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1. At present an intensive work on classification of integrable 
non-linear partial differential equations with two independent vari­
ables is carried out. In a number of cases (ll/-/5/) the formUlati­
on of effective criteria of integrability has been achieved and the 
complete lists of the integrable systems have been obtained. For ex­
ample, in 141,/51 the complete list of integrable systems of the 
Schrl5dinger type 

(1)ttl=:: V::n;e 4- !(lI, ~,tI:r, 'lTxJ, 2f "" - 'IT,..x +J(lI,17,tlx ,trx ) 

is obtained. 
In frames of the symmetry approach (see 16/,/7/,/8/) the defini­

tion of integrability is baaed on internal properties of the equati­
ons and the conditions used for clasaification are the necessary 
conditions for existence of higher-Order symmetries and conservation 
laws. General derivation scheme for this conditions (see 17/,/8/) 
covers the systems of the form 

tit" cp(r,u, ..., UN) :=. II U,v + F /T, U, "', ",v_, )~ M<!>Z, (2) 

where 

l{:tI(t,;r). Ilt "" ?~ul'JX r tl =/(.( f _._, U I4f) F", (F" F"" I 
• ' " I , ••• , ./, (8) 

lI=dt.a;Jn"""~M), ~ll'C, <;li~O, '1i#~j(i~i)' 
Evolution equations integrable by inverse spectral transform and li­
nearizable like the Burgers equation satisfy the conditions of inte­
grability arising in symmetry approach. 

There are two types of problems solvable by means of the symme­
try approach: 1) properly classification problems of obtaining the 
complete list of the fixed form systems and describing the most ge­
neral transforms connecting this systems, 2) for a given concrate 
syste~ testing the conditions of integrability and computing symme­
tries and conservation law densities,In present paper we discuss the 
problems of the second type.Note that such problems remain actual 
even after the complete lists of systems under consideration have 
been already obtained. For example, since the list of integrabl~ 
systems (1) presented in'/4/,/51 is too large, it's more convenient 

r~;;:;":,;:. .. ";~f::;~w,._..;.l ., ',~hU}.' I 
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for a given concrete system to check the integrability conditions 
directly rather than to identify it with one from the list. 

The procedure of derivation and checking the necessary conditions 
of integrability demands tedious algebraic computations. To carry 
them out auto~tieally it's worth while to use computer algebra sys­
tems (/9/). 

In the case of sealar evolution equations the algorithm for 
checking up the integrability eonditions for a given equation is al­
ready implemented in computer algebra systems REDUCE-2 (/10/) and 
FORMAC (/11/) •. In present paper we suggest the algorithm for check­
ing the necessary conditiOnS of integrability and i~8 computer imp­
lementation in FORMAC for evolution systems (2)-(3). In addition our 
FORMAC program allows one to find symmetries and canonical conserva­
tion law densities. 

2. Let us remind the basic concepts of the symmetry approaeh and 
the general derivation scheme for necessary integrability conditions. 

The symmetry (generator of in:f'initesimsl symmetry) of evolution 
system (2) is called the vector function f "" (I", ... > ! ~) of a 
finite number of dynamical variables from the in:f'inite set 

such thatX,U,UI, •• _ 

(4)#~ <tp~ it)· , 
where ~~ is a matrix differential operator 

cp~ =< eru + q:>"t1) + .'- +- Cf'UAI' 'Oil/' (5) 

epUj - Jacobi matrix, that is 
--;,Cf'1c[cp, J "" - •

l(i "j ':> ,,;I 
The operators d I df and D J / d':K! in (4)-(5) are the total dif­
ferentiation operators with respect to variables t and X corres­
pondingly, both acting on the funetions of a finite number of dyna­
mical variables: 

J ~ ~ . i?

