1 t}\right)\right)
\end{array} \longrightarrow \begin{array}{c}
\operatorname{ker}\left(G_{* *}^{(\oplus)}\left(e^{1 . t}\right)\right) \\
\operatorname{ima}\left(G_{*}\left(e^{1 t}\right)^{*}\right)
\end{array}
\end{align*}
$$

It is not hard to see that the strongly measurable opera-tor-valued function $\left\{\mathcal{L} \oplus \widetilde{K}_{\ldots}, \mathcal{L}_{*} \oplus \mathcal{N}_{+}, S^{\prime}(t)\right\}$ performed by (2.1), (3.23),(3.24),(3.25) and (3.26) is unitary-va-
lued. In such a way in accordance with Proposition 2.1 we obtain a contraction \hat{T} characteristic function of which coincides with $\left\{\mathcal{L}, \mathcal{L}_{*}, \theta(\lambda)\right\}$. Hence the completely nonunitary part \hat{T}_{1} of \hat{T} is unitarily equivalent to T_{1}. It remains to calculate the unitary part $\dot{\mathrm{T}}_{\mathrm{o}}$ of $\hat{\mathrm{T}}$.

On account of Lemma 3 of [2] the k-residual subspace of the minimal unitary dilation \hat{U} of \hat{T} coincides with $L^{2}\left(r_{+}\right)$. Hence the *-residual part of \hat{U} can be identified with R_{*}. On account. of Proposition 2.2 we find $\hat{\mathrm{T}}_{0}=$ $=\hat{U} \upharpoonright \operatorname{ker}\left(C_{*}\right)$. But a simple calculation shows $\operatorname{ker}\left(C_{*}\right)=$ $=\operatorname{ker}\left(G_{*}\right)$. Using $\hat{U} r L^{2}\left(X_{+}\right)=R_{*}$ we find $\hat{T}_{o}=\hat{U} r k e r\left(C_{*}\right)=$ $R_{*} r \operatorname{ker}\left(C_{*}\right)=R_{*} \upharpoonright \operatorname{ker}\left(G_{*}\right)$. Consequently, the unitary part \hat{T}_{0} of \hat{T} is unitarily equivalent to T_{0}.

Summing up we find that the completely nonunitary part \hat{T}_{1} of \hat{T} and the unitary part $\hat{\mathrm{T}}_{0}$ of \hat{T} are unitarily equivalent to T_{1} and T_{o} of T, repsectively. But \hat{T} admits a disalpative Lax-Phillips scattering theory. Henoe $T_{o} \oplus T_{1}$ admits a dissipative Lax-Phillips scattering theory, too.

In connection with Theorem 3.6 we remark that if the characteristic function $\left\{\mathcal{L}_{,}, \mathcal{L}_{*} ; \theta(\lambda)\right\}$ of a contraction T fulfils the conditions (3.6) and (3.7) only for analytical contraction-valued functions $\left\{\mathcal{L}, \mathscr{r}_{-}, C(\lambda)\right\}$ and $\left\{\mathscr{r}_{+}, \mathcal{U}_{*}, c_{*}(\lambda)\right\}$ aoting between infinite dimensional Hilbert spaces, then the unitary part of T hes no influence on the existence of a dissipative Lax-Phillips scattering theory with respect to T.
Corollary 3.7. Let T_{1} be a completely nonunitary contraction on H_{1} admitting a diseipative Lax-Phillips scattering theory. There exists a unitary operator T_{0} on He_{0} such that $T_{o} \oplus T_{1}$ admits en orthogonal dissipative Lax-Phillips scattering theory if and only if the characteristic func-
$\operatorname{tion}\left\{\mathcal{L}, \mathcal{L}_{*}, \theta(\lambda)\right\}$ of T_{1} possesses a Derlington synthesis in the sense of [1].
proof. If $T=T_{0} \oplus T_{1}$ possesses an orthogonal dissipative LaxPhillips scattering theory, then the desired conclusion can be obtained from Proposition 3.1 and Corollary 3.4 of [6].

