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1. En't r-oduc t.Lon
 

In (4] C.Foi-as characterizes ali possible scatteriuG ma­


trices occurring in the abstract fro.mework Df a dislJipa­


tive Lax-Phillips scattering theory clevelopeà in [6].
 

The airo of this papel' is t'O continue the investigation
 

íof the scattering matrix uaí.ng a qu t-e diff-e:rent ap-: 

proach to th~s object. The ncw appronch ~orcen n ge­

neralization of the notion of Darlington synthesis as 

d€fined in ~ 31 to the case that the contz-ac t Lon-cveIued 

.function i3 not an analytical one. This. generalized 

notion which in the papel' i8 called D.Il allalytically 

unitary synthesis OI a. contraction-valued funetion re­

duces to the notion of Darlington synthesia if tb€ 

operator-valued fW1ction is an analyti~al one. Daing 

this notion we find that a strongly measurable contraction­

vulued function c1ill.be regarded as the scatterlng matrix 

of a dissipnti~~ Lo.x-~hillips scattering theory ii and 

ouly if the ad j.o í.nt contra-ction-valucd function admi ts 

an analytically uni tory synthesis. Moreover, taking 

iuto ac c ourrt the above mentioned relo.tion to the Dar­

lington synthesis we find that a contraction-valued 

functlon nrises from on orthogonal dissipative Lax-Phil ­

lips scottering theory if and only if the adjoint contrac­

tion-valued function is an analytical one and possesses a 

Darlington synthesis. 

From thispoint of view the condi tions «(3), «(3..), 

(5.5.1) - (5.5.4J of C.Foias [41 choracterizing the set of 

occurring scattering matrices in a necessary and 'sufficient 

manne r are aquivalent to the property that the o.dj oint 
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contraction-valued function has nn analytical1y unitnry 

synthesis. rf the adjoint function ia an ena1ytical one 

this rneans that (0), (0il:)' (5.5.1) - (5.5.4) of r4) 

are necessal~ and suffiGient conditions to guarantee the 

existence of a Darlington synthesis. At the end of thls 

paper we eive a direct proof of the~e concluo1ons. 

More6vcr, we believe that the present approach has 

the advantage of	 a great simplicity and trnnsparency. 

Especially, this	 transparency' appears in tbe roconstruc­

tion theorem which i8 based on the well-known nnd widely 

invcstigated reconstruction theorem of a conoorvative 

Lax-Phillips scattering theory [1,2,6]. 

In accordance witb [4] we use a discret Lax-Phil ­

lips framework. For the convenience ~f the rendor we re­

peat the assumptions of the dissipative Lax-Phil11ps scat­

tering theory in	 a discret framwork. A triplet {T, .D+, 2>_J 
consisting of a contraction T on a separabla llllbert 

epac e rat and two	 subspaces ~±. of dt io caJ.lod o. d1ssi­

pative Lax-Phillips scattering theory ii the following 

.assumptions are fulfilled. 

(h1) T 1) s 3J , T- 3) S J) , 
+ + - ­

(h2) T tc21+ and T'* t~_ are isometries,
 

o.» n Tn J) + = {O} = n T"n J) ,
 
n é 7l+ ne..ã"+­

( ) iJt. n d-t ...n
h4 Jlllt.e.n T ""0, Jl"at8J) T ---+0 strongly for n~ +00. 

+ ­

Let U on ~	 be the minimal unitary dilation of T. Let 

(1.1	 ) ~± V unJ)±. '
 
nf..Z
 

2 

Obvious1y, the subspaces ~± reduce the operator U. We 

set 

(1.2 ) U± = U l'de±. 

The wave operators \'l± are defined by 

n(1.3	 ) W = s-lim Tn p:lt. U... 
- n-++oO .:D_­

and 

(1.4 ) W+ = s-lim T-n p:: ~. 
n----;)+oo	 + 

The scattering operntor S, 

1If
(1. 5 ) s W+W_, 

acts from àe_ Lnt o oe.;-. The operators U± are bilateral 

shifts. Transforming these operators into their Fourier 

representations we find that in thesc representations 

the scattering opcrator S acts as a multiplication opera­

tor with a strongly measurable contractlon-valued function 

which is called the scattering matrix of the dissipative 

Lax-Phillips scattering theory. 

