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1. Introduction .

In [5] P.D.Lax and R.S.Phillips generalize their scat-
tering theory developed in [3,4] to include dissipative
effects of the scattering process. Mathematically this
generalization 18 reflected by the fact that instead of
a selfadjoint operator to describe the scattering system
now a maximal dissipative operator is used.

In [2] via the Cayley transform of a maximal dissi~
pative operator the assumptions of P.D.lax and R.S.Phil-
1ips [ 5] were necessarily and sufficiently carried over
to.confractions. For the convenience of the reader we re-
Peat the assumptions of the dissipative Lax-Phillips scat-
tering theory in terms of contractions. A triplet {T, ®+,QD_}
conslisting of a contraction T on a separable Hilbert
space 3 and two subspaces 'JZ)+ of £ 1is called a dissipa-
tive Lax-~Phillips scattering zﬁeory if the following as-
sumptions are fulfilled.

() r0, ¢ D, r¥D_ ¢ D,

(h2) TP2)+ and T*TD_ are isometries,

(h3) (_ ™D, «lo}a N 8D,
nezZ, + -

n€§Z+

® .
(h4) Pug oy T0—0, P;é.% T8 > 0 strongly for n—s 40,
+ -

Now every contraction T can be orthogonally decom-
posed into a unitary part T, acting on‘aeo and a completely
nonunitary part T, acting on 331, i.e.

(1.1 ) T-TO@T1.
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The completely nonunitery part is completely characterized

by the so-called characteristic function of the contraction

T defined in [8].

Definition 1.1, We say the contraction T admits a dissipa-
tive Lax-Phillips scattering theory if and only 1if there
are subspaces L, and D_ such that the triplet {1, D,,D_}

_ obeys the conditions (h1) = (h4).

In connection with this dofinition wo remark that 1t
is not excluded that onc of the oubopaces £, and D_ or
both subspaoos aro zoro, Ior instance a contraotion T be-

longing to tho olass G, admits a diooipativo Lax-Phillips

o
soattoring theory. To show thin wo got D = D_ = {0},

Naturally, the question arises to describe those con-
trasctions admitting a dissipative Lax-Phillips scattering
thoory. In solving this problem it turns out that we can
gtart with a completely nonunitary operator. For this class

of operators we necessarily and sufficiently solve the
problem in terms of the characteristic function. After that
we describe those unitary operators which can be added to
a completely nonunitary contractioh admitting a dissipa-
tive Lax-Phillips scattering theory such that the sum
admits such a scattering theoxy, too.

In the following the considerations are essentially
based on a_modei developed 1in [6] 1n order to give an
example of a dissipative Lax-Phillips scattering theory
with a prescribed scattering matrix., Ae we will see this
model can be regarded &s new functional mod91 for the class
of contractions admitting a dissipative Lax-PhilligsAscat-
tering theory. We begin with the description of this model.

2. A functional model

Let {:ﬂ. Las BN )} be an analytical contraction-valued
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function. We assume that there are analytical contfaction-
valued functions {i, JC.G()\)} and {\y;, L,rCu( X )} as
well as a strongly measurable function {UV_,.N;,S(t)} such
that
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(2.1 ) 5'(t) =
cetH* sy | Gl g

forms a unitary-valued function for a.e. t€ [0,27 ).
Let ﬁ be the multiplication operator induced by eit
on Hau L2(Q+). Q, = 4 ® S, and let S' be the multipli-

-

cation operator acting between LZ(Q_). e L= L, ® N, and

2
L°(Q,) end induced by the unitary-valued function {Q_,Q+,S'(t)}.

Obviously, S' is an isometry from L2(Q_) onto L2(Q+).

Introducing the subspaces G+,
(2.2) 6, = (),
and G_,
(2.3 ) 6. = 57 (1(2) O HA(X)),

as well as the subspace '® & L2(Q+) Cj(G+ @®G_) 1t 18 not
hard to see that

(2.4 ) T = PR UMK
®

defines a contraction on ¥ ., Moreover, this contraction
admits & dissipative Lax-Phillips scattering theory. To
show this we introduce the subspaces D, = Hz(vV+) and

D_ = SUL2(N_) ©H2(X)). Now taking into account the
considerations of Theorem 4.1 of [6] 1t 1s not hard to see



that the triplet {a,‘D+,(D_} fulfils the assumptions (h1) -
{h4).

