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O. The study of positive linear maps between operato~ algebras is a 

difficult task even if the ~-algebras under consideration are low­

dimensional matrix algebras. Nevertheless, positive maps on C"-alge­

bras were the subject of many investigations (cf. /1~/ for some re­

view, /2/ and the references therein). In an early stage of the theo~ 

ry Stinespring /11/ discovered the extremely useful notion of comple­

tely positive maps and prov,ed an important .. structure result about 

such maps. In the sequeI it appeared tha~ just this property of com­

plete positivity excludes many pathologies. 

An interesting range of problems concerns inequalities for positiv~ 

maps. The mostly investigated inequalities are of Cauchy-Schwarz-type. 

Choi /2/ has given some more general inequalities which imply most 

of the known resulta, e.g. the now almost classical Cau~hy-Schwarz­

inequality for positive maps proved by Kadison in 1952. 

The situation in the case of topological M-~lgebras of unbounded ope­

rato·rs (o r gene rally, non-normable topo logical M-'a1geb ras) Ls almost 

not at a Ll, investigated. To the authors be s t knowledge there are on­

ly two attempts to consider positive maps on such algebras. In /10/ 

Powers extended Stinespring's theorem and Arveson·s result on exten­

sions of completely positive maps. Moreover, he relat~d completely po­

sitive maps with standard representations of M-algebras. The variant 

of Stinespring's theorem given by Powers i5 very general (in some 

sense toa general) because there are considered completely positive 

maps from M-algebras into the space of alI bilinear forms on a linear 

s~~ee. On the other hand, G. and G.A.Lassner /6/ proved Stinespring·s 

theorem for completely positive maps from topological M-algebras in 

topological algebras of unbo~nded operators. They releted their result 

with some speeial kinds of time evolution of phyeieal systems. 

The aim of the present paper i& to prove some Cauchy-Schwarz-inequa­

lities for positive maps between topological M-algebras of unbounded 

operators. We intend to invest~gate other properties of positive and 

eompletely positive maps i~~ forthcoming paper. 

®b1>ei!fili{\H1~í\ KHCTl..rryT' 

JI tm::,:~)~. til!' 'H~~ll~,n,a:nit~ t 



1. Let us shortly fix the notions ond notat10ne uoed in whnt follows 

(90e e s q , /4.5/). For a dense linear manifold 2r in D eoporoblo 
Hilbert sp ac e 'M. the set of linear o pe r a t o r s L+('n) rA I A"n c 1S I11I 

AM'b Co n ~ t s a M-algebra with respect to the usual operations e n d 

the involution A _A+ 5' A"\1r • 

algebra of L+( 15) containing the 

bounded operators from J:,+( 15) is 

topology t,A.. 1nduced by .Ao (15) 

m1norme 

n ~ Cf - \\ A 'f \\ for 

An Op"-algebra .Ao (JJ) t s e M-BUb­

identity operator I. The set of 

denoted by L+ (15)b' The graph 

on Z 1s given by the family of se­

a11 A E. .A ( b ) . 

Denote ~L.t~) s1mply by t. Thus.we have a rigged Hilbert space 

lStt.l c. 4t c. 'ntt.l', 

Among the many possible topolog1ee on op"-elgebras we 

uniform topology 1:1) given by the fam1ly of s emí.no rme ' 

~ ( 1) ) ~ A -. \\ A \\.u. = sup \ <. ~ .A ~ >\ l 
,	 ~~,~ 

where ...u. runs over ali bounded subsets of 1:> tt. ..... 1 
'l:a 1s also defined on f., ()S .~'), especia11y on ~ 

of bounded operators on ~ 

need only the 

• Remark that 

(dt ). the set 

To simplify the considerations we suppose that s..,+ (n) is selfadjoint, 

i.e.	 D • 1)" !! f\D(A") 
Ao .. $..+ c.b) 

and that ~ lt.1 is an (F)-space.
 

The eet ~ (D ) = t T: T 4t c. b " T" dt c 't ~ 1s a two-s1ded ~-ideal
 

in L + (D ) with 1mportant properties. We mention only those used he­

re /3, 13/: 
r

i) 8 li! O, 8~ 'B(b) implies 8 (:o ~(1) for a11 r o o • 

11) ~ (b ) ie '"'" -dense in s: (l'S , b'), hence in L+( ~) as we11 as 

1n n(~} .. 

iii) The topology 'tu cano be given by the set o f seminorms 

A ----+ \\ 8A8 \\ for a11 8 ~ ~(15), ~ ~(). 

