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1. Introduction
In [4) C.Foias characterizes all possible scattering ma-
trices occurring in the abstract fromework of a dissipa-
tive Lax-Phillips scattering theory developed in [6].
The aim of this paper is to continue the investigation
of the scattering matrix using a quite different ap-
proach to this object. The new approach forces a ge-
neralization of the notion of Darlington synthesis as
defined in [ 33 to the case that the contraction-valued
function is not an enalytical one. This.generalized
notion which in the paper is called an enalytically
unitary synthesis of & contrection-valued funetion re-
duces to the notion of Darlington synthesis if the
operator-~valued function is an gnalyticel one. Using
this notion we find that a strongly measurable contraction-
valued function can be regarded as the scattering matrix
of a dissipative Lax-Phillips scattering theory if and
only if the adjoint contraction-valued function admits
an anelytically unitary synthesis. Morcover, taking
into account the above mentioned relation tao the Dar-
lington synthesis we find thet a contraction-valued
functlon arises from en orthogonal dissipative Lax-Phil-
lips scattering theory if and only if the adjoint ¢ontrac-
tion-valued function is an analytical one and possesses a
Darlington synthesis.

From this point of view the conditions (f3), (ﬁ‘),
(5.5.1) = (5.5.4) of C.Foias [41 characterizing the set of
occurring scattering matrices in a necessary and sufficient

manner are equivaelent to the property that the adjoint



contraction-valued function has an analytically unitary
synthesis., If the adjoint function is an enalytical one
this means that (f3), (3,), (5.5.1) - (5.5.4) of [4]
are necessary and sufficient conditions to guarantee the
existence of & Darlington synthesis. At the end of this
peper we give ; direct proof of theqe conclugions.

Moreover, we believe that the present approach has
the advantage of a great simplicity and transparency.
Especially, this transparency aeppears in the reconstruc-
tion theorem which is based on the well-known and widely
investigated reconstruction theorem of a consorvative
lax~Phillips scattering theory [1,2,6].

In accordance with [4] we use a discret Lax-Phil-~
lips framework. For the convenience of the reader we re-
peat the assumptions of the dissipative Lax-Phillips scat-
tering theory in & discret framwork. A triplet {T, D, 21
consisting of a contraction T on a separable Hilbart
space ® and two subspaces @+_of #® ig called a dissi-
pative Lex-Phillips scatterin; theory if the following
.assumptions are fulfilled.
(1) 1D, € D, 1™D_<c D
(h2) TtD_ end T*P@_ are isometries,
w3 N_ My -fo}J= N_ 0D,

ne Z + Z -

+ +

-t

R
(h4) PR@«‘D M0, Pg::@i) ™, 0 strongly for n—» +%,
+ -

Let U on ¥ be the minimal unitary dilation of T. Let

11y %, = V. ouip .-

T

Obviously, the subspaces 72+ reduce the operator U. We

set
(1.2) Ui = Ur?a\ei.

The wave operators W, are defined by

]
x

(1.3) W_ = s-lim T% B2 UMP
n—+c0 -

and

(1.4 ) W, = s-lim ™R P;L Ufr’
n-—>+c0 +

The scattering operator S,
(1.5 ) S =WW_,

acts from 2¢_ intc H£+. The operators U  are bilateral
shifts. Transforming these operators in;o their Fourier
representations we find that in these representations

the scattering operator S acts as a multiplication opera-
tor with a strongly measurable contraction-valued function
which is called the scattering matrix of the dissipative
Lax-Phillips scattering theory.

2. Conservative and noncongervative Lax-Phillips scat-~

tering theory
We say the triplet {T, D+,'@_S forms a conservative Lax-

Phillips séattering theory [5] demanding in addition to

(1) - (h4) that T ie a unitary operator. Usually, in
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this case the condition (h4) 1s replaced By

21y VD, =&,

ne?

but it is not hard to see that (h4) and (2.1) are

equivalent provided T is & unitaxry operator.

