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0. The study of positive linear maps between operator algebras is a
difficult task even if the x-algebras under consideration are low-
dimensional matrix algebras. Nevertheless, positive maps on C*—alge-
bras were the subject of many investigations (cf. /12/ for some re-
view, /2/ and the references therein). In an early stage of the theo-
ry Stinespring /11/ discovered the extremely useful notion of comple-
tely positive maps and proved an important .structure result about
such maps. In the sequel it appeared that just this property of com-
plete positivity excludes many pathologies.

An interesting range of problems concerns inequalities for positive
maps. The mostly investigated inequalities are of Cauchy-Schwarz-type.
Choi /2/ has given some more general inequalities which imply most

of the known results, e.g. the now almost classical Cauchy-Schwarz-
inequality for positive maps proved by Kadison in 1952,

The situation in the case of topological x-algebras of unbounded ope-
rators (or generally, non-normable topological m-algebras) is almost
not at all investigated. To the authors best’ knowledge there are on-
ly two attempts to consider positive maps on such algebras, In /10/
Powers extended Stinespring's theorem and Arveson’'s result on exten-
sions of completely positive meps., Moreover, he related completely po-
sitive maps with standard representations of m-algebras. The variant
of Stinespring’'s theorem given by Powers 1s very general (in some
sense too general) because there are considered completely positive
maps from m-algebres into the space of all bilinear forms on a linear
space. On the other hand, G. and G.A.Lassner /6/ proved Stinespring’s
theorem for completely positive maps from topological x-algebras in
topological algebras of unbounded operators. They related their result
with some special kinds of time evolution of physical systems.

The aim of the present paper is to prove some Cauchy-Schwarz-inequa-
lities for positive maps between topological mx-algebras of unbounded
operators. We intend to investigate other properties of positive and
completely positive maps ip—a forthcoming paper.
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1. Let us shortly fix the notions and notations used in what follows
(see e.g. /4,5/). For s dense linear manifold I in o soparable
Hilbert space "3, the set of linear operators [¥(T) ={A: ATcT,
A" e I3} is a m-slgebra with respect to the usual operations and
the involution A — AY = A™M{Y . An Op™-algebra A (Ir) 15 & m-gub-
algebra of JL*(X) containing the identity operator I, The set of
bounded operators from L*(T ) is denoted by L (T),- The graph

topology tg induced by & (T ) on T 1is given by the family of se-
minorms
Barw —= HWAgH for all Ae¢ R(D).

Denote t oy gy simply by t. Thus,we have a rigged Hilbert space
BLtl © R c pLed’

Among the many possible topologies on Op"-algebras we need only the
uniform topology %ty given by the family of seminorms*

A A = <q A
A(D)3A — WAL, w.ﬁ:EJ ® ~>0

where ML runs over all bounded subsets of B Lt,1 . Remark that
©g is slso defined on L (¥, V'), especially on WB(3R ), the set
of bounded operators on % .
To simplify the considerations we suppose that £* (5 ) 1is selfadjoint,
1. B = D, = NAT(AH

Aefrd)
and that L) 1is an (F)-space.
The set (D) =LT: TRecD , THRcD]
in L’(ﬁ) with important properties. We mention only those used he-
re /3, 13/: -
1) B 20, Be B(B) inplies 8" ¢ B(T) for all r>0.

is a two-sided ¥-ideal

11) ® (B ) is Ty -dense in L (3,D'), hence in [L¥(Y ) as well as
in B(R)-.

iii) The topology Ty can be given by the set of seminorms
A —» |\ BAB || for 2ll1 Be®(T ), 8 20
Remark that L (B,®')Lxxl 1is complete /5/.

Concerning positive and completely positive maps between Op”-algebras
there are several possible definitions. This is caused by the well-
known fact that one has two natural notions of positivity of elements
of operator algebras which does not coincide in general (i.e. in the
non-C*-case). A short discussion in the context of positive maps was
given in /6/. Let £ () be a x-subalgebra of [L*(I), 'maybe without
unit I and put

.