Rema rk t hat L (%S,~' ) L't 1S1 1s complete /5/. 

Concerning positive and completely positivo maps between op"-algebras 

there are several possible definitione. This is ceused by the well ­

known fact that one has two natural nQtions of positivity of elements 

of operator algebras which doee not coincide in general (i.e. in the 

non-c"-case). A short discussion in the context of positive maps was 

given in /6/. Let J),. (b) be a H-subalgebra of L-to( IS'), 'maybe without 

unit I and put 

2 

~(.A~1S» ai í= A\Al. Ai. i ~ ( b ) 1 
finite 

'}{ (.a. (1S'» • -\. A t.A OS ): <A Cf ' 'f '> ~ o fo r a 11 ~ ~ 1:5 J -Ir. 
Bo t h sets are cones', ~(A(b» c X(.A(lr», and these sets do not 

coincide in general. 

In case J\ (b) • .c.+( ti) we use the not ations l' (b ), 'K ( JS) resp •• 

With reepect to these cones one has different notions of positive 

maps between Op"-algebras. For example, a linear map i : .A ('1\,,) ­

,I
 
----. .A ( 1) 2. ) is ( lP LA ( r:J" », 'f\ LA ( 1s1 ») -po s it i v e, 1f ~ (A) ,
 

" @ ( .A (~a.» fo r a11 A t. ~ (A ( n '\ ». Analogous to linear functio­


nals one uses the notion etrongly positive linear maps for euch onee 

which map :K (A ( n, » into J.(. ( .A ( li d ) . 1 
Again analogoue to linear functionals one-has the following result: 

Lemma 1 

.1 Let i be a continuous ,linear map from L+ ( 'b,,) t:.'t.IS,,:l in~o J...... (1)1.) 

J t"C.S).:1. Then for i. ali possible pos1tivity notions in the contexto 
I 

of the cones defined above coincide. 

Proof: 

One uses the fact that the cone "fi (~ (15" » ie "'1S" -dense in 

~ (1$,,) /8/. This impliae that ("P( b ) , "1< (~1.) )-positive maps are 
i 

aleo( ~ (n,\ », ~('J:)~ »-poeit1ve. A11 other implications are trivial. 

Thus, we must not 

if we consider 'C.IJ 

Next we repeat the 

the algebra of ali 

the tensor' pr-o duc t 

q.e.d. 

dietinguish	 between different positivity notions 

-continuous maps between maximal Op"-algebras. 

notion of completely po s Lt-í.ve mape. Let M denote 
n
 

(nxn)-matrices. Then for any Op"-algebra ~(n )
 

.A (<ti' )(n) ~ ,A.('lJ)	 9 M is the Op"-algebra of 
n 

(nxn)~matrice8 with entr1ee from A (n) defined on ~ ~ .,. ~ D 
(n-fold sum) , A linear map 1 : .A ( b" ) - A (111.) extends to a li ­

near map .~ ..... : .A('b,,)(n) ------. tA('!) ... )(n) , namely, t"" .. 161 I, 

Le. in.((Ai j » .. (~ " i,j " n •.(A i j », 1 

'i is called n-positive, if I"", is positive. ~ is calleAcompletely 

positive if it is n-positive for ali natural n. Clearly, these posi­

t1vity notions must be specified by indicating the correeponding co­

nes. 

Finally, l is unital 1f i (I) • I. 

.3 



Naxt we describe a reetriction-extension procedure for pooit1ve,~~­

continuous maps (cf. /8/ for the analogous procedure for functionals). 

We formulate it only for maps on L+(Z) to simplify the nototions. 

The generalization to maps between different maximal Op"-algebras ~s 

obvioue. 

Lemma 2
 

Let i be a linear, posi tive "1:: 15 -cont inuous map on L"'('n). Then the­


re exists a un que- linear, positive ~ll-continuous map ~ on ~(ae)
 
í 

with j (A) = ~(A) for a}~ A E:. .L+(~)b 1f and only if ~ (I) is~boun­

dedo i is ca11ed the extension o f ~ to ~(at)· 

~ 
Clearly, if ~ e x í.s t s , ~ (I) must be bo unde d', Now let ~ (I) be a 

bounded operator. Let ~ denote the continuation of ~ anta J.. ()) , 
1)' ). If ~ exists, it must coincide with ~ on ~ ('at). So we have 

to prove that t (A) is bounded and positive for a~y bounded, positive 

A ,,~(~). S1nce 'i is "C. - c o n t i n uo u s , fbr any t-b0L!nded ).l Co 1] there
1S


ie a B 11 O, BE:.~(J:S') so that
 

for a11 A (J.....(lf).UI (A) \\ ~ 6 "BAB I
 

By continuity,
 

for a11 A ( 1.. ( 1'S , 1S' ) •
 1l~(A)"\M. '\\BAB\\ 
-	 b

~ 

Fo r B .. ~). dE;l. we put Pn B .. ~ dE" and An,B" Pn,BAPn,B • 
I)	 , 41... 