Definition 2.1, Let {T, inj.@_} be a dissipative Lax-
Phillips scattering theory. If fthere exists e unitary
operator U on ® >H# as well es orthogonal incoming and

outgoing subspaces G_ and G+ of U such that the conditions

%
I =
(2.2 ) P U R =17

(2.3) =6, GG

are fulfilled end {U, &I, '}, D! = D, ®¢,, forms a
conservative Imx-Phillips scattering theory, then we call
{U,&Q;,;Q:},a conservative extension of {T, Z%J 2.].
Proposition 2.2, Every dissipative Lax-Phillips scattering

theory {T,:D+J @_} has & conservative extension.

Proof. Let U be the minimal unitary dilation of T on XK.
Obviously, the coundition (2.2) is fulfilled. We introduce
the wendering subspaces £ = ((U - T)32)™ and iwﬂ

= ((I - UT*)3 )" in accordance with [(7]. we set
(2.4 ) G, = M (L)

and

(2.5 ) C_ = M(L) @M ().

Taking into account the structure of a minimal unitary

dilation we get
(2.6 ) H=0, @R D0

Obviously, G+ end G_ are outgoing snd incoming subspaces
of U.

Defining now the subspaces JD; in accordance with
Definition 2.1 the triplet {U,:@i,ibi} forms a conserva-
tive Lex-Phillips scattering theory if we establish the

relation

) W=V .
(2.7 ) n(‘:ZU:O-t

But taking into account Lemmm 3 of [4] we get

(2.8 ) X

& M &f, = v U !
+ @ ( ) ~ 90 ;
and

(2.9 ) H

i

&* & =V oy
_®nuL,) nezu D

which completes the proof. @

Let {U, lﬁjébl} be a conservative extension of the
dissipative Lax~Phillips scattering theory {T,<D+,(D_}.
Taking into account Definition 2.1 it is not herd to see

thet U 13 a unitary dilation of T.



Using this remexrk we obtain the invariance of the and
subspaces JD+ and J)_ with respect to U and U¥, respec-
tively. Hence there are wandering subspaces Jf+ c i)+ ) (2.17) D! = MQ ) ©M (Q).
with respeet to U such that - -
Because {U, 2}, D'} forms a conservative Lax-Phillips

(2.10) 3)+ = M+(Jf+), scattering theory we get
(2.11) D_ = MUH) OM(H) (2.18) H o= m(Q,).
and If ‘Pi denotes the Fourier transformation corresponding

to the wandering subspaces Q  we find

+

(2.12) ®, = m(Jf+).

- o
(2.19) &1} = H(Q)
Denoting by i, and ¥, the wondering subspaces of the out- 3
golng and incoming subspaces (}+ and G_, respectively, and
(2.13) 6, = ¥,(L) ' (2.20) &1 D* = 12(e)) @H(Q.).
and ) Moreover, we have
2
(2.14) G = M(2) ©OM (D), (2.21) $; D, = B(HN,),
it is not hard to see that the subspaces (2.22) $ic, = B2 ()
(2.15) Q =N, @Lond o= N_® &, and
are elso wandering subspaces obeying (2.23) d’.'_ D = L2( X)) @HZ(J’_),
(2.16) 2 = 1,(Q,)

(2.24) bL e = 1504, ©8(L,).




Let S' be the scattering operator of the conservative
extension of {7, D+,°'D_?]. The operator &) S' Cb_'_‘iacts as
a multiplication operator with a strongly measurable
function {Q_,Q+,S'(t)}, velues of which are isometries

from Q_ eonto Q+ {conservetive Lax~Phillips scattering

theory!). Usually, this unitary-valued function is called

the seattering matrix of the comservative Lax-Phillips

scattering theory {U, ;011, .:a:}.

Provosition 2.3, Let {Jf_,-ﬂ;,s(t)} be the scattering matrix

yielded by s dissipative Lax-Phillips scattering theory
{T, iL, @_k. It {Q_,Q*,S'(t)} denotes the scattering ma-
triz of the conscrvative extension of {T, i)+, i)_}, then

both scattering matrices are related by
Q

(2.25) () =P, 7 s'(8)TI,
X

t €[0,27) a.e..