PA(T)) =12 A%AL LA e &(D) )
finite

HA(D)) =§ AR (T): <Agq,¢> 20 forall g eB}.

Both sets are cones, YP(A(V)) < K(A(T)), and these sets do not
coincide in general.

In case A (D) = L¥( B ) we use the notations P(x), WK () resp. .
With respect to these cones one has different notions of positive
maps between Op"-algebras. For example, a linear map §- : \A(h‘) -

—> A(D,) is ( P(A(D,))., P(A(D,))) -positive, 1f & (A)¢
¢ P(A(D,)) for all A¢ ¥(A(X,)). Analogous to linear functio-

nals one uses the notion strongly positive linear maps for such ones

which map 3{ (A (D.)) into K (A(V,)).

Again analogous to linear functionals one-has the following result:
Lomma 1
Let § be e continuous linear map from L¥( P,) Lxg 1 into LY (.,)

Ly, 1- Then for & all possible positivity notions in the context
of the cones defined ebove coincide.

Proof:
One uses the fact that the cone ¥ (% (54)) is "y, -dense in
w (31) /8/. This implies that (’P(n‘), ‘,\-(_(31))-positive maps are

also( ¥ (b, )), ‘_](,(1)1 ))~positive. All other implications are trivial, -

q.e.d.
Thus, we must not distinguish between different positivity notions
if we consider %y -continuous maps between maximal Opn-algebras.
Next we repeat the notion of completely positive maps. Let Mn denote
the algebra of all (nxn)-matrices. Then for any Op™-algebra A(D )

the tensor product A (w)(n) = RA(D) e M is the Op™-algebra of

(nxn)-matrices with entries from R (¥ ) defined on B @ ... 8 T
(n-fold sum). A linear mep § : A(D, ) — A(P, ) extends to a 1li-

near map &. : A (D) — A2, nanely, B, = Fe 1,
tee. Bo((Agy)) = (B (A)). 16 1,3 & n.

% is called n-positive, if %, is positive. ¥ is calledcompletely
positive if it is n-positive for all natural n, Clearly, these posi-
tivity notions must be specified by indicating the corresponding co-

nes.
Finally, & is unital if P (I) = I. —



Next we describe a restriction-extension procedure for positive, .-

continuous maps (cf. /8/ for the analogous procedure for functionals).

we formulate it only for maps on LY (T) to simplify the notations.
The generalization to maps between different maximal Op M_.algebrss is

obvious.

Lemma 2 .

Let § be a linear, positive g -continuous map on L‘(b ). Then the-
re exists a unique linear, positive %g-continuous map §_ on €%(3¢)
with § (A) = ®(A) for all A € L% ), 1f and only itf $ (I) is_boun-
ded. 5 is called the extension of @ to B(R).

Proof:

Clearly, if §_ exists, % (1) must be bounded. Now let & (1) be a

bounded operator. Let § denote the continuation of & onto L (D ,
). If § exists, it must coincide with -§ on RW(HR). So we have
to prove that E (A) is bounded and positive for any bounded, positive
AeqR('R). Since ¥ 1is *ty-continuous, for any t-bounded M. c T there

is a B2 0, Be B(H) so that
WE(A N, <WBaBY for all A¢ LT,
By continuity,

3 clBABW for all A€ L(T,B').
nﬁ(t)u“‘_ g

For B = Su) dE, we put Pn,B = §‘de and An,B’ Pn.BAPn,B .