It is easy to see that {A B: n "IN, B ~ O, B~"(\(1:r)~ a {A",,\
n,
 

forms a net converging to A with respect to ~1:J' Hence,
 

1 (A.. ) ---+ ! (A)
 

in view of the '\:1J-continuity o f 'i'~ . For A E: "6\('at), A ~ O
 

one has O" A' c L, Moreover, O' A.... ~ c t , i.e. O" 'i(A.c,) €a 

'c i(I). Hence, ~ (A) = 't:1f-lim ~ (A",-) " c'i(I), j(A) is 

positive. To see that ~ (A) is indeed from ~(~) one can ~onsider 

e.g. the positive quadrat1c forms ar sesquilinear forme generated 

by the operators ~t~).Then these forms converge to a bounded form 

(because of the uniform boundedness of ~ ~ (A.,k.) \ 1.e. to a con­

t inuous form and that f orm 1s generated by an operator from -e(\\t), 

n amé Ly by ! (A). Thus, ~ (A) .. \ (A) E:. ~ (4l). But t h í s implies 

~ (X) bounded for a11 X E. ~(1l). 
q.e.d. 

4 

Remarks 3 

i) We start with the trivial remark that ~ (I) ~ ~+(~ )b implies 

i(.J..+(2f}b)c: ~+(Z)b' 

ii) The proof pf Lemma 2 contains also ~he argument for the fact that 

the cone ~(nO:r»" X(B(lJ» ia ~I>-dense in 1> (n(~» .. 
.. .:K ( l\'(:K, ) ) • 

i1i) For (positive) linear functionals one has also the "inverse" 

procedure to that described in Lemma2. Namely, any 'l:~ -continuous 

linear functional on -n ('at) givee rise to a 'tI) -continuaus (positi ­

ve) linear functional on 1..... (Ir), 80 that both coincide on J..;'"(. Jr ) b' 

Concerning "'til' -cont inuous (posit ive) maps on ~('<\t) t his seems in 

general to be not true. We were unable to give natural additional 

conditions which imply euch an extension procedure, i.e. conditions 

s o that the extension ~ of "i to s.., (~ , "X), ) leaves $.... Cts ) 
Lnvar í.arrt , 

+ +	 - ­iv) Lemma 2 impliea also that ~ (A ) .. 'i (A) • To see this, 1et ~ 

the extension of J. anta ~ (1(.). Then ~ (A") .. ~ (A) "be	 ~ -- for a11 
+ +A ~ ~(~), hence 'I (A ) .. ~ (A)	 for a11 A .E. ./..... (:r )b' The existence 

+ + + +
of A-. ,"6(ZI ) with AJo. ~ A and AfI.. -----. A implies"i (A~) .. !(AJ..) , 

hence 'i (A+) .. ! (A)+ for a11 A" J:,.+(ZJ'). 

2. Now we give some variants of the Cauchy-Schwarz inequality. We 

start with the generalization of the classical result of Kad~son. 

Theorem' 4 

Let! be a unital, positive cont inuous map f rom l.!( b" ) t:.'l:~~ into 

+1: (ts
o1o 

) t1: 1S..'l • Then for a11 A .. A E; L+~ n~ ) the following Cauchy-

Schwarz inequality holds: 

~(A2) ~ ~ (A)2. 

~roof :
 
--- 2
 
It must be shown 'that f o r a11 "to ~ 'n.2.: < ~(A ) "t ,,. > ~ < i(A)?~."t>
 

Now Le t "t E: 1S1, be given. Choose a t-bounded set .JJ. c.13z. with the fol­


lowing two propertiest
 

i) ,,\,E.J.L
 

ii) ...u. ie absolutely convex and U t>..u..\ is \I \\ -dense in (ta. ,
 
)'0) o 

the completion of ~~
 

Since i is cont inuous, t here i6 a B E: ~ (1S"\ ), B l!!t O with
 

,"l(A) \\w.. ~ UBAB \\ for a11 A E: L" (tly . (1) 