2. Conscrvative and nonconservative L~x-Phillips scat­

tering theory 

We say the triplet {T, .;0+, .D_3 forms a conservative Lax­

Phillips s~attering theory [51 demaqding in addition to 

(h1) - (h4) that T ie a unitary operator. Usually, in 
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this case the condition (h4) ia replaced by 

C2.1 > V TU JJ+ = -ae. , 
nE.·~ - ­

but it ia not hnrd to see that (h4) and (2.1) are
 

equivalent provided T ia a unita~~ operator.
 

DefiniU.on 2.1. 1et [r, J)+,:D_J be a dissipative Lax­


Phillips scattering theol~. If tb.ere exists a unitary
 

operator U on 'j{,::> Clt as- well as orthogonal incoming and,
 

outgoing aubspaces G_ and G+ of U such that the conditions
 

(2.2 ) P~ U ~de T 

and 

(2.3 ) 'JC. = G+ 0 Je e G_ 

are fulfilled and {u, c1J~, J)-_~], J)± = ;))± G G±, forms a 

conservative Lnx-Phillips scattering theory, then we call 

{u, c:1r~, :1):" J) a c on aar-vatdve extension of {T, eD+, .:DJ. 
Proposition 2.2. Every dissipative Lax-Phillips Bcattering 

theory {T, Jl+, JJ_l ha.s a conservative extension. 

Pro~ Lct U be the minimal un±taJ.'Y dilation of T on ~ • 

Obviously, the condition (2.2) 18 fulfilled. We introduce 

the wan.dering subspaces J. = (CU - T)i3e)- and ';t/{.'=: 

Q «I - UT*)ot)- in accordance with [7J. We sot 

(2.4 ) G+:c M+(~) 

nud 

4· 

(2.5 ) G r.H s: ). E) r.~ (~, ).
~'<; + *. 

Taking Lrrt o account the structure af a minimal urrí to..ry 

dilation we get 

(2 ..b ) ')(1 = G+ (±) de. ® G_~ 

Obvious]~, G+ and G_ are outgoing ~nd incoming subspnces 

of u. 
Defining now the subspaces J)± in accordance with 

Definition 2.1 the triplet tU, ~~, ~~} forms a conserva­

tive ~:-Phillips scattering theory if we establish the 

relation 

(2.7 ~ ~ V Un J)'.- +nE:?L ­

But taking into account Lernma 3 of [4J we get 

(2.8 ) % de+ ® M( '<t ) V U
n .o;

nE:.Z 

and 

(2.9	 ) ~ de _ @ IrH ;t~ ) V u" J)~ 
n E. fl 

which completes the proof .• 

Let {U, J)~,J)~} be a conservative extension aí' the 

dtssipati ve Lax-Phillips ac a t t er í.ng theory 1.. T, XI+' .;uJ. 
Toking into eccount Definition 2.1 it ia not hard to see 

that U ia a unitary dilation of T. 
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Using thiB remark V/e obtain the invariance 01" the 

subspac e.s 1J and 1) wí.th reapect to U and U", respec­
+ ­

tively. Hence there ~re wroldering Bubapacos J(± ~ ~± 

with respect to U Buch that 

(2.10) Xl+ ::; M+(J(+}, 

(2.11) Xl l.1(J(_) e f.1+ (X_) 

nnd 

(2.12) ~± ::; l.1(J[±.). 

Denoting by '<L and ;tis. the wanderãng subspaoea 01" the out­

going and incoming subspnces G+ and G_, reapectively, 

(2.13) G+=1!+(;t) 

nnd 

(2.14) G_ = M(;t..r) E)I.1'+(t,.), 

it ia not hard to see that the subspaces 

(2.15) Q+ = J(+ (±) t and Q_ j{_@ 'it ... 

are a180 wandering subapacea obeying 

(2.16) J)~ = M+(Q+) 

6 

and 

(2.17) .;D' = M(Q_) E)M+(Q_>. 

Becauae tu, .2)~, JJ:..li"orms li. conservative Lax-Phillips 

Bcattering theory we get 

(2.18) ~ = M(Q±). 

If ~± denotes the Fourier transformation corresponding 

to the wandering subspaces Q± we find 

(2.19) 4> I J) I = H2 ( Q )
+ + + 

and 

(2.20) ~.:.v: = L2
( Q_ ) 8 H2 ( Q_ ) . 