It is essy to see thet {A _:neN, B 20, BeR (W)} a{A}
’

forms a net converging to A with respect to Ty . Hence,

E(A& ) — § (A)
in view of the %4 -continuity of § ,i . For Ae® (™)., A >0

one has 0 € A & cI, Moreover, 0 4 A, € cI, 1.e. O € §(A‘) &

¢ c F(I). Hence, B (A) = Tp-lim & (AL ) ¢ c B (), F(A) is
positive. To see that ‘i (A) is indeed from %} (%) one can consider
e.g. the positive quedratic forms or sesquilinear forms generated
by the operators F(AQ.Then these forms converge to a bounded form
(because of the uniform boundedness of {F (A )Y i.,e. to a con-
tinuous form and that form is generated by an operator from B(3).
namely by § (A). Thus, F (A) :‘g (A) € B (®). But this implies

§ (X) bounded for all X€& §(3).

q.e.d.

Remarks 3
i) we start with the trivial remark that § (I) ¢ S (D )b implies

FLUTI) € LN(B), -
ii) The proof of Lemma 2 contains also the argument for the fact that

the cone ¥ (NR(T)) = M(B (T )) is %, -dense in P(a(R)) =
= K(R(R)).

iti) For (positive) linear functionals one has also the "inverse"
procedure to that described in Lemma 2. Namely, any "y -continuous
linear functional on 7 () gives riee to a "ty -continuous (positi-
ve) linear functional on £L* (), so that both coincide on L¥( I )b.
Concerning ft,; -continuous (positive) maps on W('¥¢) this seems in
general to be not true. We were unable to give natural additional
conditions which imply such an extension procedure, i.e. conditions

so that the extension § of & to L (T ,.D' ) leaves &L* (D)
invariant.,

iv) Lemme 2 implies also that & (A*) = & (A)*. To see this, let ’i
be the extension of & onto & (®). Then ® (A™) = F (A)" for all
A ¢e®(%®), hence § (A*) = & (A)* for all A ¢ LMD e The existence

of A_€eB(D ) with A, —» A and A:_ —» A" implies 3 (A:,_) =§(A’L)*
hence ¥ (A*) =% (A)* for all Ac L3 ().

2, Now we give some variants of the Cauchy-Schwarz inequality. We
start with the generalization of the classical result of Kadison.
Theorem 4

Let $ be a unitael, positive continuous map from L*( n‘):_q:s:;into

L8, )tey 1 - Then for all A = A*e £*(D,) the following Cauchy-
Schwarz inequality holds:

3(r%) 2 3 (A7

Proof:

It must be shown that for all YeD,: <§(A2)-* ,:‘,> H <§.(A)2“\’.‘*\’>

Now let ~ eI, be given., Choose a t-bounded set JLc T, with the fol-
lowing two properties:
1) ~Neu

11) JA 1is absolutely convex and U{AM3} is % y -dense in R, ,
X»0
the completion of &, .

Since @ 1is continuous, there is a Be Q(B, ), B >0 with

.\\}(A) W, «WBABW for all Ae L (n,‘/) . (1)



b > .
Let B = ;Ads,\ and put P = § dE, . Then P e ®(TD,) and A_ =

U

= PAP, € B(E,) as well as WB(A, - A)BIl —» O forn — ® .
Thus, (1) implies

\\§(An -AW, — 0, especially <§(An).\,‘ N> — <B(AY Ty

Property i1i) gives us ) [

<A Y x> — <RAINRD (2)
for all X from a # 0 -dense subset of 3, , Because of AL A: :
the Cauchy-Schwarz inequality for i on ¥ (R can be aspplied and
one gets (remember & =§ on W(D,)):

<Ry x> * <EADTy Ln> (3)
Therefore

HEA) 4 1* & <F (AD) & o 4>

= | BPnAPnAPnB W &lBAW. ABL .