5 



..	 .. 
Thus for n ia N2( E. ) we obtain

Let B '"	 S).dE" and put PIOS dE;i\ • Then P E. (\( 1),,) and A 
0, n 1/.,. n n 

<. 'i (A~) "t ' ~) lo <'i (A 2) "\ ' ~ '> + E . (6 )
'" PnAP E:~(l),) as we11 as \\ B(A - A)B\\ _ O for n ---to CD n n 

Putting (4) and (6) together, H follows that for n ~ N( €. ) .. 
Thus, (1) implies 

max(N ( a. ) ,N ~ » : 1 2(
 
\\!(A - A)\\\J,A. ~ O, especia11y <~(An)"\' ' ''t> ----+ <~(A),,\,."t) 2 - 2
 n '\ < ~ (A ) "t ' "t)o oi' l ~ < ~ (A) - ~ , '" ) - E.. 

property ii) gives us 
Since ~ was arbitrary, the desired inequality is proved. 

'<i(An)"t.'X> --"> <1(A)"t,~> (2) q.e.d.'t
 
Next we generalize an interesting result of Choi /2/ which says thatfor a11	 'X from a 11 l\ -dense subset of 'atz. ., Because of A • A" ~ _ " n n 
for any 2-posHive map on ~ (1() the Cauchy-Schwarz ineauality 

the Cauchy-Schwarz inequal1ty .f o r 1 on 13 ('at,) can be applied and 
~ (A"A) ~ ~ (A") ~ (A~ Ls valid for a11 A to ~ ('at) o 

one gets (remember I lO \ on n ("n" » : 
Theorem 5 

<i(A~) "t ' "t > :li ,"'t> (3)I<!(An)2", 
Let ~ be a 2-positive unHal continuous linear map from .L"(~~) t.~~l 

Therefore 
to L~ ( 'ti,,) t.'l:JS1. J o Then 

U'i(A ) ,. ,,1. , <1 (A~) " ,,,) " \l"J: (A 2) \\ ,,\\ BA2B \\ " n	 ~ n \li. n 
~ (A+A) .. t (A)+~ (A) for a'11 A~~( 15,,) • 

•	 \\ BPnAPnAPnB \\ ,,\\ BAl\· \lABl\ 

For the proof we need the following version of the Theorem ebove.Thua , ("i (An)~ ) i8 a, ,,-bounded sequence and this means together 

ProposH ion 6wHh (2) that ('i (An) l' ) convergena weakly to leAl,,\, • Now we 

Let 't be a 2-poeHlve linear map from L~( 1)",) to c: ('1Iz.) 50 thatcombine this fact with the lower semicont~nuity of the norm (see e.9. 

/9/) : ~ (I) 19 and a inve rse o Then a11 A E. .c.." h" )bbounded has 'bounded	 f o r 

For given E. > O there i9 a"!. N1 ( f. ) so that for a11 n ~ N1 (~ ) :	 the Cauchy-Schwarz inequality .I» (A+A) ~ ~ (A)+'§(A) ie valido 

Proof:<}(An)2,. ,,, > • \\"!(An)" nJ. ~ .!!.'! \\l(An) "tl\ 2. - t 
Here ideas from /2/ are usedo We repeat them to make the proof se1f­

~ \\ ~ (A) "\' l\ z. - ~ (.4 ) -1
consist en t , Let R,S. T <:: L~ ( l:l" )b' T • O, T ex í s t s as a bounded ope­

2
On the other hand An • APnA + APnA(Pn-r.} + (Pn-1)AP"APn rator from ~ (Clt,) o First remark that
 

Hence T 5) ~ O i ff R ~ S"T-15. (7 )
 
( 5" R2 2	 " ,,,,> • \<~(An)" ,,,\,\ 'l<i(APnA)"t ,"'>\ +<i (A n)",\	 To see this, put 

+ '<~«APnA)(Pn-1»"t ,'1'>\ + \< ~«Pn-1)APnAPn)"\'~ >\ 6 T 
5 )	 

'T 1/ 2 
T- ).

