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1. Introduction

We again accept notation introduced in [17] . DiffCM denotes the
group of compactly supported diffeomorphisms on a smooth manifold M.
A couple (E,V) with E being a projection-valued measure on the G-
algebra of Borel sets B(M) and with V being a unitary representation
of Diff, both in the same Hilbert space H, is a system of imprimiti-
vity if V(QIE(SIV(y) “1=E(y.S) holds for all S & B(M), ¥ € Diff M.
According to the construction described in [1], to every unitary
representation L of the group J,(n)=J, consisting of jets of local
diffeomorphisms at 0¢ R (n=dim M) there is related a canonical sys—
tem of imprimitivity (EL,VL) in the Hilbert space ul of L-equi -~
variant functions on the principal bundle (ED(M),ﬁY,M;Jm). In the
case M is orientable and connected and if we restrict ourselves to
the subgroup piff’ M of diffeomorphisms preserv1ng orientation and
similarly to the component of" the unity J c dJ,, then it holds
(EL‘,VL , (ELE,VLz) are equivalent if and only if L;,L, are equi -
valent;
the % -algebras C(EL VL) C(L) are isomorphic.

All canonicel systems of imprimitivity satisfy the following
additional condition - called the condition of locality in [11 :

Y|s = idg = V(9)E(S)=E(S) for all S€B(M), ¢y€Diff M. In the pre-
sent paper we call these systems of imprimitivity point supported.
The aim of this article is to prove that in the case M is orientable
and connected all point supported systems of imprimitivity are des-
cribed, up to unitary equivalence, by the construction, i.e. to prove
Theorem 1. Let M be an orientable connected smooth manifold, (E,V) be
8 point supported system of 1mpr1m1t1v1ty for lef M. Then there
exists a unitary representation L of the group J such that (E,V) is
unitarily equivalent to the canonical system of imprimitivity (E ,VLL

2. Preliminaries

We summarize some well-known facts. Most of them can be found with
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further details in [21. Let us fix a G-finite quasiinvariant measure
in the unique inveriant (with respect to Diff M) measure class on

B(M). lef M acts transitively on M and so E must be homogeneous,

i.e. up to unitary equivelence the Hilbert speace H can be identified

with L2 (M,Ho,dﬂ) , dim Ho—multlpllclty of E, and

E(S)f = ¥g.f, SE&DBM),feH. ()

‘Every boundea operator A in H commuting with E is of the form

(Af)(x)=a(x)f(x), where a is an operator-valued Borel mapping, HAl=

ess sup la(x)l . A is unitary (self-adjoint) if and only if a(x) is

unitary (self-adjoint) almost everywhere. For, Vc_Diff M we put

[V (9 £lx) = Vap/agu(y” 'x) £1y 'x). Then V,(y) is a unitary opera-

tor and T(y) V(¢)V (p)”"  commutes with E.

Hence V must be of the form_

iprelx) = Vap/apiuy™" 0 nyo £0y7'x), pepift, feH,  (2)

where h,! M — U(H ) is a Borel mapping. Here and in the next U(H )
denotes¢the group of unitary operators in H . We shall write also
h(y,x) instead of h¢(x) As V is a representatlon h satisfies the 1-
cocycle identity

hiy o ¢y,x hig, ,x)h(iﬁ2,¢f71-1x) almost everywhere (3)

for all ¢1,4b. Moreover, (E,V) is point supported if and only if

-1 -1

f1 ¢2 on S =) h(w]{x)=h(¢2,x) almost everywhere on S. (4)
We slso remind (c.f. £2,3]) that according to Meckey s theory, for
a locally compact group G satisfying the second axiom of countability
and acting on a homogeneous space M=G/K equivalence classes of unita-
ry representations of the isotropy group K are in one-=to~one corres-
pondence with equivalence classes of systems of imprimitivity.
Particularly, if K is trivial then every system of imprimitivity is
a sum of at most countably meny copies of the unique irreducible sy-
stem of imprimitivity.
Notation. For S€ B(M) we denote the subgroup of diffeomorphisms with
supports contained in S by D(S)C:lef M. If S is open then D(u)"
Diff’ &S if S is closed then D(S) is a closed subgroup in lef oM, if
S is compact then D(S) is metrizable. Details conserning the topology

of the diffeomorphism group cen be found in [4]. B(S)denotes the
family of Borel subsets of S and H(S)=E(S).H denotes the subspace
in H corresponding to S.

Given a system of imprimitivity (E,V) we cen consider the restric-
tion to the G -slgebra B(S) and to the subgroup D(S) and both E and V
having been restricted act in the invariant subspace H(S).