Proof. Let W; be the wave operators of the conservative

extension defined by

-n K
{2.26) W) = s-lim.UTT Py, vt
= n—ieo X
Obviously, we have
B
(2.27) Wi = MW;_NE ’

===

=

which implies

(2.28) P;: S'r¥ = s,
+
But (2.28) immediately yields (2.25). %8
In such a way Proposition 2.3 shows us that every
scattering metrix of o dissipative Lax-Phillips scat-
tering theory can be regarded as the compression of the

scattering matrix of its conservative extension.

3, Scattering matrix and analytically unitary synthesis

Every strongly measurable contraction-valued function can
be dilated to a strongly measureble unitary-velued func-
tion, Further, it is well-known that every strongly meas-
urable unitary—valued function can be regarded as the
scattering matrix of a conservative Lax-Phillips scat-
tering theory. Hence the conjecture seems to be true that
in wvirtue of Proposition 2.3 every strongly measurable .
contraction-valued function can be thought as the scat-
tering matrix of a dissipative Lax-Phillips scattering
theory. But this conjecture is false. The point is that
the scattering matrix of a conservative extension obeys
some additional properties description of which is the
contents of the following

Propogition 3.1. Let [U, QL,.DL} be a conservative exten-

sion of the dissipative Lax-Phillips scattering theory

{T,:D+J.D_}. It {Q_.Q+,S'(t)} denotes the scattering ma-

trix of {U,'@;, i[}, then the contraction-valued func-
Q.

tions {¥,Q_,8'(")* M LYana {q,,%,,Pg, 5'(+)*} are ana-

lytic ones. Moreover, if U is a minimal unitary dilation
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of T, then the enalytic contraction-valued function

{L,3,,B(X)} defined by

. Q
(3.1) Bel®) = py suny*ry
*®

for a.e. t €[0,27() coincides with the characteristic

function of T.

Proof. Taking into account the definition of the wave and

gcattering operators we find

(3.2 ) P?‘ s'FPD! = pé" rD* = 0.
+ +
But (3.2) yields
(3.3) STHE() L HE(R)
for every f &L2(Q_) C)H2(Q_). Hence we obtain
(3.4 ) sT(£)e(t) L 1%(q) ©E3(Q.)
for every f&Hz(?ﬂ). Consequently, {;{, ,Q_,S'(t)"' l‘!,}

forms an analytical contraction-valued function.

Using the relation -
(3.5 ) PZ'L_ st*1d; =0
Q_ p
we similarly conclude that {'Q+’i’k'P:L.S'(t) } is en

analytical contraction-valued function.

To prove the remaining part of the proposition we

10
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remark that the triplet {U,c+,c;_} forms another kind of
nonconservative Lax-Phillips scattering theory which is
usually called a Lax-Phillips scattering theory with
losses.'This scattering theory is an orthogonal one which
in distinction from the conservative scattering theory
does not fulfil the completeness condition (2.1). The
wave opcrators W; of this scattering theory with losses

are defined by

W

(3.6 ) Tv'+ = s-lim U%p; U™,
- n—-+0 +

Obviously, we have

(3.7) W, = WirGi.

Hence the scattering operator 5= ﬁ:ﬁ; admits the repre-

sentation
~ k2
(3.8 ) § = P, s'ha_.
A -

Taking into account the incoming end outgoing spectral
representations given by (2.22) and (2.24) we obtain

~ Q
(3.9 S(t) = Pyl S'(£)T L,
where {L‘,i,g(t)} denotes the scattering matrix of
{v,6,,6_}. But it is well-known [1] that by virtue of the

minimality of U this scattering matrix coincides with the

adjoint characteristic function {‘;f,*, ‘i, » ] T( A )*} of T, 1.e.

11




(3.10)  B(t) = BgetH*
for a.e. t€[0,2). 8 .