Moreover, we have 

(2.21) C!>~,.D+ = H
2 ( J'"+) , 

(2.22) cf> I G = H2 ( -» )++ oV 

and 

2(2.23) q, :.. ~_ = L ( .x_)	 E) H2 ( X _) , 

2(2.24)	 <p..'. 'G_ = L ( -;t 11) 8 H2 ( 't 11c ) • 

1 



Let S' be the scattering op~rator of the conservative 
l -1 

extension of" tT, .D+, .D_J. The. operator ~~ S' q,~ acts as 

a muItiplication operator with a strongly measurabIe 

function tQ_,Q+,SI(t)J, values of which are isometries 

from Q_ anto Q+ (conservative Lax-PhiIIips scattering 

theory!). Usually, this unitary-valued function is called 

the scattering Inl1trix of the conservative Lax-Phillips 

scat t er-í.ng- t heory {U, J)~, .1).:). 

Proposition 2 • .3. Let t-K_, J(+,S(t)j be the scattering matrix 

yielded by a dissipative Lax-PhiIIips scattering theory 

tT, ~+, ~_\' If tQ_,Q+,SI(t)} denotes the scattering ma­

trix of the conscrvative extension 'of {,T, 1)+, ltj, then 

both scattering matrices are reIated by 

P
Q 

+ S' (t) I Ir(2.25) S(t) X+ JI_, 

t l:. [o, 2 Jt) a , e •• 

Proof. Let W± be the wave operators of the conservative 

extension defined by 

. -n 'U. n(2.26) w' s-llm.U P~, U • 
± n~~co ~ 

Obviously, we have 

'j;{, 
(2.21) W± = P~ \Vi. ~~ 

8 

which impIies 

~ 
(2.28) P"Je s: t'Ce. S. 

+ ­

But (2.28) immedlately yieIds (2.25). C 

In such a way Proposition 2.3 shows us that evcry 

8~attering matrix of n dissipntive Lax-PhiIlips scat­

tering theory can be regarded ns the compression of the 

scattering matrix of its conservative extension. 

;. Scattering matrix and anaIyticA.llY unitary synthesis 

Every strongly measurable contraction-valued function can 

be diIated to a strongly measurabIe unitary-vaIued func­

tion. Further, it is weII-known that every strongly meas­

urable unitary-vaIued function can be regarded as the 

scattering matrix of a conservative Lax-PhiIIips scat~ 

tering theory. Hence the conjecture seems to be true that 

in ~irtue of Proposition 2.3 ,ev~ry strong1y measurabIe 

contraction-valued function can be thought as the scat­

tering matrix of a dissipative Lax-Phillips scattering 

theory. But thia conjecture la false. The ~oint ls that 

the scattering matrix of a conservative extension obe!s 

some additional properties description of which is the 

contents of the following 

Proposi tion 3.1. Let CU, .D~, .D~} be a conservàtive exten­

aion of the dissipative Lax-PhiIIips scatteri~g theory 

{T, J)+, J)_1. If {Q_,Q+,S' (t)J denotes .the acut t er-í.ng mo.­

trix of [u, .D~, J)~}, then the contraction-valued func-
Q 

t í.ona t~J ,Q_, S' (t) '" f' :t} and [Q+, t~ ,Pt-'" S' (t )*} are ana­

lytic ones. Moreover, if U is a. minirnal unitary diIation 
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---------------- -- ----------

of T, then the analytic contraction-valued function 

t'-L , t ~, e().. )} defined by 

0.1 ) 6( eit ) P
Q
- S'(t)~ ~ t 

t • 
for a.e. t é[O,2Jt) coincides with the characteristic 

functlon af T. 

~ Taking into account the definition of the wave and 

scattcring operators we find 

0.2 ) P
~ s ' ('.D' 'J.(. (':D'-- = o. 
G PG+ - + 

But (J.2) yields 

(J.J ) S'(t)f(t) 1.. H2 ( t, )
 

for every f E:L2 ( Q_ ) 8H2 ( Q_ ) . Hence we obtain
 

(J.4 S'(t)·f(t).l. L2(Q_) 8H2 ( Q_ ) 

for every fE:.H2 ( i, ) . Consequently, t~ ,Q_,S'(t)~ T';t} 

forms an analytical contraction-valued funct1on. 

Using the relation 

0.5 ) ~ S' te. t.1)'+ oPG_ 

we similarly conclude that tQ+, t.,p~-. S'(tY"} Ls an 

analyt1cal contraction-valued function. 