3. Continuity of the 1-cocycle
We need to smooth out the i-cocycle h. The following simple lemma
turns out to be useful since it enables to apply Mackey s "Imprimiti-
vity Theorem".
Lemma 2. Let BCR™ be an open ball. Then there exist3 an injective
continuous homomorphism &: R'—> Diff B: t — i, such that
i) QUR ) C Diff R" is a closed subgroup and
é: R® — ﬁUR ) is en isomorphism of topological groups,

ii) supp (ptce for all teR?,

1ii) Q(m“) acts on B transitively and freely,

iv) ®R® —B: t h—%¢k(0- is a diffeomorphism,
Proof. We cean restrict ourselves to the case of the unite ball
centred in the origin. Let us for t€R" denote by Ty the translation
Ty(x)=x+t. Let. p be a positive smooth function on <0, +00) with prO—
pertles 9—1 identically on some neighbourhood of 0 end ?(x)—
(x 1n? x)” for x large enough. For x>0 we put f(x) = X ?(s) ds,
i/K = 05 @(s) ds. Then f maps {0,+o0) diffeomorphically onto {0,1)
end f(x)=Kx in a neighbourhood of 0, f(x)“l—(K/ln x) for x large
enough. We define a dlffeomorphism F: B —> B by F{x)=(f Clxd)/1xl)x
and put ¢, (x)=FoT, oF~!(x) for XEB, ¢,(x)=x for x¢B.
Now, all assertlons (i -~ iv) can be verified directly using the ex-
plicit expressions for ¢t. '

.

Ve parametrize a ball BCR" using the diffeomorphism [®" — B:
t — ,(0) given by Lemma 2. Consequently, the group D(B) is iden-
tified with D;ffcmn , DIB) with a closed subgroup DeDiff mP , the
diffeomorphism ¢, with the tranalation‘T €D. The i—cocycle h in
this parametrization will be dlstlngulshed by the dash: h’, So, h' ¥

_ is defined almost everywhere on R for all ¢CD and the identity

(3) 1is fulfilled for all ¢1,¢ € D. We also identify B(B) with
B(R") and H(B) with LY(®",H_, d"x).

¥e consider the restrlcted system of imprimitivity for the group
D (actipg on m“) which is written in the form (1) ,(2) (in the Hilbert
space Le(ﬁn,Ho,dnx) . If we restrict the system of imprimitivity once
more to the subgroup of translations we can use "Imprimitivity



Theorem". It follows that there:exists a unitery transformation pre-
serving the projection-valued measure such thet the transformed 1-
cocycle h’ fulfils

h'(T,,x) = 1 identically on R" for all teR™, (5)

In the next we suppose (5) to be valid.

According to (3) for each y¢€D and all ze R" , h ‘(¢ lup,x)-
h ‘(¢,x-2) holds for almost all xe€R"™. Let us denote by D0 the iso-
tropy group of the origin. Each €D has a unique decomposition
«(:“czo(,v with z(:l%?n, @€ Dy. We can redefine h',y, on & measure zero set
and assume that

h'(wzo¢,x) = n'(y,x-z) for all x,zé€ R {6)

and for each ¢€D,. Clearly, the condition {6) is then valid even for
each €D,

We say that a Borel set has full measure if its complement has
Zero measure,
Lemma 3. For each ¢eD we can redefine h'¢ on a measure zero set in
such a way that n’ 7 is continuous on R®™.
Proof. Let us denote T({f)= vw)v (@), i.e  (T(PENx)=h"(¢,%)F(x) .
Since z T(tiow) is a qontlnuous mapping the sequence of non-nega-

tive numbers £ = sup (T (T oy)-T(Y)l converges to zero for n—yto,
1z1<1/n z
From the Fubini Theorem and from the assumption (6) it follows that

the sets C_ = consisting of points (x,y) € R®x R® such that [x-y| < 1/n
and |h’ (w,x) ~h (w,y)[><£ have measure zero for all neM. Let A be
the complement of the union (JC . Then A has full measure and it
holds Y&»0, 350, v(x,y)eA 1x-y1< 8 = |h'(g,x)-h"(¢, 7)< & .
The following lemma completes the proof.

Lemma 4. Let h be a Borel mapping from R" into a complete metric
space (X,p). Let ACR™x R® be a Borel subset of full measure with the
property: Ve >0, 385 >0, V(x,yl€a, ibyKQ_“7Q(MX)hW)%(£.
Then there exists a uniformly continuous mapping h: R — X which
coincides with h on a set of full measure.