On the basis of Proposition 3.1 the introduction of

the following definition seems to be useful,

Definition 3.2. Let {0}0,‘%3,0,]‘((1;)} be a strongly meas-
urable operator-valued function values of which are con-
tractions acting from the separable Hilbert space 0}0

into the separable Hilbert space ‘%o. We say{ﬁlo,"%o,li(t)}
admits an analytically unitary synthesis if there exist

three analytical cortraction-valued functions {_0(}1, ‘%O,Z( PN )} ,

{000 H10YO} 20 {9}y, %X O} s where 4 ana Y, ave

geparable Hilbert spaces, such that the contraction-va-

lued function R*'(t),

(3.11) R*(t) = O — ® ,
z(e®) R(%) %o ho

forms a unitary-vslued function for a.e. te [.0,2’?\:)0

We remark that if {%O,‘%O,R(t)} is - also an analytical
function, then Definition 3.2 coincides with the definition
of the Darlington synthesis given in [ 3].

Now Proposition 3.1 can be formulated as follows.
Theorem3.3. Let { X _, 'Jf_I_,S(‘t;)} be the scattering metrix
of a dissipative Lax-Phillips scattering theory. Then the
adjoint contraction-valued function {J(+,J(_,S(t)"_} admits

sn analytically unitary synthesis.

12

S

g

Proof. By {Q_,Q_}_,S'(t)} we denote the scattering matrix
of a conservative extension. Teking into account (2.25)

and (3.1) we obtain

Q
% -
(3.12) S(£)" = ] s'(t)"r)(+
and
1t e *
(3.13) B(e*) = 2y st(t)t L
E3

for a.e. t €[0,270). Further we_set

: Q
Guaa) ot = p T s * MY
and
(3.15) o, (e1t) = Py S (8T
. % e = i:* 3 +?

t € 10,27 ) a.e.. Because of Proposition 3.1 the contrac-
tion-valuet.i functions {i,, HN_,C(h )} and {Jf*_. i,*,c*( BN )}
are analytical ones. Consequently, the block-matrix re-~

presentation

Bt ¢t 2L Ly
.&— 0
cet®y sm* | o, v N

+ -

(3.16) st (t)* =

defines an analytically unitery synthesis of the adjoint

contraction-valued function {J(_f, .)(_,S(t)*} .

13



Congidering n(\)w an orthogonal dissipative Lax-
Phillips scattering theory (;0+LD_) we obtain the fol-
lowing '

Corollary 3.4. Let {J('_. J('+,S(t)} be the scattering ma-
trix yielded by an orthogonal dissipative Lax-Phillips
scattering theory. Then the adjoint scattering matrix
{_.).q,Jf_,s(tﬁ is an enalytical contraction-valued
function, which ‘ad.mi‘cs a Darlington synthesis.

Proof. Because of the orthogonality we find that the con-
gervative extension is an orthogonal conservative Lax-
Phillips scattering theory (Di LD!). But this implies
that the adjoint scattering matrix {,Q+,Q_,S'(t)"} of the
conservative extension is an inner function of both sides.

Applying Proposition 2.3 we complete the proof. B

4. Reconstruction

Our next aim is to prove the converse to Theorem 3.3.
Theorem 4,1, Let{J)_, Jf+,S(t)j be a strongly measurable
contraction-valued function. If the adjoint function
{)l’+, J(‘_,S(t)*} admits an analytically unitary synthesis,
then {J('_,Jf;‘_,.s(t)} can be regarded as the scattering ma-
trix of a dissipative Lax-Phillips scattering theory.
Proof. In accordance with our assumptions we suppose that
are separable Hilbert spaces ¥, and B‘&“ as well as ana-
lytical contraction-valued functions {‘ef,, L SXON )} ,

§I 0y, C(N )} and {£, X _,c(X)] such that (3.16) de-
fines an analytically unitary synthesis of {_Jf_l_.Jf__,S(t)*}.
With the help of the unitary-valued function
$0.,0,,8"(8)},a_ = H_ ® Ly end q, = N, @ L,

14

8 (elh* celt¥| I, L
(4.1) S'(t) = O—®
o, (2 s(t) Y.

we construct a conservative Lax~Phillips scattering theory
in the following way. We set = L2(Q+), ;D_:_ = H2(Q+)

and D! = 5'(12(Q_) OH2(Q_)), where S' denotes the mul-
tiplication operator from L2(Q_) into L2(Q+) induced by
the unitary-valued function {a_,Q,,8'(t)}. Denoting by U
Yon %= 1%(q,,
1t 1s not hard to see that the triplet {U,D!, D!} forms

the multiplication operator induced by e

a conservative Lax-Phillips scattering theory scattering
matrix of which coincides with {Q_,Q+,S'(t)_}.