To prove the remaining part of the prapasition we 

lO 

- ~ 

remark that the triplet [u,G+,G_1 forms another kind af 

nonconservative Lax-Phillips scattering theory which ia 

usually called a	 Lax-Phillips scattering theory with 

losses. 'T~is scattering theory ia an orthogonal one which 

in distinction from the conservative scattering theory 

does not fulfil the completeneas conditlon (2.1). The 

wave opcrators W± of this scattering theory vnth losses 

are defined by 

....., -n 'J{, •.n(J.6 ) s-lim U •w± PG U 
n-4±oo .± 

Obviously, we have 

(J.1 ) w± ,= WlfG±. 

-..I ....., ... ~ 

Hence the scattering operator S = W+W_ admits the repre­

sentation 

,.., JZ, 
(J.8	 ) S = PG S'/'G_
 

+
 

Taklng into account the incaming and outgoing spectral 

representatians given by (2.22) and (2.24) we abtain 

Q
S(t)(J.9 ) Pi: S'(t)('1.J-M' 

where t;t., 't ,S(t)J denotes the scattering matrix af 

[U,G+,G_}. But it is well-known [1] that by virtue of the 

minimality af U this scattering matrix coincides with the 

adjoint characteriatic function t';!,.' 't ,eT( À ).} af T, 1.e. 

11 



<3.10) S(t) = eT(eit)~ 

for a.e. tE. [O,2Jt). ~il 

On the basis of Proposition 3.1 the introduction of 

the following definition seems to be useful. 

Dcfinition 3.2. Le t tOJ o' ~o,R(t)} be a strongly meas­

urable operator-valued function values of which are con­

tractions acting from the separable Hilbert space ~o 

into the separable Hilbert space ~o. We saYiOjo' ~o,R(t)} 

admits an unalytically wlitar,y synthesis if there exist 

three an;lytical corttraction-valued functions tOJ l' ao,Z( À )}, 

t~o' ~1'Y(À)} and tOJ1 , ~1'X(À )], where ~1 and ~~'1 are 

separable Hilbert spaces, auch that the contraction-va­

lued function R'(t), 

.:
Y( e ~1 ~1

i t)] : 

0.11) Rf(t) = ® --? E), 
i t )Z(e R(t) 

~o ~o 

:forms a unitary-valued function for a. e. tE:. (.0, 2JL). 

We remark that if t~o' ~o,R(t)} ia' also an analytical 

Xunction, then Definition 3.2 coincides vdth the definition 

of the Darlington synthesis gf.ven in [3J. 

Now Prop'osition 3.1 can be tormulated as follows. 

~~L~t {Jr_, "J(r,S(t)} be the scattering matrix 

of a dissipative Lax-Phillips scattering theory. Then the 

adjoint contraction-valued function {J(+,J(_,S(t)NJ admita 

an analytically unitary synthesis. 

'i 

Proof. By [Q_,Q+,S'(t)J we denote the Bcattering matrix 

of a conservative extension. Taking into account (2.25) 

and (3.1) we obtain
~,! 

<3.12) S(t)~ Px.- S'(t)'MtJ(t Q

- + 

and 

Q- ~ 
<3.13) e (ei t) Pt S'(t)t'~ 

1Il 

for a s e , t E. [0,2Jl.). Further we_ set 

Q 
0.14) C(~t) P - S'(t)~t~.x: 

and 

<3.15) c.(ei t ) Pi~ SI (t,) il t J(+, 

tE.[0,2JL) a s e •• Because of Proposition 3.1 the contrac­

tion-value~ functions {t" J(_, Cc>-- )} and {Jr+, :t..,C~( ), )} 

are analytical ones. Consequently, the block-matrix re­

presentation 

i t ire(e ) CliI ( e t »). 'L '<t ~ 
<3.16) S'(t)*= .@~® 

itlC(e ) S(t)* J(+ \ Jr_ r 
J~
 defines an analytically unitary synthesis of the adjoint
 

i~ corrtz-act Lorr-vaLued function t J(+' X_, S(t) --J . mI
 
i 

12 13 



Con~idering now an orthogonal dissipative La.:x:­

Phillips scattering theory (eD + .L;[)_) we obtain the fol­

lowing 

Corollary 3.4. Let lJ( _,J(+,S(t)} be the scattering ma­

trix yielded by an orthogonal dissipative Lax-Phillips 

scattering theory. Then the adjoint scatte~ing matrix 

iJr+,Jr_,S(t)} is an analytical contraction-valued 

function, which admits a Darlington synthesis. 

