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I. Introduction 

We again aceept notation introdueed in [11 • DiffcM denotes the 
group of eompactly supported diffeomorphisms on a smooth manifold M. 
A eouple (E,V) with E being a projeetion-valued measure on the~­
algebra of Borel sets B(M) and with V ueing a unitary representation 
of Diff, both in the s ame Hí Lber.t space H, is a system of imprimiti ­
vity if V(.p)E(SlV('f) -1=E(f.S) holds for alI Sé l:3(M) , ljIE.DiffeIlJ. 
Aeeording to the eonstruetion deseribed in [IJ, to every unitary 
representation L of the group Joo(n)=J~ eonsisting of jets of local 
diffeomorphisms at O~ rnn (n=dim M) there is related a canonical sys­
tem of imprimitivity (EL,VL) in the Hilbert space HL of L-equi ­
var í.arit func tions on the princ ipal bundle (P(\'>( M),'lí ,M;Joo). In the 
case M i3 orientable and eonneeted and if we restrict ourselves to 
the subgroup Diff~M of diffeomorphisms preserving orientation and 
similarly to the eomponent of" the uni ty J; c J oo then i t holds 

L L L L
(É I,V I), (E 2,V 2) are equivalent if and only if L"L2 are equi­

valent; 
the *-alge bras C(E L, VL) , C(L) are isomorphic. 

AlI canonieal systems of imprimitivity satisfy ~he following 
additional condition - called the condition of loeality in [1] : 
Ifl = idS ) V(if)E(S)=E(S) for ai i SEB(M), tpEDi:f:fcM. In the pre­s 
sent paper we call these systems of imprimitivity point supported. 
The aim of this article is to prove that in the case M i8 orientable 
and connected alI point supported systems of imprimitivity are des­
cribed, up to unitary equivalence, by the construction, i.e. to prove 
Theorem 1. Let M be an orientable eonnected smooth manifold, (E,V) be 
a point supported system of imprimitlvity for Dif:f:M. Then there 
exists a unitary representation L of the group J~ such that (E,V) is 
unitarily equivalent to the canonieal system of imprimitivity (EL,VL>. 

2. Preliminaries 

We summarize some well-known faets. Most of them can be found with 
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further details in [2). Let us fix aG-finite quasiinvariant measure 
r in the unique invariant (with respect to DiffcM) measure class on 
B(M). Diff~M acts transitively on M and so E must be homogeneous, 
i.e. up to unitary equivalence the Hilbert space H can be identified 

with L2(M,H ,dM) , dim H =multiplicity of E, and o b o 

E(S)f = X-s.f, Sé B(Ml,fE H. 

Every bounded operator A in H commuting with E is of the form 
(Af)(xl=a(x)f(x), where a Ls an operato,r-valued Borel mapping, 

11) 

(IA 11 = 
essxsup t ar x )! ; A is unitary (self-adjoint) if and only if at x ) is 
unitary (self-adjoint) almost everywhere. For, <fE:Diff~M vie put 

[Vo(~)fJ(x) = Vdf/d~~~(f-Ix) f(~-lx). Then Vo(~) is a unitary opera­
-Itor and T(\f)=V(f'Vo(tp) commutes with E. 

Hence V must be of the form, 

(2)[V(r1f](x) = Jdr/d{~t'(lf'-lx) h"p<x) f(ep-1 x), f E Diff~M, fé: H, 

where	 h~! M ~ U(H is a Borel mapping. Here and in the next U(Ho)o)
denotes the group of unitary operators inHo• We shall write also 
h(cf,x) in~tead of h~(x). As V is a representation h satisfies the 1­

cocycle identity 

-1 (J)h(~10t2'x) = h(~1 ,x)h(~2'~1 x) almost everywhere 

for alI ~1 ,if • Moreover, (E,V) is point supported if and only if
2 

-1 -1	 .11 =f on S ~	 almost everywhere on s , (4)
2 

h(lf1,x)=h(<f2'x) 