Next we define the contraction T. To this end we in-
troduce the subspaces G, = H2(¥,) and G_ = S'(Lz(af,*) ®
@Hz(;(,‘)). Teking into account the properties of the analy-
tically unitary synthesis (4.1) we find that the sub-
spaces G+ end G_ are orthogonal, i.e. G+.L G_. Moreover,
the subspaces G+ and G_ are invariant with respect to U
end U*, respectively. Consequently, introducing the sub-

space ¥ = Y o (G, @G_) the relation
X
(4.2) T=P, UMW

defines & contraction on ¥ . The operator U is a unitary

dilation of T.

The following aim is to define the invariant sub-
spaces D, and D_. We set D, = H2(Jf+) and J_ =
= S'(Lz(J(_) @Hz(Jf_)). Obviously, we have D+_L G, and

15



D,LG_ which implies &, c'd . Similarly, we obtein
D_LG_ and D _1G _which implies D_c .

Further we show that {T,d,, D_} forms a dissipative
Lax-Phillips scattering theory. Obviously, the subspaces
D, end D _ are inveriant with respect to U and U*, re-
spectively. But this implies the invariance of ®+ and
J)_ with respect to T ar;d‘ T*, respectively. I\‘Io're’over, we
get TTD, = UMD, ana T*TD_ = U¥ID_. But this implies
(h2) and (h3).

‘To prove (h4) we note, the relation

(4.3) W= 120 @) =

V oD Vo v,
H&ZU D+@neZ *

Now for ev‘em‘( me Z end every feHz(J('+) we find

K n .m
(4.4 ) s-1im B} Ut =0
n~>;+°o%‘9'z)+ ’

which implies

. I n
(4.5 ) s-1lim P U'f =0
n->+c0 ®OD,

for every feL2(J(+). Similarly, for every m € Z and every
gE_H2(?£,) we get

. X
(4.6 ) s-lim By o vt v = 0
n—>+o0 +
But (4.6) ylelds
R n_
. s-1im P U'g =20
(4.7 ) gyt 3{@@+
16

.

for every geLz'(‘o(:). Consequently, teking into account

€4.3), (4.5) and (4.7) we obtain i:iiirgoP;:@@+ "n = 0

3*
for every heH . Hence we find s-lim Pa{’@@ ™ = 0.
n-—+°° +
. . I A
Similarly, we prove s~lim PBC@JD T = 0.
N~ -+ -

Obviously, the triplet {U, ZD;, D } is a conservative
extension of the dissipative Lex-Phillips scattering
theory { T, D,, D_). Taking into account Proposition 2.3
end (4.1) we obtain that the scattering matriz of
{1,D,, d_} coincides with {J¥_, J(*,S(t)] .8

Theorem 4.1 implies the following

Corollary 4.2. Let {J('_, J(+,S(t)} be a strongly measurable
contraction-valued function. If the adjoint function
{Jf+, X_,s(t)*] is an analyticel one and admits. a Dar-
lington synthesis, then {JV'__, )(+,S(1;)} can be regarded
as the scattering matrix of an orthogonal dissipative
Lax~Phillips scatterj:ng theory.
Proof. Using the considerations of Theorem 4.1 it remains .
to show that the subspaces o’O_p = Hz(.)f+) end JO_ =
= 81 (12 (X)) ©H2(N_)) are orthogonal. But this is obvious
in virtue of the analyticity of {Jf+,Jf_,S(t)*}. B

5. Analytically unitary synthesis and the solution of

C.Foias

An obvious consequence of Theorem 4.1 1s the following

Propogition 5.1. The strongly measurable contraction-va-

lued function {JN _, J('+,S(t)] can be regarded as the scat-

17




tering matrix of a dissipative Lax-Phillips scattering
theory if and only if there exist analytical contraction-~
valued functions {I«L,_ NN ON wy {Jf+,;l,*,c*(>\ )} and