Proof. Replaecing A by AL)A-ILJA where A-1 is the inverse relation
and A ia the diagonal we can suppose A to be symmetric end reflexive,
For xeR® let us denote by A the corresponding section, i.e. y eA. C
®R™ if (x,y) €A, It holds xéA and if x€A_ then yéA .

It will be sufficient to show thet there exist sets w<:zz:m such
that W is countable end dense in R" » 2 has full measure and

T A

Ved>o, 35>0,V xew, V yez, Ix-yl<d =) e(h(x),h(yN<E . (7)

Clearly, h is uniformly continuous on W. There exists a unique uni-
formly continuous mapping h on R" which coincides with h on W. More-
over, for each x€Z there exists a sequence (w y in W, w, > x end
h(x)=1lim h(w o =h(x) due to (7).

Now we are g01ng to construct W and Z. According to the Fubini
Theorem, there exists a set C cR™ of full measure such that A has
full measure for all x€C. Let (x ) be a sequence of points in m
which es @ subset is dense in R" Ne define by induction a sequence

(wn) of points in C requiring lwn~xnl<»1/n and wnE Awl(\...(\Awn_].
Let W = fw_ ; néN} end 2 =NA, . Then ¥ is countable and dense in
n

R™, WcZ, Z has full measure and ZCA, for all weW, so WxZCA.

Hence W,Z have the desiréd property. This completes the proof,

A reformulation of Lemma 3 leads to
Progosition 5. Let (E,V) be a system of imprimitivity for the group
D1ff E" in the Hilbert space L (R? ,H ﬂ Ny) written in the form (1N ,2)
Then for every open ball BcR™ there exists a unitary transformation
in H(B) preserving the projection-valued measure such that having
performed it (and possibly having redefined hy on a measure zero set)
hW is continuous on B for all ye D(B).

4. Representation of the jet group

From now on we investigate point supported systems of imprimitivi-
ty, i.e. the condition (4) holds. Let (E,V) be a system of imprimiti-
vity for Diff R in LA(R%,H_,d"x) and let BCR™ be an open ball. We
keep notation from the previous section. B is again parametrized by
t > ¢ (0). We can assume (for the restricted system of imprimitivity)
that h ¥ is continuous on R® for all YeD,

The mepping L : Dy — U(H ), L (y)= h’(¢,0) defines a unitary re-
presentation of the isotropy group DO' The condition (4) implies that
Lo(w) depends only on the germ of ¢ at 0. According to the next lemma
we obtein a representation of the group of germs of local diffeomor-
phisms at the origin.

Lemma 6 (Palais, c.f. [5]). Let y: R® — R™ be a local diffeomorphism

preserving the orientation, defined on a neighbourhood of a point x.
Then there exists wye DifféﬂRn such that the germs of ¢ and 4 at the
point x coincide.

More is true. The following lemma is proved exactly in the same
way as Theorem 1.2 in [ 6],




Lemma 7. L°(¢) depends only on the jet Il ¥

. -1 . —l
If 3o(@y ) = 3l# g
¥ €D, such that 0 belongs to the intersection of the closures O N 0
and W coincides with ¢ on O, 1 i=1,2. Since nh’
the condition (4) holds we find

Lo(fy) = llm Oh (¢ yX) = iqi Oh (V,x) = ii& Oh (¢2,x) = Lo(¢2)

Proof. then there exist open sets O‘,O and

is contlnuous and

xéO
This proves the lemma,

.

X €0,

According to the Borel "Extension Lemma" (c.f. [61), the group of
infinite invertible jets in mn is a projective limit of the groups
of finite jets, J (n) = llm J (n). For every j ellm.J (n) there

—

exists a local diffeomorphlsm ¥ at the origin such that j= am(¢)0. We
have obtained a unitary representation L of the group J J (n)
defined by L: Jm(¢)0’—% Lo(y

From (3) it follows h'(yp,x) = h'(T_J(pOT'_1 ,x-u) for all x,u&R"
u
Putting u=x we have ¢
h (p,x) = L(jm(ft_xﬁ]ﬂoT _lx)o ) . (8)

Hence the restricted system of imprimitivity is equivalent to the ca-
nonical system of imprimitivity (EL VL). The principal fibre bundle
P, “(R®) — R® with the structure group J; is trivializable., The
meapping x — G(x)=j (‘t‘)0 defines a smooth sectlon G. Then the de-
sired unitary mapping from the Hilbert space H
functlons on P+UR ) onto 12 (g™ oH ,d fy)
£(6(x)) =f(x).