int; ~ L '01 (<p ) 5UJ ,


I.. , 1"0 ) 
- 'J !1!)',. '::> 

D::. :Ire + f. ~ (J,'H OU!' (6)
_ ,=1 ):0 , • 

Equation (4) defining symmetries means that equation (2) and equation 

fir;:: !r:r,v,Vfj .. .) 
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are compatible or in other words it means the invariance of equation 
(2) under in:f'initesimal transformations [-t, X"'X > Ii"" IUr/r:r,v,v,,. ..J. 
The linsarization operator ..defined by the formula 

1>1 (~)= ~e /tx,U+c1T, 'D(I(+£1rJ~ ••. ) IE =0 

transforms equation (4) to the following operator relation 

Lt +- [L > c:p~ ] ::: (C!f>~ ) 'l" • 
(7) 

where L := 1>4 ::: fu +- fl(, 'D f- (compare with (5». 
Let us define the iJ,. -th or(jer formal symmetry of the system (2) 

as a~ differential operator of the ~-tb order 

If, k L (8)L;;:: t;(> A~ 'D, ,aJ ::. rv 

with jllB.trix coefficients A, depending on a finite number of dyna­
mical variables auch that 

Lt-[CP~~L]=Q. (9) 

where t( is a differential operator of the form 
Q = ~ Q nK

/«A/ /( • 
Substitution of (8) in (9) leads to a chain of equations ar1s1ng 

after equating the coefficients of 7>1 I f= N.J..Itt-, •• _, A/+', A/ • 
So, putting the coefficient of n II/.J."" equal to zero one gets 

(10)[1\,.4,.]=0, 

Then for ~ n,. -/ one ean obtainI'" AI 

[ It , An-a +- N·;1 D (A,.) +- [<f>uAI-f , AIf, 1 -;:;. 0 (11) 

Next equations have the following general form 

[A, Ai-AI] +- 11/'11 J) (A/-N14) 4- [<f>ulII«, Ai-,II/JI J+- &,:::'0, l~AI, (12) 

where 13>J denotes matrices with eomponents expressed in term~ of 
the defferential operator (5) coefficients and the components of 
where ,- ;'/' - ;t/ + f • One ean find from equation (12) non-diago­
nal part 0 the matrix A('_AI and the diagonal part of the matrix 

Ai-AI + f • From equa ions (10)-(11) it follows that 

AH .,., cliar! (I" I • -. , f4~,,) I r i E: C , (13) 

The formel symmetry (8) ie called non-degenerated if 

tid AIf =- Pi f',. :;. 0 
J!·f 
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Evidently the formal symmetry is defined up to addition the arbitra­
ry diagonal matrix depending on a finite number of dynamical vari­
ables (this arbitrariness can be eliminated with normalization 

di/lff(A.)=o ). 
~he existence conditions of the non-degenerated formal symmetry 

being the conditions of solvability of eqs. (10)-(12) in terms of 
matrix-functions of dynamical variables are the criteria for const. 
ructing the lists of integrable equations. For example, the complete 
list of the second order integrable scalar equations of the genera~ 
form U :: ~(:r, ", til, tLz ) presented in /3/ corresponds to the choicflt 
It=!i. For equations of th,e form (2) with M:o 1, N::3 considerfld 
in paper /2/1t was supposed that n"9. 

It's easy to verify that the existence of the 11, -order symmet­
ry (the order of the symmetry is called J~ I., )wi.th 11. ~ n >A/ 
leeds to existence of thelt-th order formar symmetry (compare (7) 
and (9». Thus the conditions of the it -th order formal symmetry 
existence are the necessary conditions of the n,-th order symmetries 
existence, where 1t,"3-It-. One can prove (17/,/8/) that from the exi­
stence of the pair of the local high-order conservation laws it fol­
lows the existence of the formal symmetry. 

