0GLEAKHEHHbI

HHGTHTYT
s | ARG PHbIX
P HGCABAOBAHKA

AYGHA

E5-87-40

V.P.Gerdt, A.B.Shabat®, S.l.Svinolupov®,
A.Yu.Zharkov*?*

COMPUTER ALGEBRA APPLICATION
FOR INVESTIGATING INTEGRABILITY
OF NONLINEAR EVOLUTION SYSTEMS

Submitted to "'BM u NMO'

¥Bashkir Branch of the USSR Academy of Sciences,
Ufa, USSR

**garatov State University, Saratov, USSR
L
| 1987

SRR



1. At present &n intensive work on classification of integrable
non~linear partial differential equations with two independent vari-
ables is carried out. In a number of cases (/1/-/5/) the formulati-
on of effective criteria of integrability has been achieved and the
complete 1ists of the integrable systems have been obtained. For ex-
ample, in /4/,/5/ the complete list of integrable systems of the
Schriidinger type

Uy = Uy + fru,o,ux 2, B == O + 4,0,y 7)) (1)

is obtained.

In frames of the symmetry approach {sece /6/,/7/,/8/) the defini-
tion of integrability is besed on internal properties of the eguati-
ons and the conditions used for classification are the necessary
conditione for exiastence of higher—~order symmetries and conservation
laws. General derivation scheme for this conditions (see /7/,/8/)
covers the systems of the form

U= Plr,u,.. uy)= Aa,+ FI2, e, ko), V22, (2)
where

UzUull,x), up="u/ox® u=lu’..,u™) F= (F1.. F*) o

A=dizg (,...00), Do €€, A0, U#h; (i4)). ’
Evolution equations integrable by inverse spectral transform and li-
nearizable like the Burgers equation satiafy the conditions of inte~-
grability arising in symmetry approach.

There are two types of problems solvable by means of the symme~-
try approach: 1) properly classification problems of obtaining the
complete list of the fixed form systems and describing the moet ge~
neral transforms connecting this systems; 2) for & given concrete
system testing the conditions of integrability and computing symme=~
tries and conservation law densities,In present paper we discuss the
problems of the second type.Note that such problems remain actusl
even after the complete liats of systems under consideration have
been slready obtained. For éxample, since the liet of integrablé
systems (1) presented in /4/,/5/ is too lerge, it‘'s more convenient
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for & given concrete system to check the integrability conditions
directly rather than to identify it witb one from the list.

The procedure of derivation and checking the necessary conditions
of integrability demands tedious algebraic computations. To carry
them out automstically it's worth while to use computer aslgebra sys-
tems (/9/). ;

In the case of scalar evolution equations the algorithm for
checking up the integrability conditions for a given equation is al-
ready implemented in computer algebrs systems REDUCE-2 (/10/) and
FORMAC (/11/).. In present paper we suggest the algorithm for check-
ing the necessary conditions of integrability and ite computer imp-
lementation in FORMAC for evolution systems (2)-(3). In addition our
FORMAC program allows one to find symmetries and canonicasl conserva-
tion law densities.

2. Let ue remind the basic concepts of the symmetry approach and
the general derivation scheme for necessary integrability conditions.
The symmetry (génerator of infiniteesimal symmetry) of evolution
system (2) is called the vector function fﬂ (f ’, s, f”) of &
finite number of dynemical variables from the infinite set
X, U, Uy, ... such that

;f P, (1) | W

where e? is a matr:x differential operator

%=‘?’u+<¥>‘,'b+.--+ ‘?’“A/’D"/ (5)
e’o“i -~ Jacobi matrix, that is
?k
? . R ?_...__ .
[ a‘]x} 3&‘;}

The operators /d# &and D=d/dx in (4)-(5) are the total dif-
ferentiation operators with respect to variables f and X corres-
pondingly, both acting on the functions of a finite number of dyna-
mical variablea'
a" E Z DI (? ):)u ‘
t’ t=¢ J_a /
o
—D“om+gzu44 Ou‘ (6)
_t={ ;=0 I }
Equation (4) defining symmetries means that equation (2) and equation