Further we remark that the operator G is a unitary
dilation of T.

Our next step is to calculate the characteristio
function of &.
Proposition 2,1, 12 {%, &,, 0 () )} 10 a purely analytical

contraction-valued funotion, thon tho characteristioc func-
tion of T coinoidon with {i. e 00X )}.

Proof, To prove this proposition we eptablish that ﬁ is &
minimal unitery dilation of &. Wo oonsider the subspaces
E ((ﬁ - D#*)™ and dr, =" (I - M) )", It 18 easy

to ooo that we have X € HZ(BC) and b, & S’(LZ(I*) ©
©1%(L,)). Since we obtain

(2.5 ) & 1 e (%)

we can identify @ with a subspace L ot & . Because of
(2.6 ) L, 10*5 1 (12(2,) © B2 (,))

there 1s a subspace 5* of &, such that we have

(2.7 ) Py = fJ*S';{,*,

where we have identified ‘i* with ‘a subspace of the sub-

»

space of constants of 12( 3,). We set

(2.8 ) TT&-E;{@“@E_

defining G _ and G_ by

and

. ~ 2, ~ 2,5
(2-10)‘ G_=M(T=(r,k)@M+(ZG*) = 8'(L°(Z,) @HY(ZL,)).
On account of (2.8) - (2.10), the fact that ? fulfile the
assumptions (h1) - (h4), Lemma 3 of [2] and the structure
theorem 2.1 of [8, chapter II] we obtain

2an L= 12@,) = s13@),

where we have set 6+ = Jf+®£ and Q_ = Jf_@g*. Be-
cause of W = L2(Q+) S'La(Q_) we find

~

(2.12) R @H=12(p o) =s512(2,032,).

el ~ .i’ —~ ~
But (2.12) implies that {L@%,%,0©4L, P 02,00 et}
‘is an inner function of both sides. Further, taking into
account (2.8) - '(2.10) and 17(Q,) © (H3(%) @
@s'(12(%,) ©H (%)) =# L KoK we obtatn

(2.13) 122 0%) =26 @52, 09,00

O (%, 0 L)),
or, equivalently,

(2.14) 2(eol)or(Led) =

- 511202, 0 %,) OH(%,0 £,)),



which implies that { L&Y%, 4,0 %.Piﬁ*@ g BOBILe zl}

is an outer function. Conaequently, .

{2 ©2,4,0 zﬂ,Pé‘;@ z.p0Iree %115 a unitary constant.
But {i:,i,, B (X\ )} is a purely analytical function. Con-
sequently, we find L = Z and i*u ik , which shows that
U 1s a minimal unitary dilation of 2.

Now taking into account Proposition 3.1 of [6] we
conclude that {%,%,, B()\)l io the ocharaoteristic func-
tion of T. M

Our next aim is to calculato the unitary part Qo of
the coatraction %. In order to calculate this part wé re-
mark that the intersection of the residual and the x-re-
pidual subspace of the minimel unitary dilation of a con-
traction coincides with the unitary subspace of this con-
traotion,

In the following we denote the multiplication opera-
tor induced by {i,,vy;,c(eit)} and acting between L2(Z )
and Lz(Jf_) by C. Similarly, we denote the multiplication
operator induced by {Jf+,;~,c#(eit)} by C,e
Proposition 2.2. If {%,4,,68 (X))} is a purely analytical

contraction-valued function, then the unitary subspace 3€°

of b4 1s given by
(2.15) ® = ker(C,) = S'ker(C*).

Proof. Using the previous remark and Lemma 3 of [2] we

find
(2.16) R, = L3(u,) N s,

Consequently, f€:L2(MV+) belongs to %  1if and only 1f
there 18 an element gfiLz(Jf_) such that we have

O

FE——

B(ei®)*  c(el®H)¥| | o
(2-17) = 1tk
£(t) Cle™")"  s(¢%) g(t)

for a.e. t& (0,2 ). Hence we obtain
(2.18) ®, = S'ker(c¥).

Taking into account (5.3) and (5.6) of [6] we obtain

(2.19) S'(t)ker(c(el®)® 1tyy.