Let's remind that the local conservation law of system (2) is gi­
ven by the pair of scalar functions (/, G> of the dynamical vari­
abIes such that 

JlffJ> := 'D(G). (14) 

The function ~ is the density of the conservation law (14) and the 
order of the conservation law is defined as a degree of the following' 
polynomial in 1) (see /8/): 

R =(~) = '2. R" V i 'S == i (_ t> K D K ~u . (15) 
<;;u. * l~o ' ~(L 1£;0 K 

Using the algorithms of manipUlations with power series of the form 

L= 2: AJ(1JK:: A",V"'+ ___ -I-A.,+A_(7)-I+ . __ ~ (16)
hM . 

with negative powers of symbol 1) it's possible to generalize the 
above definition of the formal symmetry and to denote by the ~ 
symmetry of degree In and order fZ,. every formal series (16) with 
matrix coefficients depending on dynamical variables and satisfying 
the relation 

tI~ (L - ["f.;l~ L ] ) < h1+N-n- (17)t 

4­

Multiplication of formal series (16) is defined by the formula 

a-7J l ./V/(= IX ~ (~)1)'(~)1>bK-", 
'=0 

(~) == .1(1- f) ___ (I_-iH) (18) 
, 1-2_ ... _£ 

generalizing the Well-known differential operator multiplication 
rule. 

One of the pri,lcipal propositi.ons of the theory of formal symmet­
ries is the following 

Theorem 1 (17/ ,/B!). The condi.. tipns of the n -th order formal 
symmetry existence don't depend on the choice of the degree ~ of 
the formal symmetry (16), and on the choice of inte~ation constants 
arising in the chain of eqs. (10)~(12) for the coefficients of the 
formal symmetry.[J 

Note that the system of equations for the first ~ coefficients 
of the ~-t~ order formal symmetry obtained by equating the coeffici­
ents at Vi, i= m+AI, '--, m+A/-/I1~1 has the same form as the chain 
of eqs. (10)-(12) for the coefficients of the formal symmetry. In 
particular, for all 1'11= O,t1,±2, ___ the leading coefficient of 
the formal symmetry (16) is a constant diagonal matrix, that's 

Am:: oliiJ (!'., ---,1""')' 1",' € C, (19) 

One can formulate the existence conditions of the formal symmetry of 
the order ;z, > III in terms' of the lower-.order formal symmetry coeffi­
cients as it's given below. 

Theorem 2 (/7/,/8/). Let the non-degenerated formal symmetry of 
the order 1tr == AI+i, i ~ 0 exists.Then the existence of the n-th 
~order formal symmetry, where n..: N + i + f is equivalent to the 
following conditions 

f.t(Qli,j») €- I~l) j== 1, ___ , M, (20) 

where { ~F 

"J;til ,{::oR(t, J = W-f 

(21)
~r_i'laee('lR"!tL) />0 

• J • - 'th
1S a formal symmetry of the order t + 2 and the degree (... W1 

the leading coefficient (19) depending on M arbitrary parameters 

r" ---,r,.,·D.· 
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The condition J. fl.1 J t e 1m D (see (20» means the existence 
of 	the function 0 depending on dynamical variables X~ ",tI" --­
such that the pair ( R ~ 6) specifies the conservat ion law (14) for 
the system (2). Formula (21) determines the algorithm for construct­
ing the local conservation law densities from the infinite series 
which we shall call the canonical series. For all known examples of 
equations integrable by invsrse spectral transform this canonical 
series coincides with the series of local conservation laws which 

.can be constructed using the scattering matrix in ~ames of the in­
verse scattering method (/12/). 

3. Algorithm for checking the integrability conditions for the 

system (2) {algorithm (I» is the following.Firstly one tests condi­
tions (20) for i~O,,j= ". ___ , M which are equivalent (theorem 2) 

to existence of the N+l-order forlJl8l symmetry. At the next step one 

constructs the formal symmetry of the order 1 and the degree 3 and 

tests M conditions (20) for [;", /='" ___ , M • The fulfilment 

of these conditions guarantees the existence of ths AI+2 - order 

forlJl81 symmetry and so on. The elements of IJl8trix coefficients 

for the In -th degree fOrlJl8l symmetry (16) can be found from the 

following recurrence relations (see (11)-(13), (17)-(19»: 


AK==o, K:>m 


[A.!'If]'" ={ 0 i=l/

f fi, 

I 

i""i 
A {J _ 'A;-?-,-. ;n([AA/.j.j/],)-[C.v.f-IC]c-1 1 ) t.;i 


[It] ''/ _ f I A." 0 )
/( 	

I., -1 r J 	 1
N'h·1) ITt ([AAN.r-fJii)- [CN-IJ'-i]ii 1+r/J~"j,(22) 

, ~(AIt)"'o , 

where r i r/( ~ C are arbitrary constants, Ct" are the coeffi ­I 

cients of the commutator . 