Up = f(:r,u,u,,....)

are compatible or in other words it meamﬂthe invariance of equation
{2) under infinitesimal transformations f"l‘, ﬁvx,istu?'f(r,u,u,,...).
The linearization operatorgdefined by the formula
o
f, v)= 5, f(:r,u+£7, D{tﬂf?r),-*.)' £=0

transforms equation (4) to the following operator relation

l—— +[L ?,* 3(?),2,' (7)

where L= 7(‘,, = fu+ f‘(’ + ... (compare with (5)).
Let us define the 2 -th order formel symmetry of the system (2)
as any differential operator of the A -th order

[= ZA’D &JL n (8)

with matrlx coefficients »4: dependzng on & finite number of dyna—
mical variables such that

t'[cﬁ,[_]?&» {9)

where Q is a differential operator of the form
Q=Z QDX

Substitution of (8) in (9) leads to a cha:Ln of equations arising

after equating the coefficients of D/ P fENER, A, e
So, putting the coefficient of D M+4# pqual to zero one gets
[A4,1=0, (10)
Then for [= A+ n-4 one cen obtain
[A, A T+ N-AD(AL)+ [Fs _‘,,4,,]-.:0. (a1

Next equations have the following general form

[A,A ]+ A /‘D(ﬂ/.,/“)"'[?u”d,/’jw“]+ BJ.:O, /:A{; (12)

where £2; denotes matrices with components expressed in terms of

the defferential operator (5) coefficients and the components of

where yVER{ . One can find from equation (12) non-diago-

nal part of the matrix A ;_o/ and the disgonal part of the matrix
A r.as+1¢ -+ From equations {10)-{11) it follows that

An= c&aJ (/"y,.-.,/“p;) Vol C (13)

The formal symmetry (8) ie called non-degenerated if

dd 4, =1 M{«,a&o




Evidently the formal symmetry is defined up to addition the arbitra-
ry diagonal matrix depending on a finite number of dynamical vari-
ables (this arbitrariness can be eliminated with normalization

diag (4.) =0 ).

he existence conditions of the non-degenerated formal symmetry
being the conditions of sclvability of eqs. (10)=(12) in terms of
matrix-functions of dynamical variables are the criteria for conste~
ructing the lists of integrable equations. For example, the complete
list of the second order integrable scalar equations of the geheral
form U, = P(x,u«, uy &;) presented in /3/ corresponds to the choice
R=5. For equations of the form (2) with A7=7 A/=3 considered
in paper /2/ it was supposed that n=z9,

It's easy to verify that the existence of the /4, -order symmet-
ry (the order of the symmetry is called de 7['; ) with #,»n>a/
leeds to existence of the /Z-th order formal symmetry (compare (7)
and (9)). Thus the conditions of the /# -th order formal symmetry
existence are the hecessary conditions of the A, ~th order symmetries
existence, where /,2 /., One can prove (/7/,/8/) that from the exi-
stence of the pair of the local high-order conservation laws it fol-
lows the existence of the formal symmetry.

Let's remind that the local conservation law of system (2) is gi-
ven by the pair of scalar functions (f, &) of the dynamical vari-
ables such that

4 .
(p) ="D(a). .

T f) (2) (14)

The function is the density of the conservation law (14) and the

order of the conservation law is defined as a degree of the following -

polynomial in D (see /8/):
= ‘Fﬂﬁ) D s LT -
= = . > _ - D" = (15)
R (su * [zaa‘e‘ ’ s~ Eo( ") Dy .
Using the algorithms of manipulations with power series of the form

L=2 AD = 4,D"+r +A +4., D"+ (16) .

Kzm RS
with negative powers of symbol D it's possible to generalize the
above definition of the formal symmetry and to -denote by the formal
symmetry of degree M and order /2 every formal series (16) with
matrix coefficients depending on dynamical variables and satisfying

the relation

d?(Lt—[‘P‘,LJ)<m+A/—‘m. (17)

Multiplication of formal series (16) is defined by the formula

aD¢ ¢D"=a 3 () Dite)DH*
i=o0
(() _ LU-1)  (L-i+1) (18)

3 1-2 ... ¢

L
generalizing the well-known differential operator multiplication

rule.