) = ker(Ch(e
for a.e. t€[0,2T), which implies S'ker(C*) = ker(C,). B

From Proposition 2.2 we easily obtain that the operator
Q 18 completely nonunitary i1f and only if we have

(2.20) ker(c, (el?)) = {0}

or, equivalently,

(2.2;) ker(C(eit)“) = {0}

for a.e. t €[0,2T) provided {_i,, L,,8 (N )} 1is purely
analytical, '

3. Dissipative Lax-Phillips scattering theory and charac-

teristic function
Let T be a contraction on a separable Hilbert space & ,
Lemma 3.1. If T admits a dissipative Lax-Phillips scat-

tering theory, then the completely nonunitary part T, of

1 .
T admits a dissipative Lax-Phillips scattering theory, too.

Proof. By ?(1 we denote the completely nonunitary subspace



of T. We introduce the subspaces Oli of '3€1 defined by

2* -
(3.1) a, = (P%:oi) .
Next we show that {T1, 0L+, OZ_} forms a di‘asipative Lax-
Phillips scattering theory. Obviously, the condition (ht)
is fulfilled. Because of

2
(3.2 ) Weh? = eyl = \\ng oel° + \\Paaehmfll ,
[}

X, = R © &,, we odbtain

' 4
(3.3)  Ve12 = 2% 0? v inpy 20
o 1

or, equivalently,

r .2
(3.4) lng%1f|12 - IypY o
for every f 6J)+. Consequently, T MC(, is en isometry.
Similarly, we establish the gsecond part of (h2). The con-
dition (h3) follows from the fact that T, ia completely
nonunitary. To prove (h4) we note that f&3€1 e 01.+ im-
plies £ € ¥© D,. This ylelds ¥, @ A, < ®ed, or,

* *®
equivalently, Pae1 e, ES P?£®J)+' Hence we get

® 3 * n
1 n .p
T, £ = 1lim P P T
(3-5 ) 1111:-?+°°P3€1 @0L+ 1 D450 361@Ol+ "6(‘.@50_,
= 0

R

. 1 * N
for every f 6391. Similarly, we prove P'3€1 oo T

—3 0

strongly for n >+~ .8

We note that it is quite possible that one of the sub-
spaces Ot and OL_ or both are zero.

Lemma 3.1 allows us to reduce the investigations to
those completely nonunitary contractions admitting a dissi-
pative Lax-Phillips scattering theory.

Theorem 3.2, The completely nonunitary contraction T admits
a dissipati;re Lax-Phiilips scattering theory if and only if
there exist two analytical contraction-valued functions

{‘i, s N _yC( N )} and {JC+,i,*,c*( Y )} such that the charac-
teristic function of T {L,%,,6 (X )} obeys the conditions

(3.6 ) I= 8(el%) B(elt)* + ¢ (eltrc, (o)
and
(3.7) 1= 0(elt)*0(elt) + crelty¥c(olt)

for a.e. t €(0,2%).

Proof. Let us suppose thaet T admits & dissipative Lax-
Phillips scattering theory. Applyixig Proposition 3.1,
Theorem 3,3 and Proposition 5.1 of [6] we obtain the
existence of analytical contraction-valued functions
{2 W_sC(X) ]} and { U, %,,C,(%)] such that (3.6) and
(3.7) are valid.

Let {¥,%,, 0(X)} be the characteristic function
of a completely nonunitary contraction T which fulfils
(3.6) end (3.7). We show that there is a strongly meas-
urable contraction-valued function {_Jf_.‘Jf.",S(t)l such
that (2.1) forms a strongly measurab'le unitary-valued
function for a.e. t £{0,2%).

For this purpose we suppose without loss of generali-
ty that {i s N_C( N\ )} is an outer function and




{wam,c*(x )} 1s an% -outer function. Both funotions
are uniquely determined by (3.6) and (3.7) in this case.
Next we establish that the relation

(3.8 ) s(t)c(el®) = —c (1% 6(el)

.

uniquely defines (modi.!) a strongly measurable contraction-
valued function {J_, W,,5(t)]. To prove this it is suf-
ficient to show that the inequality

(3.9) B (eth¥c, (el trc, (e1P)* aalt) < cletty¥o(el?)