[<P., L 1 ::. ~ C..-D
t 
• 

The main computational difficulty of the above algorithm is inver­
sion of the operator D which is necessary for constructing the di­
agonal- elements of AII • This problem is reduced to solving the fol­
lowing equation 

1)(Q)==$. 	 (23) 
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where ~ and S are the scalar functions of dynamical variables 
'X!. tI, (,('" . __ and D 111 the total differentiation operator (6) 

with respect to X • Note tbat the equation (2) can be solved not for 
any right bsnd side S x). 

The algorithm for the operator 1) inversion (algorithm (II» is 
given below. It allows to find the function G? as well as the set 
of 	relations for ,s which must be satisfied. The algorithm is based 
on 	the following conditions which must La hold for any function 
S(a',", ---, ttl() " IIM D : 

"d"S ~;zS 'i)IS 
_ • =::: 0 K:>O,

'dU'" '(Jut jf 	 'iH"~ ?U l =- 0 I91i~ 7U~.( /C-~ 

l,' 	
(24)?S;;;;/ =- 0, K::O. 

where = " /VI 

If 	conditions (24) are satisfied then S can be written as: 
, I '"''' - I '-' .. 

5 == n { 1(X.ll~·,._.1 £11(-1 )) +- S (X, (,{ J --- UK • .,) • (25)J 

Determining i from (25) we f~d that the-!olution of (23) is repre­
sented in the form Q -= 1+- Q. where Q satisfies the equation 
nU'i) :=. S . Therefore the condition SE- I"","'D is reduced to the 
condition S €: I .... l) • where the order of S is lower than the 
order of is • 

To find the function from equation (25) it is necessary to1 
compute indefinite integrals of the form 

J'llS J. ­
~ Cl~_1' 

It 
Our program allows to compute indefinite integrals tw ) dwIa
for the following class of integrands: 

dew) =T(~ (w) .e'Aj ""+ l rJ.j'J +fj )~. ) , 	 (26) 

where d.j'./'.-' Ti,'A j are conatants, ~-(w) are polynomials 
in '" • The dintegratl.on constants are put equal to zero. The formal 
description of the above algorithm is the following 

input: S ( <;r, U • •• «.J fJ /( ), " .::: O'1J. S 
output-: G (~,c.c. ___ • U.K_ .. ) > Z 

x) 	Note that the solvability of eq. (23) is equivalent to the equa­
lity "i>~ = 0 (/13/).

TLt 

7 

http:dintegratl.on


Q:=o, Z'=-O 
for h1 ::= K to 1 step;'1 -do 


for i:::! to M do 


for is ~ to t1 do 


:r>= tr ~. du" dili
JJ 'du';"~" 1.. iii< ,.. 

S:= S-y 
Z::Z+Y 

tor j::d to i..-l do 

'<I~S " )::,: au' ofuJfr ?U' 'ilui Itt I'll-of ... "'-1 
(27)

$'="S-Y 

Z ,= Z+ Y 


Q::Q+f2.£....Ju· 
J?U i... "'-f 

$"". $-1)( ( ?S. Ju.i )I '<)1('... "'-1 

for i::o 1 to M do 


,/::f1JS. au ,.
J 'bU' 

$:=$-Y 
Z:=2+Y 

Q:=Q+J Solx-, 

Applying the algorithm (II) we have S = 'D (Q)+- 2, 

where Z is "not integrable" expression. The equality =- (7 is 
equivalent to S e I tot D • 

Example. Let M:: 2 , U '" (w, 17) , 

2S :::. 'kTtr"1. +- J 'kT11>-1 -I-f' 'UT1 , where ~,!' f: ((' 

Applying the algorithm(II)we get 

Q::: 'kT1r1:> Z:= (rJ.-1) ur, V1 +1''lIT/. 
Thus Sf-li'I!1) is equivalent to ~;::=")!;::=o. 