One of the principal propositions of the theory of formal symmet-
ries is the following

Theorem 1 (/7/,/8/). The conditions of the # -th order formal
symmetry existence don't depend on the choice of the degree #7 of
the formal symmetrj (16), and on the choice of integration constants
arising in the chain of eqs. (10)-(12) for the coefficients of the
formal symmetry. [J

Note that the system of eqQuations for the first /- coefficients
of the /7-th order formsl symmetry obtained by equating the coeffici-
ents at D/, /'= myA, ..., M+A/-N+1 has the same form as the chain
of eqs. (10)-(12) for the coefficients of the formal symmetry. In

particular, for all M= 0,#4,+2,... the leading coefficient of
the formal symmetry (16) is a constant diagonal matrix, that's
A m = dizy (Ppos-fim) . pc€C. (19)

One can formulate the existence conditions of the formal symmetry of
the order # >A/ in terms of the lower-order formal symmetry coeffi-
cients as it's given below.

Theorem 2 (/7/,/8/). Let the non-degenerated formal symmetry of
the order M = A/+{, (20 exists.Then the existence of the n-th .

rorder formal symmetry,where /= A/}+/7+7 is equivalent to the
following conditions
d . R 2
E(Q("})) e TmD, J= 1 M (20)
where .
oF R
.. ~is ] , (=0
RU,j)={ Y%y
> (21)

,Dﬂi_'l'zaaz('usL) , (>0
is a formal symmetry of the order ¢+2 and the degree ¢ with
the leading coefficient (19) depending on M arbitrary parameters

/“l:w-;/‘M.D-“



The condition dR/dt € ImD (see (20)) mesns the existence
of the function & depending on dynamical variables o€, Uy, ...
such that the pair ( R ,c& ) specifies the conservation law (14) for
the system (2)., Formula (21) determines the algorithm for construct-
ing the local conservation law densities from the infinite series
which we shall call the canonical series. For all known examples of
equations integreble by inverse spectrel transform this canonical
series coincides with the series of local conservation laws which
_can be constructed using the scattering matrix in frames of the in-
verse scattering method (/12/).

3, Algorithm for checking the integrability coruhtlona for the
system (2) {algorithm (I)) is the following.Firstly one tests condi-
tions (20) for f=0, j= 7, .., M which sre equivalent (theorem 2)
to existence of the N+l-order formal symmetry. At the next step one
constructs the formal symmetry of the order 1 and the degree 3 and
testa M conditions (20) for (=7, /-4 .--, M , The fulfilment
of these conditions guarantees the exietence of the A/+2 - order
formel symmetry and eo on. The elements of matrix coefficients
for the M ~th  degree formal symmetry (16) can be found from the
following recurrence relations (see (11)-(13), (17)-(19)):

AK::O K>t

£

Candey ={ 0 0 274

flir =y
4
A ) Py
(A= (i (th- [Cm“]“‘ﬁf"s 7
K ll ‘ » J
;/Ti—D, {J}({Auu—f]ti)"[cvu-f]a E-P{" N / ,(22)

J“a Ac)=0

where . M, 7‘;“ € € are arbitrary constants, C ere the coeffi-
cients of the commutator

[Pe,L1=73cD
The main computational difficulty of the above algorithm is inver-
sion of the operator D which is necessary for constructing the di-
agonal elements of .4‘( « This problem is reduced to aolving the fol-
lowing equation .