We also remind (c.f. [2,3J) that according to Mackey's theory, for 
a locally compact group G satisfying the second axiom of countability 
and acting on a homogeneous space M=G/K equivalence classes of uni ta­
ry representations of the isotropy group K are in one~to-one corres­
pondence with equivalence classes of systems of imprimitivity. 
Particularly, if K is trivial then every system of imprimítivity is 
a sum	 of at most countably many copies of the unique irreducible sy­

stem of imprimitivity. 
Notation. Fo~ SEB(M) we denote the subgroup of diffeomorphisms with 
supports contained in S by D(S)CDiff~M. If S 1s open then D(S)= 

+	 +
DiffcS, if S is closed then D(S) is a closed subgroup in PiffcM, if 
S is compact then DIS) is metrizable. Details conserning the topology 

2 

of the diffe omorphism group c an be found in C41. D(S) denote s the 
family of Sorel subsets of S and H(S)=E(S).H denotes the subspace 
in H corresponding to S. 

Given a system of imprimitivity (E,V) we can consider the restric­
tion to the G"-algebra B(S) and to the subgroup D(S) and both E and V 

having been restricted act in the invariant subspace H(S). 

J 

r 
IJj. 3. Continuity of the 1-cocycle
I 

We need to smooth out the l-cocycle h. The following simple lemma 
turns ou t to be useful since it enables to apply Mackey' s "Imprimiti ­
vi ty Theorem". 
Lemma 2. Let BC IRn be an open ball. Then there existà an injective 
continuous homomorphism ~: IRn~ DiffclRn: t ~ ~t such that 

i) ~(ffin)C Diff ~n is a closed subgroup and':I: , C n~: IR -+ f(IR n ) is an isomorphism of topological groups, 
ii) supp citeS for alI tEiRn, 

iii) ~(~n) acts on B transitively and freely, 
iv) IRn ~ B: t ~ c.ft ( O·) is a diffeomorphism. 

Proof. We can restrict ourselves to the case of the unite ball 
~ed in the origino Let us for t ElRn denote by T the translation

t 
'Lt(X)=x+t. Let.? be a positive smooth function on (0,+'00) with pro­
perties: f=l identically on some neighbourhood of ° and f>(X)=­

ln2xl:1(x for x large e nough , For x~ ° we put f(x) = K' o~x ~(s) ds, 
l/K = of ÇJ(s) ds , Then f maps <°,+(0) diffeomorphically onto <0,1) 

and f(x)=Kx in a neighbourhood of 0, f(x)=I-(Klln x) for x large 
e nough , We define a diffeomorphism F: fRn ~ B by F(x)=(f ( Ix/)/Ixl)x 

1(x)and put If'\(X)=Fo'L for xEB, lft(x)=x for xiB.toF-
Now, alI assertions (i - iv) can be ver~fied directly using the ex­
plicit expressions for ~t.	 • 

ne parametrize a ball BCIRn using the diffeomorphism IRn ~ B: 

t ~ <ft(O) given b1 Lemma 2. Consequently, the group D(B) is iden­
·tified with Diff ~n , DiB) with a closed subgroup DCDiff+~n , the . c ' 
diffeomorphism <Pt wi th t he translation '\ E. D. The I-cocycle h in 

, this parametrization will be distinguished by the dash: h'. So,h'~ 

is defined almost everywhere on IRn for alI t.fe D and the identi ty 
(3) is fulfilled for all f 1 ,cf2 E D. V/e also identify 1:)(13) with 
B(~n) and H(B) with L2(lRn,H

o' dnx). 
~e consider the restricted system of imprimitivity for the group 

D	 (acting on ffin) which 1s written in the form (1) , (2) {in the Hilbert 
L2(ffin,Hspace ,dnx) • If we restrict the system of imprimitivity once o 

more to the subgroup of translations we can use "Imprimitivi ty 

3 



Theorem". It follows that there-exists a unitary transformation pre­ v [ '> O, :3 S >0, 'ti x E:. VI, V Y f. Z, Ix-.y I<. ó => ~ (h (x ) , h (y») .( E:.... ( 7 )
 
serving the projection-valued measure such that the transformed 1­


cocycle h' fulfils Clearly, h is uniformly continuous on W. There exists a unique uni­

formly continuous mapping ~ on ~n which coincides with h on W. More­

n
h' ('L ,x) = ident ic ally on IRn for a.IL t E:IR • (5 ) over, for e ach x ~ Z there exists a sequence (w ) in W, w ~ x and _ n n 

h(x):::lim h(w n) <ht x l due to (7). . 