{-.L - B(x )} such that the relations ’

(5.1)  I= e(ei*)>e<eit>*-+ ¢, (eityc, (elty¥,
(5.2) 0= 8etho(ety 4 ¢, (e*)s(t),
(5.3) I =cet®eel®H* 4 seey*sce)

and "

(5.4) 1= 0iH*B(elt) 4+ crelty¥o(elty,
(5.5 ) 0 = c,(e?)* B (elt) + s(t)c(elty,
(5.6 ) I =c (e (el 4 set)s(t)*

are fulfilled for a.e. t €[0,23). "
Proof. Let { W _, J(+,S(t)} be the scattering matrix of a

dissipative Lax-Phillips scattering theory. Then on
account of Theorem 3.3 there are analytical functions

L wocO], [N, 2,00 )Y ana {L, 4,0 (M) suen
that (4.1) forms a unitary-valued function. Consequently,

we have S'(t)*s'(t) =1 ' vey® L
1, @0 ond SHNSTOT = Ty g,

for a.e. t€[0,2W ). But these relations imply (5,1) -
(5.6).

Conversely, if there are analytical contraction-va-

18
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lued functions such that (5.1) - (5.6) are fulfilled, then
we easily check, that the operator-valued function

{:f,*@ KN L, 4L e Jf+,S'(t)} performed in sccordance with
(4.1) 1s a unitary-valued one. Taking into account

Theorem 4.1 we complete the proof. B

" Proposition 5.1 immediatly yields Proposition 4,
Proposition 5 and Proposition 6 of C.Foias [4)]. In order
to show Proposition 4 and Proposition 5 of [4] we intro-
duce the canonical and % ~canonical factorizations of the
analytical contraction-valued functions {Jf*_, 4, ,C.(x)]
and {_1{,, H_,C(n )}, respectively. Ve set C*(X Y = (X))
B, (X)) and C(X) = B(X)OUN), where {W,P,,B,(2)} and
{P, N_,B()\ )} are outer and %¥-outer functions, respecti-
vely, and {P*,&#,B()\ )} and {_B(, ,P, OL( X )} are inner and
#-inner functions, respectively. Taking into account these
factorizations we obtain that (5.3) and (5.6) imply (B
end (f3,) of Proposition 4 of [4]. Introducing in eccor-
dance with (5.4.1) and (5L4.7) of [4] the contraction-va-
lued function {P'P*’sred(t)} and using (5.5) we get

(5.7) 0= Dgpy {wy(£) B(eH)* Bty +
+ 8(t)w(t)or(el®y}

for s.e. t€[0,21 ). Because of S(t)(ima(DS(t)))" <

c (ima(DS(t)y))_ for a.e. t€[0,2% ) we obtain

(5.8 ) 0= w, (MBIH*G(elt) 4 s(trw (1)0u(elh)

.19



- *
for n.e. t €£[0,2% ). On account of u&(t) tU*(t) = IP

@

and m(eit)@(eitf‘ = Ip for a.e t €10,2) we find

(1) = -Belty* g (eItyouetty™

(5.9 ) Sred
for g.e. t €[0,2X ), which implies (5.5.3) of [4]. The
relation (5.5.4) follows from (5.1) and (5.4). It was
pointed out in section 6.6 of [4] that the condition
(5.5.1) is redundent, since (5.5.1) is & consequence of
() of {4].

To prove Proposition 6 of [4] it is sufficient to
show that under the asswmptions of Proposition 6 of [4]
there exist analytical contraction-valued functions
(2, w,e00), LW, g0 ) ana {2, %,,8 (0]
such that the relations (5.1) - (5.6) of Proposition 5.1
are. fulfilled. Decause {4, L,, B(X)) is given by Pro-
position 6 of [4] it remains to define {i,,JV_,C(x )}
and {Jf+, i*,C*( X)]. We set

(5.10) € (N) = =B(X)B ()
and
{5.11) C(X) = B(X)a(x),

yeiz € Q: 1z < 1}. Because of ([3) and ( ﬁ*) of [4]
we obtain (5.3) and (5.6)., From (5.5.3) of [4] we get