Proof. Because of the orthogonality we find that the con­

servative extension is an orthogonal conservative Lax­

Phillips scattering theory (J)~ .J.- J)~). But this implies 

that the adjoint scat t er-í.ng matrix tQ+,Q_,Sl (t)*'j of the 

conservative e~tension is an inner function of both sides. 

Applying Proposition 2.3 we complete the proof. g 

4. Reconstruction
 

Our next aim is to prove the converse to Theorem 3.3.
 

Theorem 4.1. Lett-X_, Jr+,S(t)J be a strongly measurable
 

contraction-valued function. If the adjoint function
 

tJr+, Jr_,S(t)*} admits an analytically unitary synthesis,
 

then{X_, J(+,S(t) J can be regarded as the scattering ma­


trix ot'a dissipative Lax-Phillips scattering theory.
 

Proof. In accordance with our assumptions we suppose that
 

are separable Hilbert spaces -L and t .. as well as ana­


lytical contraction-valued functions ti, ~,." 8 o, )J,
 
tJr+, ~~,c-,il«À)} and{t,X_,C('>-)} such that <3.16) de­


fines an analytically unitary synthesis ofiJr+,Jr_,S(t)·}.
 

With the help of the unitary-valued function
 

tQ_,Q+,Sl(t)} ,Q_ =: X_ ® 'iJ. and Q+ =: X+ EE> 'ct,
 

14 

i t)*fe (e

(4.1 ) SI (t) 

~.(eit)'" 

li' 

I defines a contraction on ~. The operator U is a unitary 

dilation of T.
 

I The following aim ia to define the invariant sub­


spaces J) + and ~ _. We set eD+ = H2( Y+) and JJ
 

= S'(L2 ( J(_ ) GH2CJC» . Obviously, we have .D+J. G+ and
'li 
".I 
! I 15 
I 

l 

• f 

we construct a conservative Lax-PhillipB scattering theory 

L2(Q+),in the following way. We set 'J,l; =: J) ~ =: H2 (Q+ ) 

and JJ~ = S'(L~(Q_) GH2 (Q_ » , where SI denotes the mul­

into L2(Q+)tiplication ope rator from L2(Q_) induced by 

the unitary-valued f~ction tQ_,Q+,S'(t)}. Denoting by U 
i t = L2(Q+),the multiplication operator induced by e on U 

it is not hard to see that the triplet tU,1)~,J)~} forms 

a conservative Lax-Phillips scattering theory scattering 

matrix of which coincides with {Q_,Q+,Sl(t)j. 

Next we define the contraction T. To this end we in­

troduce the subspaces G+ = H2(~) and G_ = S'(L2 ( t, ll() <3 
2(9 H ~.». Taking into account the properties of the analy­

tically ,unitary syrrthes í s (4.1) we find that the sub­

spacas G+ and G_ are orthogonal, i.e. G+~G_. Moreover, 

the aubspaces G+ and G_ are invariant with respect to U 
W 

and U , respectively. Consequently, introducing the sub­

space "3e = ~ e (G+ (±) G_) the relation 

~ (4.2 T P~U T'~ 

ccei t )4l] 't* 'ti,; 

: 8 ---=> ® 
s(t) J(_ .x; 
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'í\ 1. G whLch implies J:) ~ <te •	 Similarly, we obtain 
~+ - + 
J) _ 1 G_ and oU _1 G+ whLc h implies J) _ S; 'at • 

Further we show that tT, j)+' ;;O -1 forms a dissipative 

Lax-PhillipB scattering theory. Obviously, the subspaces 

J) + and J) _ are invariant wi th respect to U and u*, re­

specti veLy , But this implies the invariance of J) and , + 
J) _ with respect t-o T and' T'\ r-e sp ec ti í, vely. Mor-eover, we 

get T teD ;:: U r-J) and T~'IJ)' u'"t.D,;.. :But this implies
+ + ­

(h2)	 and (h3). 