The algorithm for computing the n -order symmetry {algorithm
i!!!l2 is based on formulae (7)-(12) and includes three steps. 
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At the first step one computes the n-th order formal symmetry 
of the form (8) applying the algorithm (I). The existence of the 
formal symmetry is ensured by the corresponding integrability condi­
tions (theorems 1,2). Otherwise the algorithm informs about the ab­

I sence of symmetry and terminates. Remind t~t recurrence relations 
(22) lead to the formal sylDl!letry depending ~m parameters !'" '--,i~I and integration constants (i ~ • 

The symmetry of the order f'b defined by (4) exists only if the 
equality L:;:: f* holds with the n- -th order formal symmetry L al­

ready found. The equation L:::. f'" is equivalent to the following 
system of equations for the formal symmetry coefficients 

Kif;: 0, -I, ,."I"V':U-i [AI(J,;- - :ui [AI L·... :: 0I (28)
t"i,H4-:: 1, __ ', M. 

At the second step one verifies the solvability of this system for 
obtaining concrete values of !'i, r/' . Note that conditions (28) 

are equivalent to existence of the function H-= H(r, {.(, .... {.( .. ) 

H= (H", '.', H M) satisfying the equation 

n(H)- ~ (H) - (?J:!.1U 1 

(;1 
__ ?HMu M) L(u.,) (29)-<lX "/,14 )c;u'" , • 

IfH is a solution of the equation (29) then the symmetry canf 
be represented in the form 

.f '" H +- h-f';X!,U) j k:; (il : ...)vM ) J 
~I :::;. ~I(-;r>, {.( L)_ (30) 

At the third step substituting (30) in (4) we derive the overdeter­
mined system of equations for h fa::, tI) • For testing the conditions 
(28) and solving the equation (29) it is sufficient to modify the 
algorithm (II) slightly. Equation (29) is the set of ~ scalar equa­
tions 

A 
A ( 'd )D({Q):::: S 'Dt :::: CD - '()x - IA. ;:;;u.l 1:= 1, ...,M. (31 ) 

To modifY the algorithm (II) for solving the equation (31) one has 
to replace D by 13.1 in (27) and to modify cer:ditions (31) for 

1<:= fJ'7J S = (), -( which become the fello.... ing 

~ =0 ";?2S .:00 -;;2S '(;I'S 
d 1I ~ -, 'd (J '/) 11 ~ , "u i 'd U ,. 'd /I i d /1/' :::;. 0 

1 1 

i'i=-f,--"M, i~.t, /I~ 

for I< := .i and -'() S . '"" 0 l,. 1 M ~o
";)W4 ; I • ~-, ... -:c 
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for K= 0 • Not. that the general solution of the equation (31) 
con~aints an additive arbitrary function 3{X, U t ) • 

4. The above algorithms are implemented in the fr~ of compu­
ter algebra system FORMAC (/14/). The choice of FORMAG is caused by 

its high execution velocity, powerful tools for expreasion analysis 
and the possibility to extend the syst,m by means of the PL/l lang­
uage. OUr program includes two basic Procedures - CONnS and SYM and 
about twenty auxiliary procedures. The input o~the program includes 
M - the number of equations in system (2); IV - the order of the 
system (2); FF{i) ({;:: I, .• " 14) 7 the components of the system (2) 
right-hand side. The variables UI ip the right hand-side of (2) 
are coded as U( I, j) • It's sufficient to us~ procedures COODS 
and SYM to check up the integrability Qf concrete system (2) and to 
compute symmetries and canonical conservation law densities. ' 

" Procedure COODS implements the algorithm (I). It allo.s to teat 
the conditions of integrability (that is the existance of the formal 
symmetry) and to compute canonical conversation law densities (21). 