Q •	 X • P• (5"	 (; R-S~T-1S ) ( 

1/2S 

R , (1 (A 2) _ , _> + IBAP A(P -1)B" + U B(P -1)AP AP B l\. (5)	 O I' 
"% "\ 1 n n n nn 

The first term on the right-hand side ia a consequence of Then it ie easy to check that X-I existe and P .. X" Q X. Hence P ~ O 

<AP A .,. , ,.:> ~ <A 2 't , '" > and the positivHy of 'i , the rest ie n	 if an~ on1y if Q ~ O and thie ie clear1y the caee if and on1y if 
('1implied by (1). Now we 9how that the"second and third term on the R-S"T- 1S ~ 00 Consequent1y. P ~ O iff R • S"T-1S, i.e. (7). 

right-hand eide of (5) 90 to zero for n --. ro • This is ea8Y to 888: 
Now let A ~L·( 'Ji)b a rb í t r-a r-ç , Put 

'BAP A(P -1)B '6 l\BA\\' lP I. UAB1/2,. \\(P _1)B1/2• and this last n n	 n n J	 JB .. I A . 
factor goes to zero. The third term is estimated 8imilarly. 

( 
A+ A+A / 

6	 7 



----

Then B ~ o and because ~ is 2-positive, a1so 

1 ( 1 ) ~(A)	 ) 
~ (B) ..	 ~ O'( ~(A+) ~(A+A) . 

5ince "i(A), !(A+) and 1 (A+A) are bounded operators and "i(I) .. T 

fu1fil1s the conditions for (7)·, this inequa1ity' can be app1ied and 

we get the desired resu1t 

~(A+A) ,). 'i(A+)l(A) 

q.e.d.
 

Proof of Theorem 5:
 

We must show t hat for a11 A ~ C( b~) and a11 li\' E: 'bi, 

<~(A+A) "t ,"t > "<i(A+) i(A)"t , "t > 
So 1et A" 1:..+( ~"') , "\' e: b~ be f í xe d , As in the proof of Theorem 4 

1et eMct"~ltl be an abso1ute1y convex set,bounded',"HJ..L, U,. \.)'JJ..\
 

1a norm-dense in ~1. • Then there is a B 6 ~ (Cb" ), B • O with
 

" l (A) \\ ""'- "1\ BAB \\ . 

let An have the same meaning as in the proof of Theore~ 4. ThenPn, 

n n and consequent1y\\ B(A -A) B \\ - O , \\ B (A + - A+ ) B \\ _ O
 

x + +
UI(An-A)\\Uo\. - O, \\'.t:.(A - A )\\~ -O.n 

Especla11y 

<i(An)"t ,X> - <i(A)"t,~) <'i(A~) "t ,1\.> ­

- <'1.< A+) "" , '). ;> (8 ) 

for a Ll, 'X from a no r m-cdene e aet Ln ~&.. 

Since ~ is 2-positive, Proposition 6 app1ies for A i.e. 
n, 

<i(A~An)"t'''\> ~ <~ (A~) ~ (An ) "t ' "t > i.e. 

\\l(An) "\,\\2,, '\!(A~An)\\~ ~ \\ BA~ AnB \\ "UBA+\\. '\AB". 

That means (l (A n) "t) is a \\ \\ -bounded s e quen ce , Rep1acing A ,A 
n 

by A+,A+ one geta that a1so ( ~ (A+),,\,)is \\ 'l-bounded. Together withn	 n 

(8) this implies	 t.hat ~ (An) "\' --;---' ~(A) "t ' 'i (A~) ~ - J. (Á,+)" 

weak1y	 on 'at&. • Now the proof proceeds as that of Theorem 4. One has 

2,A 2
on1y to rep1ace A resp. by A+A, A+A resp. Again the 10wer semi-n n n 
continuity of the norm is usedand so on. 

q,e.d. 

,8 

I 
I 

Let us mention some more inequa1ities for positive maps in ,C"-algebras. 

Suppose that j, is a unital positive linear map from A to "61. • 

i) ~ (A"A)	 ~ i (A") !.(A) and! (A"A) ~ 1! (A) ~ (A")
1 

for every normal AlC.J\., c f , /12/.

jj ii) 
If T,A E: Ao with T ~ A"A and TA = At, then ~ (T) ~ !(A").q (A) 

and ~ (T),~ l. (A»)' ~ (A"), /2/. 

II
 Althrough i) is a speeial cas~ of ii) we give both results to demon­


strate the difficu1ties in generalizirig them to'Op"-algebras. To ~e­

neralize i) to L'"( J:j), the proof of The o r e m 4 suggests to o ro ce ad' 

as fo11ows. Let AE.c..~(n) be normal, then for everY,Bt.~(1r), B ~ O 

we construct an appropriate sequence (A n) Co ~ (~ ) of no rma I operators 

so that "B(A-An)B l\ -. O • With the help of this sequence we try 

to 'reduce the problem to the bounded case. Unfortunately, we are not 

able to construct an approximating sequence consisting of normal ope­

ra t o r s , 

To gerieralize iif there would be two possibilities. A first one is to 

const ruct such approximat ing sequences f rom '(\ (15') t hat(An), (T n) 

An,T fu1fi1 the assumptions of ii) for each n. But this seems to be 
n 

yet much more hopeless than the game for normal operators.
 