In the next we suppose (5) to be valido Now we are Boing ~o construct W and Z. According to the Fubini 
Accordã ng to (3), for each fED and a11 Z E:. IRn , h' (=r: o tp,x) = Theorem, there exists a set C cLRn of full measure such that A has 

t 

8Z x. n,
h h?,x-z) holds for almost al.L xf:1R • Let us denote by DO the iso­

t.rcpy group of the origino Each '''fIE. D has a unique decomposition 

1'=7:°'1 with ZélRn, 
<fEDO. We c an redefine h'y on a measure zero set 

z t
 

and assume that
 

h'("l:zof,x) h'(if,x-z) for al.L x,ZElRn .( 6) 

and for each lfED Clearly, the condition (6) is then valid even for
O• 

each lfE:D. 
We say that a B01'el set has full measure if its complement has 

zero me asure • 
Lemma 3. For each rE.D we c an redefine h'lf on a measure zero set in 
such a way that h'r{ is continuous on IRn • 

- -1 ' Proof. Let us denote T(~)=V(~)Vo(Y?) , i.e. [T(tplf](x)=h (lf,x)f(x). 
8ince Z ~ T(~ af) is a continuous mapping the sequence of non-nega­z .
 
tive numbers ~ = sup 1/ T ('1: of) -T(lp)11 converges to zero for ~ oo ,
 

IZI<l/n z
 
From the Fubini Theorem and from the assumption (6) it follows that
 
the sets C consisting of points (x,y) f:.IRn x IRn such that Ix-YI < l/n 

, n, . 
and Ih (lf,x)-h (lf,y)1 >é have measure zero for alL nE:lN. Let A be n
 
the complement of the union UC • Then A has full measure and it
 

n . , ,
 
holds 'Vt.>0, 3~>0, V(x,Y)E.A, lx-y\<& ) Ih (If,x)-h (~,y)l< E..
 

The following lemma completes the proof. 

Lenuna 4. Let h be a Borel mapping from IRn into a complete metric 
space (X,fl). Let AC IRn)( IRn be a Borel subset of full measure with the 
property: \i é. '70, 3() '/0, 'r/(x,y)é.A, Ix-y\<..Ó > ~(h(x),h(y»<E. 

n
Then there exists a uniformly continuous mapping h: IR ~ X which 
coincides with h on a set of full measure. 
Procf", Replacing A by AUA-1 u D. where A-1 is the inverse relalion 
and Â is the diagonal 'fie c an suppose A to be symmetric and reflexive. 
For x E.lRn let us denote by A the corresponding section, i.e. y E A C 

n x x 
lR if (x,y) E A. It holds x E A x and if x E Ay then y E Ax• 
It will be sufficient to show that there exist sets v'í C Z CfRn such <l 

full measure for a'l L xE.C. Let (x ) be a sequence of points in/Rn
n 

which as a subset is dense in IRn• We define by induction a sequence 
(w ) of points in C r-equ í.r í.ng l w -x l<'l/n and w EA n •.• nAn n n n w w1 n_ 1
 
Let W = f w ; n f:: IN 1 and Z = nA. Then W is countable and dense in
 

n n wn 
-IR , WC Z, Z has full measur-e and Z C A for alI wE W, so WXZ C A. w
 
Hence W,Z have the desired property. This completes the proof.
 

A reformulation of Lemma 3 leads to 
Proposition 5. Let (E,VJ be a system of Lmpr-Lmí t í.v ty for the groupí 

DiffclHn in the Hilbert space L2(lRn,Ho,dnx) written in the form (J) ,(2), 
Then for every open ball BORn there exists a unitary transformation 
in H(B) preserving thc projection-valued measure such that having 
performed it (and possibly having redefined h~ on a measure zero set) 
hlf is continuous on B for alI 'fé D(B). 

4. Representation of the jet group 

From now on we investigate point supported systems of imprimitivi­
ty, i.e. the condition (4) holds. Let (E,V) b~ a system of imprimiti ­

in.L2(ffin,Hvity for DiffcBn 
o,d

nx) and let BCffin be an open ball. We 
keep notation from the previous section. B is again parametrized by 
t ~ ~~(O). We can assume (for the restricted system of imprimitivity) 
that h r.p is continuous on IRn for al.L lfE D. 