16 valid for a.e. t €[0,2X ). From 0 < (I - 0 (e?¥)* B(elt))?

for a.e. t €[0,2T ) we obtain
(3.10) 0etty (1 - 0 (el?) B(elty) a(ett) <
< 1- 6(ettH)*a(el?)

for a.e. t €[0,2% ). Taking into account (3.6) and (3.7)
we obtein (3.9) for a.e. t £({0,2W ). To verify that (2.1)
i8 a unitary-valued function for a.e. t€[0,2X) 1t 18
necessary to prove that the relations (5.1) = (5.6) of [6]
are valid. The relations (5.1), (5.4) end (5.5) of [6]
coincide with (3.5), (3.7) and (3.8). To establish (5.2)
o [6] we multiply (3.8) on the left by C,(e¥). We find

>

a1 e ethserciel®) = —o (e he 1M 8 ()

for a.e., t €[0,2W ). Using (3.6) and (3.7) we get

10

(3.12) e (ethscercelt) = - Baltic(et Py ¥e(el?)

for a.e. t £(0,2W ). But {S&, Jd_,00N )} is an outer func-
tion, which proves (5.2) of [6]. Further, we find from (3.8)

(3.13) ol si¥siictett) = B(elh o (et
o (a8 0 elt)
for a.e. t €[0,2T). Taking into account (3+6) we obtain
(3.14)  c(erh ¥ se)*serc(el?) =
= 0 (1 - B(e®) B(eH)") B(el?)
for a.e. t€[0,2 ). Because of (3.7) we conclude
(3.15)  c(er®¥se*serccel?) -
= c(at®)*(r - cletacet oo ®)

for a.e. $€[0,2%). The function {%,JH_,C(X)}is an
outer one. Consequently, (3.15) implies (5.3) of [6].
Similarly we prove (5.6) of [6]. Hence

{‘Ly@ Nl e J('+,S'(t)} is unitary-valued.

Now we consider the funotional model of section 2. In
accordance with Proposition 2.1 we obtain a contraction @
characteristic function of which coincides with
{2 34s 8(N)}. Further teking into account that
{2 s W_sC )} is an outer funotion and {N‘+,:(,*,C*()\ )}

ip an #a-oute'r function we get that the relations (2.20)

11



and (2.21) are fulfilled. Hence Proposition 2,2 implies

that % is a completely nonunitary contraction. Consequently,
the contractions T and % are unitarily equivalent. But

T admits a dissipative Lex-Phillips scattering theory.

Hence T admits such a scattering theory, too. @

Next we turn our attention to the unitary part. On
account of Lemma 3.1 we assume that there is a completely
nonunitary contraction T1 admitting a dissipative Lax~
Phillips scattering theory, Which unitary operators T, can
be added such that T GDT1 admits a dissipative Lex-Phil-

1lips scattering theory, too? To answer to this question we
need two lemmas. '

Lemma 3.3, Let {(P(t b
e { ( )}te.[o,zm:) e a strongly measurable
family of projections acting on the separable Hilbert

space Jr+ such that we have
(3.16) dim(P(t)) = n & 40

for a.e. t€[0,2%). Then there is a separable Hilbert
space Q of dimension n and a strongly measurable family

of isometries {GL,\Y;,V(t)} such thaet we have
(3.7 B(t) = WV

for a.e. $€[0,2T),

We left the proof of Lemma 3.1 to the reader.

In the following we introduce two ehnalytical contrac—
tion-valued functiona {§ ,JN_,G() )} end {00 Gur0a OO}
In a natural way we assoclate with these funotions two
multiplication operators acting from LZ(% ) into L2(Jr )

2 -
and L (MV;) into Lz((%*), which w? denote by G and G,,

12

respectively. By R end R, we denote multiplication opera-
tors induced by elt on L2(Jf_) and L2(Jf+), respectively.
Lemma 3,4, Let To be an absolutely continuous unitary opera-
tor. Then there is an inner function {% s NGO )} aend
there 1s an % -inner function {JY;, %*,G*(>\)} such that

(3.18) dim(ker(,G*(eit))) = atm(ker(c(elt®y*))

for a.,e. t €£0,231) and, moreover, the unitary operators

RMker(G*) end R, Mker(G,) are unitarily equivalent to T .
Proof. The proof is based on Satz 4.4.4 and Korollar 4.4.5
of [7]. Transforming the meximal dissipative operator H of
these theorems to a contraction via the Cayley transform
i— 2t} we £ind from Satz 4.4.4 end Koroller 4.4.5 that
for every absolutely continuous operator T° there 1s a con-
traction D of class 010 and there 1s a contraction D, of
class 001 such that #-residual part of .the minimal unitary
dilation of D and the residual part of the minimel unitary

dilation of D4 are unitarily equivalent to T . Let {% ,Jr_,G()\}

and {JS, %*,G*(x )} be the characteristic functions of

D and Dy respectively. In virtue of Proposition 3.5 of
[8,chapter VI] {% s J_,G(X )} is an inner function and