D(Q):Sv (23)

where Q end S ere the scaler functions of dynamicel variables
WU, Us\y - and D is the total differentiation operator (6)
with respect to X’ , Note that the equation (2) can be solved not for
any right hend side S x),

The algorithm for the operator D  inversion {(algorithm (II)) is
given below. It allows to £ind the function & as well as the set
of relations for .S which must be satisfied, The algorithm is based
on the following conditions which must te hold for any function
Sty ., tye) € TmD -

a2 S 928 ?tS
7 = 0’ — - - ~ R K>0)
U 'aul Dl U, el 2uf
%-¢ ('™ 24)

28 (

YT o, K=0,
where L./ =4, M,
If conditions (24) ere satisfied then S can be written as:

8= Dlqloee, ., te-))+ Slx,u, ., Ux.y)- (25)
Determining 7 from (25) we 1’:md that the solution of (23) is repre~
sented in the form & = ¢+ G? »  where Q satisfies the equation

D(R)= & . Therefore the condition S€TwD is reduced to the
condition § ETm D> where the order of § is lower than the
order of S

To f£ind the funetion 7 from equation (25) it is necessary to
compute indefinite integrals of the form

S%S dat_,

‘aw
Our program allowa to compute indefinite integrals I afw]ol\h'

for the following class of integrands:
3(w)= z (P.(w)eqi“% w-wvs-)ﬂ' ) (26)
J ‘74

where . 7‘ A; are constants, F;(w) are polynomials
in W The 1ntegrata.on constants are put equal to zero. The formal
description of the above algorithm is the following

input: S(w,u,. ., ux), k=oud 8
output: Q(@,u, ..., ue.), Z

x) Note thet the solvability of eq. (23) is equivalent to the equa-
lity %g,:o /18/)


http:dintegratl.on

Q:=0, Z:=0
for M:=K to 1 step -1 "do
for i:={ to M do

T for jiei to M do

Y= Sf-—-«——gzs ; da‘;,,a"a};

Quiud,
S::‘: S-—X
Z:=72+X

for g=1 {0 i~1 do

4

,DZS . -
3= e du’ duwt
Y H W 2Ud, _, “om & -

S:=8-Y
Z:=z24+Y

Q:= Q-I—S% dut, ,
3

(27)

I}

= $-D( s %o{a‘;_,)

= lto M do
Y:-.- ?_S__dui

Ui
S-

”

for

I3

u
S-Y
Z:=2+Y
Q B Q+ j‘ S o .
Applying the algorithm (II) we have S = D(Q)+2Z,

"

where Z is "not integrable® expression. The equality 2 = O
equivalent to S ¢ 7,.,D . )
Example., Let M=2 , u=(%,%),

¢ 2
S:WVZ—#A’U’,'&.")"ﬁwf y where aaﬁec.
Applying the algorithm(I11)we get

nglyf » Z= (&—4)W,7,+fw,z.
Thus S e TwD  is equivalent to &:4)‘;5:0 .
The algorithm for computing the # -order symmetry {algorithm

is

(I11)) is based on formulae (7)~(12) snd includes three steps.

At the first step one computes the # ~th order formal symmetry
of the form (8) applying the algorithm (I}. The existence of the
formal symmetry is ensured by the corresponding integrobility condi-
tions (theorems 1,2)., Otherwise the algorithm informs about the ab=
sence of symmetry end terminates. Remind that recurrence relations
(22) lead to the formal symmetry depending on parameters /",‘--,/“'y
and integration constants @’;K .

The symmetry of the order /. defined by (4) exists only if the
equaliiy L= f;; holds with the /2 ~th order formel symmetry L a-

ready found, The equation [_ = f; is equivalent to the following
system of equations for the formal symmetry coefficients

KL=o0,1,.. . n

t"/‘lmz ",....,M. (28)

3
,;Z‘_;;[Ak];j - %{[Aflfm:o,

- At the second step one verifies the solvability of this system for

obtaining concrate values of M., 7"‘ . Note that conditions (28)
are equivalent to existence of the function H= Hifor b, .., tes)

B ¢ » . R -
T H=(H e, H } satisfying the equation

1 M
> —[2H 1 P2H M) -

D(H)“{)—x(//) (%74“(7"')'9“;‘" u, )"Z—(”*)~ (29)
1f H is a solution of the equation (29) then the symmetry f can
be represented in the form

f=Hilixuy, J, = Chi LY, A L{s’a’,u() A (30)