The mapping L : DO -tU(H ), L (.0) = h'(y?,O) defines a unitary re­o o o T 

presentation of the isotropy group DO. The condition (4) implies that 
Lo(~) depends only on the germ of ~ at O. According to the next lemma 
we obtain a representation of the group of germs of local diffeomor­
phisms at the origino 
Lemma 6 (Palais, c s f", [5]). Let lf: IRn ~ IRn be a loc al diffeomorphism 
preserving the orientation, defined on a neighbourhood of a point x. 
Then there exists "f E Diff~lRn such that the germs of f and "f at the 
point x coincide. 

that W is countable and dense in ~n, Z has full measure and More is true. The following lemma is proved exactly in the same 
way as Theorem 1.2 in [ 6}. 
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LemIDa 7. Lo(~) depends only on the jet j~(r)o. 

Froof. If j~(~l-l)O = j~(~2-1)0 then there exist open sets 01~02 ~d 
li(' Eó. DO such t.riat O belongs to t he intersection of the closures 01 ti 02 
and w-1 coincides with ~.-I on O., i=l ,2. Since h' is continuous and r :L ~ 

the condition (4) holds we find 
L (f 1) = lim h'C<f'l ,x) = lim h'C"'f/,x) 1 im h ' ( 'f2 ,x) = L (<f'2) • 

O x-+O x-iO x -+ O o 
X t= 01 x € 02. 

This proves the lemma. 

According to the Borel "Extension Lemma" (c.f. [6]), the group of 
infinite invertible jets in ~n is a projective limit of the groups 
of finite jets," Joo(n) = lim Jk(n). For every j f.lim Jk<n) there 

~ L::­
exists a loc al diffeomorphism f at the origin such that j=joo (tp)o. We 
have obtained a unitary representation L of the group J+=J+(n)

ro OI)
 

de f'Lne d by L: j(X)(cp)O ~ Lo<f) •
 

From (J) it follows h'(~,x) h 
, 
('L_J't.f 0 

'{" -1 ,x-u) for all x,uf./R
n
• 

lf uPutting u=x we have 

h'(f,x) L(joo(q;_x°tf°C[ -I )0)· (8)
lf x 

Hence ~he restricted system of imprimitivity is equivalent to the ca­
nonical ays t'em of imprimitivity (E L, VL). 1'he principal f'Lbr-e bundle 
p~<ffin) ~ffin with the structure group J~ is trivializable. The 

mapping x ~G(X)=joo(~x)~ defines a smooth section u. Then the de­
sired unitary mapping from the Hilbert space HL of L-equivariant 
functions on p;ClRn) onto L2(IRn , H ,dnx) is defined by f ~ f, 
~ o 
f«)(x))=f(x). 

We add a remark to the general case. Let (E,V) be a (not necessa­
rily point supported) system of imprimitivity for Diff M written in, 

c 
the form (1) ,( 2). Let 'lT: P ~ M be a princ ipal bundle with a struc­
ture group J and let L be a unitary representation of J in H • L need 

o 
not be related to the 1-cocycle h. Then we can transform (E,V) uni­
tarily to a system of imprimitivity (E,V) in the Hilbert spa~e HL of 
L-equivariant functions on P. 

Ê<S) f =~ I f, (9)
rr " (S) r---.....,....­

[V('f)f](p) = 'lt
4 Vdf / dc.p*fl (..p - I p) klf'(p) f(cp-1 p), ( 1 O) 

where l E: H
L 

and ky1 is a Borel I-cocycle on P wi th values in U(H
o) 

and 

" 

t 

l 
: k(tf,pj) :: L(j-1) k(Y',p) L(j), j é-J, (1 I ) 

holds on almost all fibres px=~-l(x), x EM. We can construct a unita­
ry transformation using again a Borel section G: M~ P. Moreover, 
every unitary transformation fi in HL commuting with E is of the form 
(Uf)(p)=ü(p)f(p), where u: P ~ U(H) is a Borel mapping fulfillingo 

u(pj):: L(j-1) u(P) L(j), jEoJ, ( 12) 

on almost all fibres. 