{J(’_‘_, %*,G*(X )} is an % -inner function. Taking into account
the functional model of a contraction introduced by B.Sz.=-
Negy and C.Foles [8,chapter VI, Theorem 2.3 and Theorem 2.3¥]
we find that % -residual part of the minimal unitary dila-
tion of D is unitarily equivalent to Rrker(G*). Similarly,
we get that the residual part of D, is unitarily equivalent
to R,tker(G,). Consequently, both operators Rtker(G*) and
R,Mker(G,) are unitarily equivelent to TO. But this implies
that- the operators Rrker(G*) and R, lker(G,) are unitarily

13



equivalent., Hence there is a partial igometry V: LZ(JF_) -

2 2
12 wy _ pL20L)  wuw | pL2(J6 )
L (Jf+) gsuch that V'V = Pker(G" sy VVT = Pker(G*) and

(3.19) RV = VR,

But R and Ry are multiplication operators induced by elt,
Consequently, V can be represented by a multiplication opera-
tor induced by a gtrongly measurable family

$N, \)(;_.V(t)} of partial  isometries  which

a1l V(OMV(E) = I - o(et¥)a(el®)¥and v(t) V() -
Ty, - a,(e%)*c,(e!%) for a.e. t €[0,2T). Both rela-
tions imply (3.18). ®m

Corollary 3.5, Let T, be an absolutely continuous unitary
operator. Then there 1s an inner function {(3 » HsG(N )}
and there is an * -inner function -Lf_,_, (j* N @Y )} such
that (3.18) and

(3.20) dim(G) = dm(§,) = + 0

. hol‘d and, moreover, the unitary operators RMker(G*) and
R,Tker(G,) are unitarily equivalent to Ty ‘

We left the proof to the reader. Now we come to the
solution of the proposed problem.
Theorem 3,6, Let T, be & completely nonunitary contraction
on '361 admitting a dissipative Lax-Phillips scattering the-
ory {T1, 0y 01_}. Let T  be a unitary operator on 380.
(1) If one of the unilateral shifts T,Me, or T,* Mo _
has a finite multiplicity, then T, ® T, admits a dissipa-
tive lax-Phillips scattering theory if and only if To is
a bilateral shift.
(11) If both unilateral shifts T,M0L, end 7,*M0L_ have

14

en infinite multiplicity, then T @T1 admits a dissipative
Lax~Phillips scattering theory if and only if T0 is absgo-
lutely continuous. .

Froof. (1) Let T1I‘OL+ be a unilateral shift of finite

multiplicity. By RH‘ we denote the % -residual subspace
of the minimal unitary dilation U1 of T1. Let R1:\<- be the
#-residual part of Uy, Ry = U, P®,,e Taking into
account Lemma 3 of [2] we find that R lsa bilateral
shift of finite multiplicity.

Let T = T, ®T,- We denote the % -residual subspace
and % -residual part of the minimal unitary dilation U of
T by ®, and R,, respectively. Because of Lemma 3 of [2]
Ry1s a bilateral shift. '

Regarding U, as & part of U we obtein Ry Ry o
Moreover, the subspace ® 1% reduces R, and we have Ry =
= Ry R4+ Representing the bilateral shift R, as the
mulﬂplication operator induced by elt on L2(J(‘+) it is

not hard to see that in this representation the projection
L

1%
duced by a strongly measurable family of projections

Pg: is represented as the multiplication operator in-
{_P(t)]te {0,2% )+ Obviously, we have
dim(P(t)Jﬁ_) = n < +% for a.e. t&[0,21). Consequently,
we find dim((Ix+ - P(E))N )= m & +oo for a.e. t €[0,2T),
Using now Lemma 3.3 we find that R, FUB*@'GZ,H is a bi-
lateral shift, too. But R, @ R, coincides with ¥
and R, T Qh@'@ 1% 9Quals T .Hence T  is & bilateral shift.
Similarly, we prove this assertion assuming T1*‘P0L_ has &
finite multiplicity.

To show that T = T @T1 admits a dissipative Lax-Phil-

1ips scattering theory is obvious provided T, 1s a bila-
teral shift.