TQ prove (h4) w~·note. the relation 

(4.3	 ) tj,(, ;:: L2( J(+) @ L2 ( ';i;' ) 

V unl)+ ® V UnG+. 
n~~ ne.Z 

Now for every m E. LZ and every f f	 H
2 
(J[+) we find 

n
(4.4	 ) n~+OQs-lim E,'J(,

atE:);l) U Umf o, 
+ 

which implies 

(4.5	 ) s-lim pd<, n o 
n-->+oo ;jtE:)J) U f-+­

for every fE.L2(J(+). SiJTI.ilarly, for every mE..Z and every 

g E. H2 (i,) we get 

. ~ n In(4.6	 ) a-d.Lm U U g :: OPat8 0lJ
n-;)+oO +
 

:Sut (4.6) yie1ds
 

'J.l. Ung :: O
(4.7	 ) s-lim P~gJ) 

n---'>. += + 

for	 every g E:. L2 '( rL ). Consequently, taking into account 

(4.3), (4.5) and (4.7) we obtain	 s-lim P~8~ Unh;:: O 
n--?+= + 

~I ~	 n
for every hE:.J"v. Hence we find s í.m Pd{'8J) T :: O.-â 

n-?+co + 

~. Similarly, we prove s-lim P;E)JJ T*n:: o. 
I n~+= ­

Obv±ously, the triplet ~U, J)~, J)~} iS,a c on servatLve­

extension of the dissipative Lax-Phil1ips scattering 

theory t T, Il+, .1)_1. Taking into account Proposition 2-.3 

and (4.1) we obtain that the scattering matrix of 

{T, X>+, ~-1 coincides with tJr_, .x~,.S(t)}. m 

Theorem 4.1 implies the followíng 

Corollary 4.2. Let tJr_, Jr+,S(t») Qe a strongly measurable 

contraction-valued function. If the adjoint function 

tJr+, J(_,S(t)~} ~s'an analytical one ~nd admits. a Dar­

lington synthesis, then tJr_, )(+,S(t)} can be regarded 

as the scattering mat~ix 9f an ortbogonal dissipative 

Lax-Phillips scattering theory. 

Proof. Using tne considerations of Theorem 4.1 it remains . 

to show that tl1e subspac es ;D" = H
2 UI' ) and JJ ,. + ­

2(.)(_) 8H2 ( X _» = S'(L are ortbogonal. But this is obvious 

in virtue of the analyticity of {J(+,Jr_,S(t)*]. D 

5. Analyticnlly unitary synthesis and the solution of 

C.Foias 

An obvious consequence of Tbeoreln 4.1 ia the Iollowing 

Proposition 5.1. The strongly measurable contraction-va­

lued function t1J( _ ,j(+ ,S(t)] can be regarded as the scat­

16 17 



1.1
 

tering matrix of a dissipative Lax-Phillips scattering 

theorY if and only if there exist analytical contraetion­

valued functions {L, Jr_,cO, )},. tJ(+,~.. ,c-lk(>")} and 

t-L, t .. , e(À )} sueh tha'J; the relations 

(5.1 ) I = e(ei t) e (eitr* + C~(eit)c*(eit)w, 

(5.2 ) o = e(eit}{;(eit)~ + C~(eit)s(t), 

(5.3 ) I = C(eit)C(eit)~ + S(t)~S(t) 

1'\and 

8(ei t)"'e(ei t)(5.4 ) I = + C(eit)*C(ei t), 

(5.5 ) o = c~( ei t )"" e(ei t) + s.( t ) C( e'i t ) , 

(5.6 ) I = C~(eit)~c~(eit) + S(t)S(t)~ 

are fulfilled for a s e , t t[O,.23t).· 

~ Let iJr_, Jr+,S(t)} be the scattering matrix af a 

dissipative Lax-Phillips scattering theory. Then on 

account of .Theorem 3.3 there are analytical functions 

-l~ ,)(_,C()-,)J, tX +, 't'J('C",,()..)} and {t" ;1,,,,, e (\)J such 

that (4.1) forms a unitary-valued function. Consequently, 
~ ~ 

we have S'(t) S'(t) = I-;L @X and S'(t)S'(t) = I;L(±)j{ 
1lI _ + 

for av e , tE: [O,2JL). But these relations imply (5.1) _ 

(5.6). 