€ WBAH N, ¢ Weals o«

Thus, (3 (An)* ) is & & | -bounded sequence and this means together
with (2) that (& (A,) % ) convergens weakly to P (A) N . Now we
combine this fact with the lower semicontinuity of the norm (see e.g.
/9/):
For given & »O there is an Nl(a ) so that for all n 2 Nl(g):
<Ry o> = WR(AD Y 3 lim WR(A ) xBE - &
2 NP (AINnT - g (4)

On the other hand AZ = AP A + AP A(P -I) + (P,-1)AP AP
Hence

<TADY > = W<RMAD x> € IKRAPA) 4 Lyl
+ 1KBOAP AN (PL-INY w421+ V< R((P -T)AP AP Y, 4> 4

2
<R (A % N>
The first term on the right-hand side is a consequence of
(AP A %, %> 6<A2~\- %> and the positivity of & , the rest is

+ 4BAP A(P -I)BH + W B(P -I)AP AP B W . (5)

implied by (1) . Now we show that the second and third term on the W

right-hand side of (5) go to zero for n —» @ . This is easy to see:
WBAP A(P -1)B ¥ & RBAN- AP 1. WABY/2H.w (P -1)8'/2 Y and this lest j
A

factor goes to zero. The third term is estimated similarly.

Thus for n > N,(¢ ) we obtain
<MD Ny > ® <R(AT) y on > v, (6)
Putting (4) and (6) together, it follows that for n 2 N(g ) =
= max(Ny(e).Ny(e)):
<'§(A2)~\» oy > o+ 2 <T (A% ny - £ .
Since g was arbitrary, the desired inequality is proved,
q.e.d.

Next we generalize an interesting result of Choi /2/ which says that
for any 2-positive map on W (R) the Cauchy-Schwarz inequality

3 (A"A) 23 (A")E(A) 1s valid for all Ae B ('R).
Theorem 5
Let § be a 2-positive unital continuous linear map from JL¥(D, )Lt,}
to LY'(d,)Ley 3 . Then

B (a*A) 2 R (M)TR(A) for all AeL(B,).

For the proof we need the following version of the Theorem sbove,

Proposition 6
Let & be a 2-positive linear map from L%(D,) to L*(¥,) so that

% (I) is bounded and has a bounded inverse. Then for sll A € L*(d, )b

the Cauchy-Schwarz inequality & (A*A) a § (A)+'§(A) is valid.
Proof: .
Here ideas from /2/ are used. We repeat them to make the proof self-
congistent, Let R,S,T ¢ L*(D, )b' T » 0, T-1 exists as a bounded ope-
rator from 13(2(9 . First remark that )
(T s ) 20 iff R »s™ls. (7)
s R
To see this, put
T s 1 0 T2 1-1/24
P = ).Q-( _).x-,( .
s® R o Rr-s"t7ls 0 I
Then it is easy to check that x~1 exists and P = X® Q X. Hence P » O
if and only if Q 2 O and this is clearly the case if and only if

1

R-s"T"1s 2 0. Consequently, P 2 0 1ff R = s"T"1s, 1.e. (7).

Now let A &L 3,)p arbitrary, Put

Ba(:’ A':A). /



Then B * 0 and becsuse ® is 2-positive, also
I) A
2o (30 FW )L
SO JONN|
since §(A), §(A*) and T (A*A) are bounded operators and $(1) =T

fulfills the conditions for (7), this inequality can be applied and
we get the desired result

(A ¥ (AN F(A)
g.e.d.

Proof of Theorem 5:

We must show that for all A ¢ L*( %, ) and all & e,

<EFAA) % > 2EAN T (AN o N> .
So let A¢ LY D,) . w eB, be fixed. As in the proof of Theorem 4
let JAc B;Lt] be an absolutely convex set,bounded, w¢JL, U LAY
is norm-dense in X, . Then there is a B¢ B (P, ), B O"with

KP(Aa)W,, «WBAB W,

Lat Pn' An have the same meaning as in the proof of Theorem 4, Then
WB(A -A)BW —= 0 , \\B(A; - A*)BIl — 0 and consequently
UWBA-A) b — 0, WE (A - AN, —o.
Especially
<A N x> — <Ay x> L <A % x> —

-&EA) N Lx> (8)

for all X from a norm-dense set in 2(’_,_.