At the third step substituting (30) in-{(4) we derive the overdeter-
mined system of equstions for {x, «} + For testing the conditicns
(28) and solving the equation {28) it is sufficient to modify the
algorithm (II) slightly. Equation (29) is the set of M acaler equa~-
tions

31(6?):81 ﬁ(z(b—%—u’—?—;)l L=t .. . (31)

1*3&{

To modify the algorithm (II) for solving the equation (31) one has
to replace D by ﬁ( in (27) end to modify ccernditions (31) for
K=end & = 0, 1 which become the fcllowing

98{ -0 CERY o CENY 28
Ty =0, P . T .- 3 - = O
. 20 duul Puf au! Uy TUF ’
. ":J‘ =1, M, #&, /“-,4[
for K= { and 25 _, .y m, 2L oo
i . Y <

9



for K=0 , Note that the general solution of the equatlon (31)
containts an additive arbitrary function j/‘x 73 )

4+ The above algorithms are implemented in the frame of compu-
ter algebra system FORMAC (/14/). The choice of FORMAC is caused by
its high execution velocity, powerful tools for expregsion anslysis
and the posaibility to extend the system by meens of the FL/1 lang-
uvage. Our program includes two basic procedures - CONDS and SYM and
about twenty suxilisry procedures, The input of. the program includes
M - the number of equations in system (2); N - the order of the
system (2); FF({() (¢=1,...,M) - the components of the system (2)
right-hand side. The variables («t} in the right hand-side of (2)
are coded as [J(7,J) . It's sufficient to use procedures CONDS
and SYM to check up the integrability of concrete system (2) and to
compute symmetries and cenonical conservation law densities,

Y

Procedure CONDS implements the algorithm (I}, It allows to teat
the conditions of integrability (that is the existance of the formal
symmetry) and to compute csnonical conversation law denaities (21),

The call for CONDS has the form CONDS ((,,¢,, P)  where &, {5, P

are integers such that (,20, (, ,1,,/9-*0 f . For an input
Co=0, =n-M-1, P=1

CONDS tests the conditions (20) of the /2-th order formal symmetry
existence for M > A/ . If any of these conditions are not satisfied
the following relations

ZERO = < expression>>

sre printed out. For existence of the formal symmetry the right—hand
sides of these relations must be put equal to zero. If it leads to
contradiction then the evolution eystem under investigation hasg not
any formal symmetry of the order greater or equal to /L . Therefore
it is not integrsble.

For the integrable systems (2) CONDS computs and prints out
the canonical conservation lew densities (21). For an input ¢,, £,

10

with - £, € 7, end p=0 the canonical densities R(l’./) for

b=lg, b+, -5tz }:f,._,,M

are computed and printed out (for p =0 the corresponding conditions
(20) are not tested ).

Procedure SYM implements the algorithm (III). It sllows to com-
pute symmetries of the form {4) for the system (2). The procedure
call is SYM(K), where /. is & asymmetry order. SYM computes and
-prints out the function H . satisfying the equatlon (29).Moreover the
system of equations for the constants M ’f, {coded a8 MU( T}

G(I,K) ) and the system of equations for {otoe, ) (its compo-
nents are coded as H@(I), (X, U(I, (?9) )} sre printed out as

ZERO = < expression >

which right-hand sides must be equal to zero.

Note that the current version of the program can be applied only
to the systema (2) with right~hand sides being functions of u?
from the class (26). To extend the claas of considered systems it is
sufficient to modify the procedure INT implementing the indefinite

integratione

5., Here we give some exemples of program application,
1) Let us consider the following Nonlinear Shr8dinger-like equa-

tion

17

- k4 o o = z - 32
t_u,,«}ao'l v, v, + viu {32)

N4

Using CONDS® (0,6,1) we obtain that system (32) has the 10th order
formal symmetries but has no 11th order non-degenerated formal sym=-
metries, therefore it is not integrable.

2) The following system was obtained in /5/, where integrable
systems (1) were classified:

11



U, =, +v,° 4 22 T =D tUl S, © (33)

where

2= fpooplusn)p, expl Au+A) + ps e2pl Au 78]

A= exp(2i/3) , R=2%

JS°: are erbitrary constants.