Conversely, if $\left\{\mathscr{L}, \mathcal{L}_{*}, \theta(\lambda)\right\}$ admits a Darlington synthesis, then there are analytical contraction-valued functions $\left\{\mathscr{L}, r_{-}, c(\lambda)\right\}_{1},\left\{r_{+}, \mathscr{L}_{*}, c_{*}(\lambda)\right\}$ and $\left\{r_{+}, r_{-}, \pi\left(e^{i t}\right)\right\}$ such that

$$
S^{\prime}(t)=\left[\begin{array}{ll}
\theta\left(e^{i t}\right)^{*} & C\left(e^{i t}\right)^{*} \tag{3.27}\\
C_{*}\left(e^{i t}\right)^{* *} & \tilde{\pi}\left(e^{i t}\right)^{*}
\end{array}\right]: \begin{array}{ll}
\mathscr{L}_{*} & \mathscr{L} \\
\mathcal{N}_{-} & \mathscr{N}_{+}
\end{array}
$$

forms a unitary-valued function for a.e. $t \in[0,2 \pi)$. Teking into account Corollary 4.2 of [6] we can regard $\left\{\mathcal{N}_{-}, \mathcal{N}_{+}, S(t)\right\}, S(t)=\tilde{J}\left(e^{i t}\right)^{*}, t \in[0,2 \pi)$, as the scattering matrix of an orthogonal dissipative Lax-Phillips scattering theory $\left\{\hat{T}, \mathcal{D}_{+}, \mathcal{D}_{-}\right\}, 1 . e, \mathcal{D}_{+} \perp \mathcal{D}_{-}$. Because of Proposition 2.1 the characteristic function of \hat{T} coincides with $\left\{\mathcal{L}_{,} \mathcal{L}_{\star}, \theta(\lambda)\right\}$. Hence the completely nonunitary part \hat{T}_{1} of \hat{T} is unitarily equivalent to T_{1}. But this yields the existence of a unitary operator T_{0} such that $T_{0} \oplus T_{1}$ admits an orthogonal dissipative Lax-Phillips scattering theory.

Corollary 3.7 implies the following

Corollary 3.8. A completely nonunitary contraction T_{1} can be orthogonally enlarged by a unitary operator such that the sum admits an orthogonal disaipative Lax-Phillips scattering theory if and only if the adjoint characteristic function of T_{1} can be regarded as the acattering matrix of an orthogonal dissipative Lax-Phillips scattering theory.

We left the proof to the reader.

References

[1] R.G.Douglas, J.W.Helton, Inner dilations of analytic matrix functions and Darlington synthesis. Acta Sci. Math. 34(1973), 61-66.
[2] C.Folas; On the Lax-Phillips nonconservative scattering theory. J. Funct. Analysis 19(1975), 273-301.
[3] П.Д. Лакс, Р.С.филлипс, "Теория рассеяния", Издательство "Мир", Москва, 1971.
[4] P.D.Lax, R.S.Phillips, Scattering theory for the acoustic equation in an even number of space dimensions. Indian Univ. Math. J. 22(1972), 101-134.
[5] P.D.Lax, R.S.Phillips, Scattering theory for dissipative hyperbolic systems. J. Funct. Analysis 14(1973), 172-235.
[6] H.Neidhardt, On the dissipative Lax-Phillips scattering theory. to appear.
[7] H. Neidhardt, Eine mathematische Streutheorie fur maximal diselpative Operatoren. Report R-Math-03/86, Adw der DDR, Berlin 1986.
[8] Е.Сек ефальви-Надь, Ч.Фояш, Гпрмонич ескии анализ операторов в гильбертовом пространстве, Издательство "Мир", Москва, I970.

Received by Publishing Department
on June 9, 1987.

Нойдхардт X. E5-87-400
Диссипативная теореия рассеяния ЛаксаФнллипса и характеристическая функция сжимающего оператора

Рассматривается вопрос о характеристике всех тех сжимающих операторов, которые допускают диссипативную теорию рассеяния Лакса-Филлипса. Характеристика дана в терминах характеристичесіой функции сжимающего оператора и его унитарной части. Более того, проблема поставлена и решена в описании всех тех вполне неунитарных сжимающих операторов, которые можно ортогональным образом расширить унитарным оператором так, что сумма допускает ортогональную диссипативную теорию рассеняия Лакса-Филлипса.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.
Препринт Объединенного института ядерных исследований. Дубна 1987
Neidhardt H.
Dissipative Lax-Phillips Scattering
Theory and the Characteristic Function
of a Contraction
The paper deals with the problem to characterize all
those contractions admitting a dissipative Lax-Phillips
scattering theory. The characterization is given in terms
of the characteristic function of a contraction and its
unitary part. Moreover, the problem is considered and sol-
ved to describe all those completely nonunitary contrac-
tions which can be orthogonally enlarged by a unitary ope-
rator such that the sum admits an orthogonal dissipative
Lax-Phillips scattering theory.
The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
Preprintofthe Joint Institutefor Nuclear Research. Dubnal987