On account of Corollary 3.5 there is an inner function
(11) It is easy to see that T, is ebsolutely continuous

{(3 s N _aG(N )_7; and there is an ¥ -inner function

if T @T] admits a dissipative Lax-Phillips scattering "
{940 GurBalX )} such that (3.18) and RPN ker(G¥) end

theory. To prove the converse we use the functional mo-

R,lker(G,) are unitarily equivalent to T..
del developed in section 2. Let (&, %, ,0 (X )] be the

We introduce the analytical contraction-valued functions

Lo de},

characteristic function of Tie On account of Theorem 3.2
there 1s en outer function Li, ,% »B(X )} and there is an

% -outer function » L. ,By( )} such that we have
{Gur By} mucn (3.24)  G(X) = G(X)B(N),

(3.21) ()8 (e + B, (e ")B (e and {X,,dy,0,00)),
and

(3.25) C, (%) = BIXN)G, (%),
(3.22) I= 0ty gel®) + B(ert)*n(el?)

xe{ze€s 1zl < 1}.

Because of (3.18) and Lemme 3.3 there is a strongly
e V()]
- a(e®)a(e®)™ ana v(t)V(£)* =

for a.e. t €£{0,2N). In accordance with (3.8) the relation )
measurable family of pertial isometries {JN

obeying OROEE:

*
(3.23) s (8)B(e¥) = -B (%) B (e1?) ¥
ity it g
= IJ{. - G“(e ) G, (e7") for a.e. t€[0,2{ ). Introducing
T+
defines a strongly measurable contraction-valued function .
v the strongly measurable contraction-valued function

{% , %*,So(t)}. Using the considerations of Theorem 3.2
and the contraction-valued functions -{_i A~ G(eit)},

{0 §oBe™}, LG, doBu(e™) ] ana (G4 Gy 5] we

NG o-IC)

V(t) 0
perform a functional model of a completely nonunitary con- (3.26) S(t) = *
R a (e18)*s (t)a(el®)
traction Tc.n.u. which is unitarily equivalent to I,. * ©
. The infinite multiplicity of the unilateral shifts . %
, , 1t (olt
T, M0, and M0, yields that the Hilbert spaces § end ,  ker(G(e™®)7) k"(ga*(e ))
’ it > 1t %
G4 eve infinite dimensional, i.e. dim(§) = aim(§u) = +o. 1ma(G(e™")) 1na(G,(e™))

In the following we modify the oconsiderations of

Theorem 3.2 to obtain not only a completely nonunitary it i8 not hard to see that the strongly measurable opera-

contraction, but also a contraction with a preascribed ) tor-velued function {.i’ @I, 1,0 J(—_,_,S'(t).}‘ performed
unitery part which admits e dissipative Lax-Phillips by (2.1),(3.23),(3.24),(3.25) and (3.26) 1s unitery-ve-
scattering theory. :

16 17 *



lued. In such e way in accordence with Proposition 2.1 we
obtain a contraction % characteristic function of which
coincides with {iJ,EL*.e ()\)}. Hence the completely
nonunitary part %1 of @ is unitarily equivalent to T1. It
remains to calculate the unitary part %o of %.

On account of Lemma 3 of [21 the ¢ =residual aubspacé
of the minimal unitery dilation G of T coincides with
Le(Jf+). Hence the * -residual part of 6 can be identified
with R . On account. of Proposition 2.2 we find @o =
= ﬁrker(C“). But a simple calculation shows ker(C,) =
= ker(G,). Using U'LZ(J,) = R, we £ind T = Urker(c,) =
R,Mker(C) = R,tker(G,). Consequently, the unitary part 60
of T is unitarily equivalent to T_.

Summing up we find that the completely nonuniéary part
%1 of T and the unitary part %0 of T are unitarily equiva-’
lent to T, end T of T, repsectively. But T admits a dis-
sipative Lax-Phillips scattering theory. Hence T, @ T,
admits a @issipative Lax-Phi}lipa scattering theory, too. B

In connection with Theorem 3.6 we remark that if the
characteristic function{ % ,%, ;G()\)j of a ocontraction T ful-
fils the conditions (3.6) and (3.7) only for analytical
contraction-valued functions {2 ,J_,C(% )] and {\fo,$# ,C*())}
aocting between infinite dimensional Hilbert spaces, then
the unitary part of T has no influence on the existence of
a dissipative Lax-Phillips scattering theory with respect
to T.