The system (83) is known to have the formal symmetry of the order
M =€+« By meana of the program developed we found that (33) has the
4th order aymmetry :F.-. { ]f‘, _)gz)’ where

1
Ve wgronoy -2v, w4 33 020, + L0 +

2z

52
Y "2

{'”'z + ”fz) "' >y >

+ 20,407+
2
= e - 4 &
:F Y, —2u g b 2u,7, 7, - 4, +3 a,sv,.-:;-v,",.

2z
— 220, +uf) - TH (U407 ) — 22 .z

3) In classifying integrable third-order systems of two equat ions
the following aystems were obtained

Y=Usgtuu,, Bp=dntur+3ou, (34)
and
Mf=§a5+-§uu,, v = 80—5+.:_ak,+7'f.ya, ‘ (35)
12

which were known to have the 9th order formal symmetries only. Using
the progrem developed we tested the existence of the 1lth order for-
mal symmetriea, It turned out that the system (34) has and aystem
(35) has no such formal symmetry. Moreover,we computed the S-order
symmetry (4) for the system (34) which is of the form } { ; %z)
where

o ug+ Suuy+ Luu,+ £ wia,

)

Fo=teo, 4 Luvy+ Evugr 10u,5, + L ou + F0,+ 014,

All above exsmples take from 5 to 20 minutes of ES-1061 running
time and sbout 300 X memory.
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Tepar B.M. u ap. E5-87~40
{lpuMeHeHHE KOMIILITEPHOR ANre6phn ANA HCCIeA0BAaHHS
HHT@I'PHPYEMOCTH HeJMHeHHBIX ABOSOUHOHHBX CHCTEM

PaccMoTpeH ANTOPHTMHUECKHI NODXON K HCCNEROBAHHI YCJIOBHIE HHTETPHPYEMOCTH
CHCTEM HEIMHEHHHX 3IBOINUMOHHLIX YDABHEeHWH, JMHEHHBX OTHOCHTRILHO CTapmHX OIpo—
HIBOJHLK 1O NPOCTPAHCTBEHHOM nepemMenHod. CHOPMyNHPOBAHN MATEMaTHUECKHE OCHO-
Bbi CHMMETPDHHHOIO METOHNS NPOBEDPKH YCIOBMI HHTETDHPYEMOOTH H ONMCAH KOHCTPYK—
THBHbE ANTOPHTH, PEANMIYIMME DaHHe MeTOoA IJIf WHPOKOTO KJIACCA HENMHEHHBX 380~
FICHHOHHIX CHCTEM, JTOT SATOPHTM DEANHIOBAH B BHAEe DPOrPAMM Ha AZLIKE CHCTEMu
xoMupwTepHok anrebps FORMAC. [aHo onsHcanse OCHOBHMY NpPOURAYP NAHHOHR IporTpaM-—
v, llpuBeleHH NPUMEpH NPMMEHEHHA JIPOTPAMMH INA HCCIESOBAHHA WHTETDUDYEMOCTH
KOHKDETHEX HenHHeHX 3IBOMOUMOHHEX CHCTeM,

PaBora BamonHeHa B JlaBopaTopuM BLUMCIMTENBHON TEXHHKM M aBTOMaTHAalUH
OUSH.

TNpenpiner O6LanyHEHOTC WHCTATYTA AASPHBIX Mocrenopanuia. Jy6ua 1987

Gerdt V.,P, et al. E5~87-40
Computer Algebra Application for Investigating
Integrability of Nonlinear Evolution Systems

An algorithmic approach is developed for investigating the integrability
of nonlinear evolution systems linear on the highest derivatives with respect
to spatial variable. The mathematical background of the symmetry approach
to checking up the integrability conditions is formulated and the constructi-
ve algorithmic realization of this approach is proposed for the following
wide class of nonlinear evolution systems. Our algorithm had been implrmented
on the basis of the computer algebra system FORMAC. The basic subroutines
of the program are described. The concrete examples of evolution systems are
considered.

The investigation has been performed at the Laboratory of Computing
Techniques and Automation, JINR,
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