Conversely, if there ar~ analytical contraction-va­

]8 

lued funetions such that (5.1) - (5.6) are fulfilled. then 

we easily check, that the operator-valued function 

t 'til< EB X_. t, @ J(+,S' (t)} performed in accordance with 

(4.1) is a uni tary-valued one , Taldng into ac coun t 

Theorem 4.1 we complete the proof. D 

Proposition 5.1 immedintly yields Proposition 4, 

Proposition 5 and Proposition 6 of C.Foias [4J. In order 

to shoVl Proposition 4 and Propositi.on 5 of [4J we intro­

duce the eanonical and >1( -canonical faetorizations of the 

ena.Iyt Lce.L contraction-valued f'unct í ons {Jr+, 'i", ,c-;\o( À )] 

and {t-, X_,C(À)}, respectively. r/e set C,l«>") == "s~(\). 

B~().. ) and crx ) = B( À ).Ol( À), wher e {J(+,P~,Bk( À)J and 

tP, Jf'.., B( À )} are outer and ~ -outer functions, respecti ­

vely, and tP~,t,,j,;' ~().. )} and tt. ,P, o.r x )J are irm.er and 

~-inner functions, respecti ve ly , Taking into account t he se 

factorizations we obtain that (5.3) and (5.6) imply (~ ) 

and «(3il) of Proposition 4 of [4]. Introducing in accor­

dance with (5.4.1) and (5.4.7) of [4] the contraction-va­

lued function {P,P*'Sred(t)} and using (5.5) we get 

i t )(5.7 ) o = DS(t)*tw*(t)~(eit)*" 8(e + 

+ S(t)w(t)Ol(ei t)} 

for a s e , tf.[Ot2JL). Because of S(t)(imll(DS(t»)- ç 

ç, (ima(DS(t)~»- for av e , tE: [OtiJe ) we obtnin 

~ 

, . (5.8 o w~(t):P.>(eit)~ 8(ei t) + S(t)w (t)OlCei t) 
, > 

. ] 9 

i> 
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i t for a s e , t E[O,iJe.). Multiplying on the right by I3(e )* for a s e , t E..fO,2Jl.). On ac c ounb of w*.(t)*w,\(t) ::: I p 
t\ 

we find 
anel Ol.(e i t) 07..(oit)-llt ::: I p for a.e t E.íG,2JL). we find 

(5.13) B(eit)*e(eit)C(eit) '*' ::: w*(t)"'" S(t)DS(t) 

(5.9 ) _ J:J ( e i t )* 8 ( e i t ) Ot(ei t )~ Sred(t) 

from which we conclude 

for av e , t E. [O,2JL )., which implies (5.5.3) of [4J. The 

rcla tion (5.5.·1-) f oLLowa from Q5.1) anel (5.4). It was 
(5.14) ~(eit,* 8 (ej·t)c(eit/~ ::: B*(ei.t)s(t) 

pointcd out in section G.6 of [41 that the conelition 

(5.5.1) i8 redtmdant, since (5.5.1) is a consequence of 
for a s e , t E.[0,2Jt.). But (5.14) yields 

( (3) of [4J. 

To pr-ove Proposi t í.on 6 of [4J i t ia su:fi'icient to 
(5.15) ~(eit)S~(eitt e (eit)C(eitt ::: _c~(eit)s(t) 

show t ha't- -under tflü assu.mptions of Proposi tion 6 of [4J 

there exist anaLy t Lca.I contraction-valued f'unc t í.on s 
for a.e. t 6[0,2JL). On account of (5.5.4) of [4J we find 

t'i,X_,C(À)}, ~X+,i"",c"C.À)} anel tt., it*-"B (À)} 8 (eit).jcker(B(eit)-llf) ç ker(Ot(e i t)) for a s e , t E.[0,2JL). 

such that the relations (5.1) - :(5.6) of Proposition 5.1 
Using this conclusion we obtain (5.2) from (5.15}. 

are. fulfilleel. Iiecause ti" 't-A<' 8{;"')} ia gi·ven by Pro­
Similarly, we prove (5.5). 

position 6 of [4] it remains to .define id'JJJr_,C(\)} 
It remains to show (5.1) and (5.4). Taking iuto 

and tJI+, t~,C~( À )1. We set 
account (5.5.4) ~f [4J we find 

(5.10) c~ ( '\) ::: - E ( ).. )TI 01< <.>-- ) 
(5.16) ~(eit)~e(eit) e(eit)l\<:i)(e i t) ::: 

and 1:l(eit)~ 8(eit)G1.(eitfOl(eit) e<eit)*'.))(e i t) 