Corollary 3,7. Let T1 be a completely nonunita?y contraction
on ?91 admitting a dissipative Lax;Phillips scattering
theory. There exists a unitary operator To on "dfo such

that ?O(D T, admits en orthogonal dissipative Lax-Phillips
scattering theory if and only if the characteristic func-
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tion {d;,iq‘,e (M )} of T, possesses & Darlington synthesis

in the sense of {1]. '

Proof, If T = T @ T, possesses an orthogonal dissipative Lax-

Phillips scattering theory, then the desired conclusion can

be obtained from Proposition 3.1 and Corollery 3.4 of (6l.
Conversely, 1f { & ,3d4, 0 O\ )} edmits a Darlington

synthesia, then there are analytical contraction-velued

functions { & » JLsCO )]s {00 4sCu(X )] end {0, Y (]

such that ' :

; 6 (oth*  celth* Eé* %
.2 St(t) = ~ ] — >
(3.27) ( C*(eit)m T (alty* A .

forms a unitary-valued function for a.e. t €[0,2). Ta-
king into account Corollary 4.2 of [6] we can regerd

§0 X,a8(8)], St = Telty*, te[0,23), as the scat-
tering matrix of an orthogonel dissipetive Lax~Phillips
scattering theory {_’i‘,@+, DY, L.e. J)+LD_. Because of
Proposition 2.1 the characteristic function of % coincides
with {UL,:t*, B (X )}. Hence the completely nonunitary part
A
T

1 of T 1s unitarily equivelent to T1. But this yields the

existence of a unitaery operator To such that TOQ)T1 admits

an orthogonal dissipative Lax-Phillips scattering theory. H

Corollary 3.7 implies the following
Gorollary 3.8. A completely nonunitary contraction T, can
be orthogonally enlarged by a unit@ry operator such that
the sum edmits an orthogonal dissipative Lex-Phillips scat-
tering theory if and only if the adjoint characteristic
function of T, cen be regarded as the scettering matrix
of an orthogonal dissipative Lax-Phillips scattering theory.
We left the proof to the reader.
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Hz#ipxapor X. E5-87-400
JuccunaTtuBHAasi Teopeus paccesgHusa Jlakca—
DPuIIUIICA U XapaxKTepucTuHuyeckas GYHKIUSA

cxXUMawiero oneparopa

PaccMaTpuBaeTcs BONPOC O XapaKTepHCTHKe BCeX TeX CXH—
MAaloNHX OMepaTOpOB, KOTOpbie OONYyCKAaKWT OJUCCHUIIATHUBHYK TeODHI
paccesgHus Jlakca—dunnunca. XapakTepuHCTHKa OJaHa B TepMHHAaX
XapakTepHCTHUeCKOH dYHKUHMH CXKUMawmero omepaTopa H ero yHU—
TapHO# yacTu. Bomnee Toro, npobiieMa [ocTaBjleHa M pemeHa
B ONMCAHMM BCeX TeX BIIOJIHE HEYHHTApHbIX CHRHMAIMX OnepaTo-
pPOB, KOTOpbIE MOXHO OPTOrOHAJIbHEIM O6pa3oOM pAaCUHUPUTH YHHUTAD—
HbIM ONepaTopoM TaK, UYTO CYMMa OOMNYyCKaeT OPTOrOHAIBHYW OUC—
CUINATUBHYI Teopuio pacceHsusa [lakca-dunnunca.

Pa6Gora BhimosiHeHa B JlaBopaTopuH TeopeTHueckod dusuxu OUSIU.

IpenprHT O6BEAMHEHHOTO HHCTUTYTA ANEPHBIX UccnefoBanuit. Jlyoua 1987

Neidhardt H. E5-87-400
Dissipative Lax-Phillips Scattering
Theory and the Characteristic Function
of a Contraction

The paper deals with the problem to characterize all
those contractions admitting a dissipative Lax-Phillips
scattering theory. The characterization is given in terms
of the characteristic function of a contraction and its
unitary part. Moreover, the problem is considered and sol-
ved to describe all those completely nonunitary contrac-—
tions which can he orthogonally enlarged by a unitary ope-
rator such that the sum admits an orthogonal dissipative

Lax-Phillips scattering theory.

The investigation has been performed at the Laboratory
.of Theoretical Physics, JINR.
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