5. Proof of Theorem 1 

The case M=~n. Let (E,V) be a point supported system of imprimitivity 
for the group Diffcffin • According to the previous section, we can . 
relate to every open ball B CIR

n a. uni tary representation of' the group 
J~. From [I] we know that L is unique up to unitary equivalence. If 
BCB' are two nested balls then D(B)CD(B') and for the s ame reason 
the córresponding representations L,L' a~e equivalent. It follows 
that there is a unique equivalence class of unitary representations 

of JCQ
+ 

which is related to (E,V). Let us fix a representation L in 
this c Las s , we can write (E,V) in the form (9), (I O) with P=P+(IRn), 

+ . ~ 

J=Joo • 
Again from the previous section it follows that for every open 

ball B -there exists a unitary transi'ormation in H(B) pr'e serví.ng the 
projection-valued measure such that having perfo~med it k~=1 identi­
cally on 'it-1 (B) for all f E D(B). This unitary representation is de ­
termined by a 'Bore I mapping u: 'I'r -1 ( B) ........; U(li ) which fulfils (12) on 
almost all fibres P C'J'(-I(B). The results ofor]] imply that any 

, x ,
other u with this property has the form u (p) = wu(p), where w f 
C(L)nUCH). Hence if BCB' are nested balls then u can be extended o 
from B to a' in a unique way (Up to a measure zero set). In this way 
we can define u even on IRn • This proves the assertion in this case. 
The '.ase M is orientable and c.onnec t.ed , We use the following well­
known fact (in the seme manner as it was used ~n [7]): 

Every connected manifold M admits a cell decomposition with a 
unique cell in the top dimensiono Therefore there is a smooth im, ­
bedding of ~n into M whose image has complement of measure zero. 

Let (E,V) be a point supported system of imprimitivity for Diff~M 
in a Hilbert space H. Let NeM be an open subset diffeomorphic to lRn 

with t.he complement Z=M <, N of measure zero. We consider the restric­

6 
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ted system of imprimitivity for the group D(N) =DiffcN in the 
space HeN). Clearly, H(N)=H.~ According to the case M~n, there exists 

.' f+J~ and a . transf ormat i on H ~ H suchLa representat~on L o un~tary 

that the transformed anel restricted system of imprimitivity coincides 
with the canonical one, i.e. (E,V) is expressed in the form (9),(10) 
anel k1f=l identically on P for a Lmo s t all xE.N and for 011 fé DiffcN. x 

Now , let <pE Diff+jVJ and xE. N"'f(Z)=M '(ZVf(Z». Then according to 
c	 -1 -1 

Lemma 6, there exists 'ft=.D(N) sue h that the germs of lf ,y at x 

coincides. As we suppose (4) to be valid a neighbourhood O of the 
point x exists such that k'f'=k"f on P for almost all yé O. The sety 
ZUcf(Z) has zero measure and so k = l on P for almost all xf:M.

sP x 
This completes the proof. 
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IlIToBHtIeI< TI. ES-87-l74 
CHCTeMbI HMnpHMHTHBHOCTH p,nH r'pynnu 
p,H<pQJeOMop<pH3MOB 

llOKa3blBaeTCH, qTO KOHCTPYKIl,HH, KOTopaH ÕbIJIa npezinoxena 
B npep,l1IeCTBYIOrn;eH cTaThe/ 1/ , onHCblBaeT C TOqHOCThIO p,o YHH­
r apuoü 3KBHBaneHTHOCTU ace CHCTeMbI HMnpHMHTHBHOCTH nrra 
rpynnw p,H<p<peoMoP<PH3MOB, npep,nonaraH BwnonHeHHWM p,ononHH­
TenhHoe ycnóBHe nOKanhHOCTH. 

PaÕOTa BwnonHeHa B naõopaTopHH TeOpeTHqeCKOH <PH3HKH 
OHHH. 

Ilpenpmrr Ü6'beAillH!HHOrO HHCTHTYTa anepasrx HCCJIeAOBaHHH• .uy6Ha 1987 
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Systems of Imprimitivity· for the 
Diffeomorphism Group 

It is proved that the ~onstruction investigated in the 
previous article/ 1/ describes, up to unitary equivalence, 
alI systems of imprimitivity for the group of diffeo~or­
phisms provided the additional condition of locality is 
fulfilled. 
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