(5.12) B0 (e oelt) = w ) s wt)

20

e e et S

for a.e. t €[0,230). Multiplying on the right by B(el®)™

we find
1t % it 1ty% * v
(5.13) Be )"0 (e )C(em") = W (1) 8(£)Dg 4
from which we conclude
it % it
5.1y Bt Bettrcel®)” = BFs(1)
for a.e. t €[0,2%). But (5.14) yields
(5.15) Bl HBAN* B (eltro(et) - <o (eMtrs(1)
for a.e. t £[0,2X). On account of (5.5.4) of 4] we find
0 (e}t ) ker (B (e1)*) ¢ ker(0r(el®)) for a.e. t €[0,2T).
Using this conclusion we obtain (5.2) from (5.15).
Similarly, we prove (5.5).
It remains to show (5.1) and (5.4). Teking into

account (5.5.4) Jf [4] we find
(5.16)  B(erH*B (elt) 0 (el B (elt) -

D (0¥ 0 (elt) el To(el?) B (eIt R(elt)
for a.e. t €[0,2W ). By virtue of (5.5.3) of [4] we get

(5.17) B(edty* 0 (elt) 0 (eIt)* (it -

W (5 s(Hw (B w (E)¥ s W, (1)

2]



for a.e. t&[0,2% ). On account of (5.4.1) of [4] we

conclude

(5.18)  BlhH* Brelh) 0 Rt = | :
W (£ 5(£)8(£* w, (¢)

for a.e. t €[0,2% ). But (5.18) and {5.4.1) of [4] iﬁply

(5.19)  B(e!H* B (elt) Blet N Belt) + B (e1Hin (1) -
w ¥ s(0se* « 2w lws) = 1

for am.e. t €[0,2W ), Hence we find

(5200 BAH BN 1t Bt BeltS
c*(eit)c*(eit)*

for a.e. t €[0,2X ). Taking into account (5.5.4) of [4]

it is not hard to see that (5.20) implies (5.1). Similarly,

we prove (5.4).

In such a way we have seen that the conditions (ﬂ ),
() (5.5.2), (5.5.3) and (5.5.4) of [4] are equivalent
to the assumptions of Proposition 5.1. Using the notion
of analytically unitary synthesis this means that the
conditions (P)), (p*), (5.5.2), (5.5.3) and (5.5.4)

are equivalent to the existence of an analytically unitary
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synthooio of tho oirongly measurable contraction-valued
function {Jf;,\Xl,s(t)*}. Hence 1if {JF+,JF_,S(t;} is

an analytioal oontrnotion-valued function, then these
conditions aro oquivalont to the existence of a Darling-
ton synthesis of {Jf;,JV;,S(t)«}. The Darlington synthesis
is porformod by (5.10), (5.11) and (3.16).
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Pa6ora mocBsmeHa xapakTepucTHKe BCeX BO3MOXHBIX MaTpHI]
baccesiHHA, MNOABIAWKIHUXCS B OUCCHUIIATHBHON TEOPHH paccestHUs
llakca - dumnnunca. XapaKTepuCTHKA OaeTcs B TepMHMHax aHaJjiu-—
THY€CKOr'o YHHTApHOI'0O CHHTEe3a CHJIbHO H3MepUMOH bYHKUUM cxa-
+THH, KOTODbIA sBNsAeTCs o6obmeHHeM CHHTe3a mno JlapiuHITOHY.

| Illo cymecTBy, nmanHas pa6ora CXoAoHa ¢ nopmob6Hoil paboToit

Y.bosauma.

Pa6ora BmmnonHena B JlaGoparopuu TeopeTHYeckoii dHU3HKH
OHUAH.
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On the Dissipative Lax - Phillips
Scattering Theory
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The paper is devoted to the characterization of all
possible scattering matrices occurring in a dissipative
Lax - Phillips scattering theory. The characterization is
obtained in terms of an analytically unitary synthesis of
a strongly measurable contraction-valued function which
generalizes the notion of Darlington synthesis. The con-
tents of the paper is closely related to a similar paper
of C.Foias.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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