{5.11) -cc \) = B(~) Ot(\ )" 
for a s e , t E[O,21L). By virtue of (5.5.)) of [4'J we get 

>-- E {. Z f ([: I z ! < 1J. Decause of (p) anti (0.) of [4 J 1:J(eit)~ e(e i t) e(eit)~B(eit)(5.17) 
we obtain (5.3) anel (5.6). From (5.5.)) of [41 we get 

~ "* ~ W",(t) S(t)w(t)w(t) S(t) w,j<.(t)
4>­

(5.12) ~(eit,-li< e (e i t) Ol.(e i t ) ljJ -i'.( t) S ( t ) w (t ) 

2J20 
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for a s e , tE:.[O,2'JL). On account of (5.4.1) 01' [4J we 

conclude 

(5.18) ~(eit)'~ t3(e i t) 8(eit)*~(.e~t) 

lU*( t )'*- S( t )S( t )~ W N.( t ) 

for	 a e , tE: [0,2Jl). But (5.18) and (5.4.1) of [4J implys 

(5.19) :i:> (e i t )* 9(ei t) 8(ei t)*1)(ei t) + B*.(eit)Bt\(eit)~ 

~J ~ 2 1
w-k-(t) 1..S(t )S(t ) + DS-(t)* JlU..{t) I 

for	 av e , tE.. [0,2R.). Hence we find 

i(5.20) ~ (e i t rt (e t rD2e(e i t)'* ~ (e i t) 7ú (e i t)* 

c~(eit)c"",(eit)* 

for a.e. t ~[0,2~). Taking into account (5.5.4) 01' [4J 

it ís not hard to see that (5.20) implies (5.1). Similarly, 

we prove (5.4). 

In such a way \'le have seen that the condi tions «(.3), 

«(.)",,), (5.5.2), (5.5.3) and (5.5.4) 01' [4] are equí.va'Len t 

to the assumptions 01' Proposition 5.1. Using the notion 

of analytically unitary synthesis this means that the 

conditions C~), (p",), (5.5.2), (5.5.3) and (5.5.4) 

are equivalent to the existence 01' an analytically unitary 

22 

synthoclc of tho ctrongly moasurable contraction-valued 

funotion {,Jr+, Jr_,3(t)IIl}. Hanoe U' tJr+' X_,S(t)} is 

an ano.lyt1oo.1 oontrnotion-valued f'unct í.on, then the~e 

oond1t1ono o.ro oquivnlont to the existence 01' a Darling­

ton synthoDis af {Jr+, Jr_,S(t)~}. The Darlington synthesis 

ia porf'ormod by (5.10), (5.11) nnd (J.16). 
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H~xaPAT X. 
0 AHCCHITaTHBHOH TeOpHH paCCCHHHH 
llaKca - ~HnnHrrca 

ES-87-330 

Pa6oTa ITOCBH~eHa xapaKTepHCTHKe BCeX B03MO~HhlX MaTpHQ 
pacCeHHHH, ITOHBITHID~XCH B AHCCHITaTHBHOH TeOpHH pacceHHHH 
llaKca - ~HnnHrrca. XapaKTepHCTHKa AaeTCH B TepMHHax aHanH- • 
THqecKoro YHHTapHoro CHHTe3a CHITbHO H3MepHMOH ~YHKQHH C~a-

,THH, KOTOPWH HBITHeTCH o6o6~eHHeM CHHTe3a rro AaprrHHrToHy. 
ITo CYmeCTBy, gaHHaH pa6oTa cxogHa c rrogo6HOH pa6oToH 
q,~OHWa. 

Pa6oTa BblllOITHeHa B na6opaTOPHH TeopeTHqeCKOH ~H3HKH 
mum. 

llpenpHHT 06'be)lHHeHHOro HHCTHTyra H)lepHhlX HCCJie)lOBaHHH. ,[{y6Ha 1987 

Neidhardt H. 
On the Dissipative Lax - Phillips 
Scattering Theory 

ES-87-330 

The paper is devoted to the characterization of all 
possible scattering matrices occurring in a dissipative 
Lax - Phillips scattering theory. The characterization is 
obtained in terms of an analytically unitary synthesis of 
a strongly measurable contraction-valued function which 
generalizes the notion of Darlington synthesis. The con­
tents of the paper is closely related to a similar paper 
of C.Foias. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 

Preprint of the Joint Institute for Nuclear Research. Dubna 1987 