We add a remark to the genersal case, Let (E,V) be a (not necessa-
rily point supported) system of imprimitivity for lef M written in-
the form (1),(2}. Let T: P— M be a principal bundle with a struc-
ture group J and let L be a unitary representation of J in H . L need
not be related to the 1-cocycle h., Then we can trensform (E, V) uni-
tarily to a system of imprimitivity (E,V) in the Hilbert space HL of
L-equivarient functions on P.

of L-equivariant
is defined by f — f,

E(s) f”":%_, ’f\:, (9)
L s N
(¥ £1p) = ap/agnio™ p) k000 '), (10)

where fé€ HL and k¢ is a Borel i1-cocycle on P with values in U(Ho) and

T e i o ramm

-

x(y,p3) = L(37) x(¢,p) L(3), je€d, (1)

holds on almost all fibres Px=m7](x), x €M. We can construct a unita-

ry transformation using again a Borel section G: M — P, Moreover,

commuting with E is of the form
is a Borel mapping fulfilling

every unitary trensformation ¥ in H
(UF ) p) =t(pyF(p), where U: P — u(H,)

Upi) = L3N Wepy L3y, jed, (12)

on almost all fibres.

. 5+ Proof of Theorem 1

The case M—mn. Let (E V) be a point supported system of imprimitivity
for the group Diff m . Accordlng to the previous section, we can -
relate to every Open ball BCR® 8 unitary representation of the group
J;. From [1] we know that L is unique up to unitsry equivalence. If
BCB’ are two nested balls then D(B)CD(B’) and for the sesme reason
the cérresponding representations L,L' are equivalent. It follows
that there is a unique equivalence class of unitary representations
of J; which is related to (E,V). Let us fix a representation L in
this class. We can write (E,V) in the form (9),(10) with P=3;UR“),
J=J;.

Agein from the previous section it follows that for every open
ball B-there exists a unitary transformation in H(B) preserving the
projection—ralued measure such that having performed it kV=‘ identi-
cally onax (B) for all ge D(B). Thls unitary representation is de =
termined by a 'Borel mapping u:m” (B) —)U(H ) which fulfils (12) on
almost all fibres P C?(‘(B). The results of E1] imply that eny
other u’ with this property has the form u'(p) = wu(p), where w €
c(L)n U(Ho). Hence if BCB' are nested balls then u can be extended
from B to B” in a unique way (up to a measure zero set). In this way
we cen define u even on R". This proves the assertion in this case.
The gase M is orientasble and connected. We use the following well-
known fact (in the seme manner as it was used in [7]):

Every connected manifold M admits a cell decomposition with a
unique cell in the top dimension. Therefore there is & smooth im -
bedding of mn into M whose image has complement of measure zero.

Let (E,V) be a point supported system of imprimitivity for Diff M
in a Hilbert space H. Let NC )M be an open subset diffeomorphic to m
with the complement Z=M~N of measure zero. We consider the restric-




ted system of imprimitivity for the group D(N) = Difch in the

space H(N). Clearly, H(§)=H.‘According to the case M#Rn, theie exists
a representation L of J, and a unitary transformation H — H~ such
that the transformed and restricted system of imprimitivity coincides
with the canonical one, i.e. (E,V) is expressed in the form (9),(10)
and ky=1 identicallz on Px for almost all x€N and for all ¢€& Difch.
Now, let @€ Diff i and x€ NNy(2Z)=M ~(2Zup(Z)). Then_?ccoi?ing to
Lemma 6, there exists ~&D(N) such that the germs of ¢ ", v = at x
coincides. As we suppose (4) to be valid a neighbourhood G of the
point x exists such that k¢=ky' on Py for almost ell y€&€ O. The set
ZL/¢(Z) has zero measure and so k¢=l on Px for almost all x& M.

This completes the proof,
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CucreMbl UMIIPUMHUTHBHOCTH OJjisi I'PYIIIbI

nudbdheomMopdr3IMOB

JokaspBaeTcsi, 4YTO KOHCTDPYKLUs, KoTOpas Obula npeajioxeHa
B IIpeOmecTBYylllefl cTarbe , OIIMChIBA€T C TOYHOCTBI OO0 YHH-
TapHOH S5KBHBAJIEHTHOCTH BCe CHCTeMbl UMIPUMHTHBHOCTH OIS
rpynmnel gubdeoMopdrusMoB, mnpearnosiarasi BbIIOSIHEHHBIM OONOJIHHU—
TeJIibHOe yCIIOBHE JIOKANbHOCTH.
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It is proved that the construction investigated in the
previous article describes, up to unitary equivalence,
all systems of imprimitivity for the group of diffeomor-
phisms provided the additional condition of locality is
fulfilled.
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