The call for CONDS has the form CONDS (i. J iz. p) where l~, iz,t' 
are integers such that (,?-o, t~ ~i"f'=o,/ • For an input 

{,,=o, [z=n.-N-/, p=/ 

CONDS tests the condit ions (20) of the n. -th order formal symmetry 
existence for n. > N • If apY of these conditions are not satisfied 
the followipg relations 

ZERO .. <" expression";::> 

Bre printed out. For existence ot the formal symmetry the right-hand 
sides of these relations muat be put equal to zero. If it leads to 
contradiction then the evolution system under investigation has not 
apY formal sYlDllletry of the order greater or equal to It • Therefore 
it is not integrable. 

For the integrable systems (2) CONDS computs and prints out 
the canonical conservation lay densities (21). For an input i., J i~ 

10 

with· i f ~ iz. and p 0 the canonical densities R{i'i) for 

j;:::{, ... ,Mi= i1~ l,+1, "-J (~ ~ 

are computed and printli/d out (for p =0 the corresponding conditions 

(20) are not tested ). 

Procedure SYM implements the algorithm (Ill). It allows to com­
pute symmetries of the form (4) fOr the system (2). The p~ocedure 
call is SYM (It), where ft. is a syllljlletry order. SYM computes and 
prints out the function fi satistfing the equation (29).~oreover the 
system of equations for the constants fl, (i K (coded as MU(1), 

G-( I, K) ) and th,e System of equations for /...(~, ("I) (its compo­
nents are coded ss H¢ (I). ( X " U( I, (/)) ) Bre printed out 8S 

ZERO s ~ expresaion ~ 

which right-hand sides muat be equal to zero. 
Note that .the current version of the program can be applied,only 

to the systems (2) with right-hand sides beipg functions of tk) 
from the class (26). To extend the class of considered systems it is 
sufticient to modifY the procedure INT implementipg the indefinite 

integration. 

5. Here we give some examples of program application. 

1) Let ua consider the following Nonlinear Shr~dinger-like equa­

tion 

- 17. = 17; -+ 172' U • (32 ) " = tl -+ U?17 ,f ~t 4< ' 

Using CONDS'(O,6,1) we obtain that system (32) has the 10th order 
formal symmetries but has no ll~h order non-degenerated formal sym­

metries. theretore it is not integrable. 

2) The following system was obtained in /5/, where integrable 

systems' (1) were classified: 

11 



U tl +1/Z+ ?2 -17 = 1): +U Z + ';)r (33)t z. , ?1T ~ t 2 1 (J U ' 

where 

2: =/', e~p (U+ 1T)+f~ e1f{ 'iU+ 'hr) +-}'3 elf{ ~U+7f.1r) I 

~::;;.R"p(1.CJriI3):> 9;=).2 
; 

~i are arbitrary constants, 
The system (33) is known to have the formal symmetry of the order
ft.='. By means of the progrl:\m developed ws found that (33) has the 
4th order symmetry f = ( f ~ ~ t Z) t where 

r ,_ u 	 z It 3 .1 I(
j - ~-I-21)-,frJ. -2'lr, U'U,l + 171 -:i 'lr, U1 + 3 tI, +­

1 ?? ( %) + 1 -;;oj!'
-+ ?(:tUl+'lr, ) + ::;u 1rl +- /'(, i.,;:;:.·2 .> 


r z_ 17 Z 1t.3 1 t 
r -- t- 2U'U.J,+-2.tI,1r,'l'z-U,z +-iU,1tf-~1r, ­

-2(2.f1':+-U I )_9? (u -I-'11:%.)_1?i! :e z , ?~ 2. 1 }!. 7i7i' . 