Since § 1is 2-positive, Proposition 6 applies for Ane i.e,
<EMAAD v x> 2 <RAT) FA) 4, y> L.
WA, quP e NBATADN,, ¢ WBA" AB UL «WBA*W. wABN.

That means (% (A )y) 1s a | W-bounded sequence, Replacing AAL

+
by A ,A; one gets that also ( § (A')y)is W W-bounded. Together with

(8) this implies that 3 (A ) ~ — DAYy, §(A;)* - 'i(f’.\*)'\—

weakly on '#, . Now the proof proceeds as that of Theorem 4. One has
2
only to replace A ,Ai resp. by A%A, A:An resp. Again the lower semi-

continuity of the norm is used .and so on.
g,e.d.

—— ———

Let us mention some more inequalities for positive maps in C*-algebras .
Suppose that ® is a unital positive linear map from A to §® .

1) D (A"A) 2 3 (A" () and §(A"A) 2 P (A) B (AY)

1) for every normal Aef, cf. /12/,

i

If T,AeR with T 2 A®A  and TA = AT, then % (T) 2 3 (™) .§(a)
and & (T) » F (AL (A", s2/.

Althrough i) is a special case of ii) we give both results to demon-
strate the difficulties in generalizirig them to Opn-algebras. To ge-
neralize i) to £Y(I )., the proof of Theorem 4 suggests to proceed
as follows. Let A€L( D) be normal, then for every Be@(Yk ), B 2 0

we construct an appropriate sequence (An)c B(D) of normal operators
so that | B(A-An)Bl\ ——> @0 . With the help of this sequence we try

to ‘'reduce the 6rob1em to the bounded case., Unfortunately, we are not
able to construct an approximating sequence consisting of normal ope-
rators. '

To generalize 1i) there would be two possibilities. A first one is to
construct such approximating sequences (An),(Tn) from Q(¥ j that

An'Tn fulfil the assumptions of ii) for each n, But this seems to be

yet much more hopeless than the game for normal operators.

A second possibility would be an adaption of the proof given .in /2/.
But this proof contsins two features which are crucial in &£%(J).
First, 1) must be valid. Secondly, the proof works with square !roots
of operators, If & is a C“-algebra, they are contained in A , But

this is not the case for XLY(J).
At the end let us demonstrate how proofs are simplified if one works
with completely positive maps. Let us recall the generalization of
Stinespring‘s theorem given in /6/.

Let ® be a x-algebra with identity e, R (¥ ) en Op’(—algebra.

A(®P(R), X(A(T)))-completely positive map ® from ®
into A (D) is of the form

F(a) = v* g(a) v for all s e & ,
where a —» @ (2) 1s a x-representation of & onto an (.)p"—al-
gebra @ (&) = A, on B =D Lty 1l , Ve L(DLL) T,liyl)
and V™ is the adjoint map to V, 1i.e. vie L (B.LtA‘l',’BLt‘I').

From the proof of this result as well ss of that of the classical
Stinespring theorem one can derive some additional information,

—
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For example, 1if 3 1s a unital map, then V,V” are isometric maps (for

v* this means e.g. if restricted to ¥, which is contained in ¥ in

a canonical way).
Now we get the Cauchy-Schwarz inequality almost trivially.

Proposition 7
Let 3 : B —e LY(5) be a unital completely positive map, then
P (a”a) 2 H (") B(s) for all aeR.

Proof:
The isometry of V implies

-§(a“) -§ (a) = Ve < (al)v Vi Q (a) vV & e g(a"a)v = §(a"a) .
q.e.d,

A short proof of result i) mentioned on page 9 is based just on the
fact that positive maps on commutative C“-algebras are completely po-
sitive. )

Hence, it would be quite useful to extend this result to general Op"-
algebras,i.e. .

Problem

Under which conditions a strongly positive unital linear map on a
commutative Op”—elgebra R(P) is completely positive?

One way to attack this problem could be to construct a suitable re-
presentation of the Op"-algebra as function algebra and then proceed
as in the commutative case for C“—algebrae.
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