A ~econd possibility wo~ld be an adaption of the proof'given ,~n /?/.
 
But this proof contains two features which are 'crucial in s...+( JJ ).
 
First ,i) must be valido 5econd1y, the proof works with aquare 'roo t e
 

of operators. If A is a C"-algebra, they are con t a t ne d in A • But
 

this is not the case for L~( n) . 
At the end 1et us demonstrate how proofs are simplified if one works 

with comp1ete1y positive maps. Let 'us recall the generalization of 

Stinespring's theorem given in /6/. 

Let ~ be a "-algebra wit h ident ity e, A ( n) an Op"-algeb r a , 

A ( ~ (IR.), 3<.( .A(b" »)-completely positive map "i from Q.I 
in~o J\ ( D) is of the formI 

~ (a) .. V" 9 (a) V fo r a11 a f: ~ , 

J . " where a ---. ~ (a) is a "~representation of ~ onto an Op -al-

I gebra ~(~):o.1+... on "n,," D"tt A ,,1 , V~ i.(D[,~A),"J5"t'lA~) 

r~ and V" is the adj o í n t map to V, i.e. V" ~ 1- (tf ... t~.A,,:}· , 't t"\.,A11l) • 

1 
From th~ proof of this result as well as of that of the classical 

Stinespring theorem one can derive some additional information. 
1. 

9~ ~ 
L
L'r



For examp1e, if ~ is a unita1 map, then v,v" are isometric maps (for Lôff1er,F., Timmermann,W.: Singular states on maximal Op"-a1ge­

V" this means e.g. i f rest ricted to '15", which is contained in "'SJ: 1n 
/8/ 

bras. Pub1.RIMS, 22 (1986), 671-687. 

a canonica1 way). IlJIecHep, A. i:.: CrreKTp3.lI.bHaJI reopaa JllIHel1HL!X orrepaTOpOB. Hayxa , /9/
Now we get the Cauchy-Schwarz ineque1ity a1most trivie11y. I l',lOCKBa.1965.·1 Powers,R.T.: Se1f~djoint a1gabras of unbounded operators 11.Proposit ioo 7 /10/I, 

T~ans.Amer.Math.Soc. 187 (1974), 261-293. 
Let i : ~ - J...( 15) be a unite1 complete1y positive map, then 

Stinespring,W.T.: positiva functions on C"-a1gebras. Proc.Amer.

;I /11/
l (a"a) ~ ~ {a") ~(e) for a11 a ,,1St. Math.Soc.6 (1955), 211-216.
 

St~rmer,E.~ Positive linear maps of C"-a1gebras. Lecture Notes
Proo f: /12/ 

The i~ometry of V imp1ies in physics, 12 (1974),85-106. 
Timmermann,W.: Idea1s in a1gabras of unbounded operators. Math.I
! (a") J (a) .. v" ~ (e")v v" S (e) V • V" ~ {a"a)V .. ~ (a"a) • /13/ 

l
 Nachr. ~ (1979), 99-110.
 
q s e s d , 

\ 
A short proof of resu1t i) mentioned on page 9 is based just on the I
 

fact that positive maps on commutative C"-e1gebras are comp1etely po-
~
 

sitive.
 

Hence, it ~ou1d be quite usefu1 to extend this resu1t to general Op"­


a1gebras ,i.e.
 

Prob1em
 

Under which conditions' a strong1y positive unita1 linear map on a
 

commutative Op"-a1gebra .A (%:5) is comp1ete1y positive?
 

One way to attack this prob1em cou1d be to construct a suitable re­


presentation of the Op"-a1gebra as function a1gebra and then proceed
 

as in the commutative case for C"-a1gebrae.
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lloKa3hiBaiOTCH HeKoTophre HepaBeHCTBa TMna Korna-IllBap~a 
,ll;JIH HenpepbiBHbiX llOJIOJKMTeJibHbiX OT06pa:>KeHMH Me:>K,n;y TOllOJIO­
raqeCKMMM anre6paMM HeorpaHaqeHHhiX onepaTopoB. 
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There are proved some Cauchy-Schwarz inequalities for continuous 
positive maps between topological algebras of unbounded operators. 

The investigation has been performed at the Laboratory of 
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