3) In classifying integrable third-order systems o~ two equations 
the following systems were obtained 

Ut" = (.(;6 +- Uu, • Vf:::= ~"!. +- UtT., -I- ';.", 	 (34) 

and 

(35)
Ut =: !>u$. +- (.(U f " ~ = 8 Z""~ + ~ Ut1-" + f fr(.( 1 

12 

which were known to have the 9th order formal symmetries only. Using 
the program developed we tested the existence of the 11th order for­
mal symmetries. It turned out that the system (34) has and system 
(35) has no such formal symmetry. Moreover,we computed the 5-order 
symmetry (4) for the I'lystem (34) which is of the form J= l t f, tZ) 1 
where 

t 1 5' 10 !>" l-
T 	 ::. UI$' +- 1: UUJt. + 3" tt,Uz. +- c; {.( "', 

, z _ 10!> 	 .2£'!> 7 {;'
T 	 - 1,.".r; -I- ];" {J1/~ + i '/Ttl!. + 10 U, "17:z. + "3 17, Uz +- 7: U 11-1 +- 1: 1TIIUf • 

~ll above examples take from 5 to 20 minut&e of ES-l061 running 
time and about 300 K memory. 
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J4. 

repAT B.Il. HAP. E5-87-40 
TIpHMeHeHHe KOMJIbIOTepHOJ1 arrreOphJ MH Hccne,nOBaHHH 

HHTerpHpyeMOCTH HenHHei1HbIX 3BCJlIOUHOI-U-IbJX CHCTeM 

PaCCMOTpeH anrOpHTMHqeCKHA noUxoU K HccneAOHaHHID YCJIOBHft MHTerpHpyeMocTH 
CHCT€M HeJ1HHeHHhJX 3BOJUOUHOHHbtX ypaBHeHHH, JUluei:tHbJX OTHOCHTeJlbHo CTapWHX rrpo­

H3BOAHbm no npOCTpaHCTBeHHoA nepeMeHHOH~ C$OpMYJrnpOBaH~ MaTeMaTHQeCKHe QCHO­
B~ CHMMeTpHHHoro MeTOAa npOBepXH ycnOBHH HHTerpHpyeMOcTH H OnHCaH KOHCTpYK­
THHHbIH aJIrOpHTM, peanHS}"lO.UJ;HH ,naHHbn:i MeTO,n ,nJHl lllHpOKoro KJIaCCa HeJIHUeHHblX 380­
mo~OHHblX CHCTeM~ 3TOT a.nropHTM peaJIH30BaH B BRAe npOrpaMMbI Ha H3hIKe CHCTeMbl 
KOMnh~TepHOH anre6phI FORMAC~ ~aHo OIlHcaHHe OCHOBHWX rrpoue~yp ,naHHoH nporpaM­
Mhl. npHBe,neHbI npHMepbl npHMeHeHHfI nporpaMMbl WIH Hcc.neAoaaHHfI HHTerpHpyeMocTH 
KOHKpeTH~ HenHHeftHhlX 3Bonro~HOHHWX CHCTeM. 

PaeioTa BbIrlOJIHeHa B flaoopaTopHH BbLllHCJIHTenhHOH TeXHHKI1 11 aBTOMaTH3al~HH 
OIDIH. 

npenptIKT OfuenHHeHHOro UCTHT)"Ta R,llepHhlx HccneJlOBaHHH. lly6Ha 1987 

GerJt V.P. et al. E5-87-40 
Computer Algebra Application for Investigating 
Integrability of Nonlinear Evolution Systems 

An algorithmic approach is developed for 
of nonlinear evolution systems linear on the highest derivatives with respect 
to spatial variable. The mathematical background of the approach 
to checking up the conditions is constructi­
ve algorithmic approach is proposed for the following 
wide class of nonlinear evolution systems. Our a19ori thm had been imp lC,['lented 
on the basis of the computer algebra system FO~~C. The basic subroutines 
of the program are described. The concrete examples of evolution systems are 
considered. 

The investigation has been performed at the Laboratory of Computing 
Techniques and Automation, JINR. 
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