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1. Introduction

The present paper continues the investigations of the
gcattering matrix and the spectral shift function of
a scattering theory of maximal dissipative operators.

The scattering theory of meximal dissipative opera-
tors was developed in f14,15]. In these papers the wave
operators were introduced and a definition of the com-
pleteness of the wave operators of maximal dissipative
operators was given. The scattering operator was defined
in [15] and the investigation of this object was started
there. A detailed representation of a dissipative scat-
tering theory can be found in [19].

An attempt to define the notions of the scattering
natrix and the gpectral shift function as well as to
clarify their interplay was undertaken in [17,20,18],
where a maximal dissipative operator end a gelfadjoint
operator which differ by a nuclear dissipative operator
were congidered., The aim of the present paper is to
generalize these results to a pair of operators {H1,Ho}
consisting of a maximal dissipative operator H, and a
selfadjoint operator H0 both defined on & separable Hil-
bert space % such that the resolvent difference belongs

to the trace class, i.e.
-1 -1
(1.1) Hy - D70 -, - 07 e L),

where 11(*3) denotes the class of trace operators on‘{a .
To obtain such a generalization we start with & pair
{T1,To} conslisting of a contraction T1 and a unitary

operator T_ both defined on ‘43 such that their difference
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belongs to the trace class, i.e.
(1.2) -1y e .

In the first section of chapler two we introduce
the wave and scattering operator for such & situation
and derive a formula of the family of scattering matrices.
The second sectiion is concerned with the définition of
a spectral shift fungtion and the verification of a trace
formula for the pair {T1,TO]. It turns out that these
considerations are independent of the assumption that
TO is unitary. In such a way we assume through this
section that To is a contaction on‘ﬁ s, too. The results
of this section essentially are based on~£213. On account
of the previous two sections we prove a certain Birmen-
Krein formula in the last section of this chaptexr.

In the third chapter we try to obtaln seimilar re-
sults for a pair of operators consisting of a maximal
dissipative operator and a selfadjoint operator. For
this business the mein tool will be the invarisnce prin-
ciple of wave operators and the Cayley transform. Using
the invariance principle and taking into account the
Cayley traensform we find a formula of the family of
scattering matrices end we carry over the results of the
second section of chapter two to a pair of maximal dis-
sipative operators. The Birman-Krein formula follows
then directly.

An attempt in the same direction wes undertaken by
A.V.Rybkin [22,23]. The results of A.V.Rybkin partially
coincide with the results of [17,20,18]. Further publi-
cations of H.Langer [13] , R.V.Akopjan {2,3], V.M.Adamjan,
B.5.Pavlov [1] end P.Jonas [8,9] are related to the sub-
ject of this paper.

2. Contractive casge

2.1. Scattering matrix

First of all we remark that the condition {1.2) implies

the existence of the wave operators W_,

(2.1 ) W, = s-lim 9% T2 P8%(T )
+ e ieo 1 <] o’?
and W_,
(2.2 ) w_ = s-lim T3 T30 POO(T),
n—y+ ot

where Pac(To) denotes the orthogonal projection from

"b onto the asbsolutely continuous subspace ‘*'aac(’ro) Of,
the unitary operator T . A Theorem of this contenis can
be nowhere found, but it is not hard to see that such

a theorem ghould be the digcret version of Theorem 2.1
of [16]. Consequently, transforming the considerations
of Theorem 2.1 of {16] into s discrete language we obtain
a proof of the above mentioned existence agsertions.
Moreover, following the seme line we get the exigtence

of the diletion wave operators. W_,

*n .n &8¢
(2.3 ) W, = g-lim U," T PT(T )
2 opsrm 1 O o’

where U1 denotes a minimal unitary dilation of T1 defined

on the dilation space & , Qa cR .

If the wave operators W exist, then we cell the
triplet A= {T1,TO;I} a scazkering system in the fol-
}owing.

The scattering operator 5 of the scattering system

N {g defined by

y »
(2.4 ) . S = W+W_.



(2.11) N (elt) = ¢ - ca(r, - 3% 'ne,

$

$ » 1. Taking into account Proposition 14 of [4,p. 57} 1t

is not hard to see that the limit f'(eit) = o-lim r’ (eit)
)

‘exists for a.,e. t & [0,20] modl.}. Vi

Theorem 2.1. Let 12(4 , 1.0 ;’%t,‘S ) be & spectral represen-

tation of Tgc and let {T(eit)}teb be the family of scat-

tering amplitudes of the scattering system {T1,TO;I}

which obeys (1.2). Then there is a femily of isbtmetries

Lvee'®} gy s V(et®)i(imatu())™ — %, t€8 , such

that the representation

(2.12) relty = 21v(ei*r{n( £ et piettyfuc v ) vt

holds for a.e. t€ Amodl.d.

Remark 2.2, It is quite possible that the set & =

= {t €A: M(t) = 0} has a positive Lebesgue measure. In
this case we set V(eit) = 0 and T(eit) = 0 for every ted .

The proof essentially follows the considerations of
Theorem 2.15 and Corcollary 2.17 of [17]. Therefore we omit

the proof.
Corollary 2.3. If the assumptions of Theorem 2.1 are valid,

then we have

(2.13) ety € L 04

for a,e, t€ A modl.{.

Proof. The relation (2.13)immediately follows from
Theorem 2.1. B

2.2. Spectral shift function

In distinction from section one through this section {l?o

will denote a contraction on‘h s too.

The aim of this section is to define a speciral shift
function for e pair of confractions {‘I‘1,T°}. An attempt
in this direction was made in [17,20,18] for a disgipative
situation. In the language of contractions these resulis
can be expressed as follows. Let Ojﬂ be a set of functions
defined by the condition that their elements ¢ (.) admit

a Fourier decomposition

(2.14) ¥ (z) -}: ey 21,
l=-oo
z€VW ={z€C: |zl = 1} such that the condition

. )
(2,15) > }1e. ] € + oo
1=~v0 1

1s fulfilled. Introducing the functions ¥, ()€ 0(]'1,

(2.16) S, (z) -E 8, 2%,

and ¥_(.) € 031-1'

21D X _(a) - 1;00 a2t f,

ze X!, we decompose ¥ (.) into & sum of two functions,
(2.18) Viz) = ¥, (2) + X _(D),

2& W'. The condition (1.2) yields

(2.19) )+ X)) - () - N e L)

for every (.} & 0]_‘1. If in addition to (1.2) the de-

. - _ -
fect operators DT‘I ='fI - T1T1' N DT’; —1 I T1T:1


http:lT1,T~.Il

DTo =Y1I - TeT, end DT: =VI - T,T% belong to the
trace class, then there is a real measurable function

ml) & 11([0,2X]) such that the trace formula
(2.200 {4, (1) « X_(1) - t (2 - ¢_(th} -
31
a 1t
= t ¥ at

holds for every X(.) €& OJT"' The function ).l(.) is
called a spectral shift function of the pair {T,,T } and
is defined by (2.20) up to an additive constant. The
function fk(.) admits the representation

D - 1
(2.21) P slsi?]i

+ congt., -

for a.e. t.e[O,Zj]modl.\. where we have agsumed
1 log det(I + (14-T,) (T, " 2 ) = o,

If the condition (1.2) is fulfilled but the defect
operators do not belong to the trace class, then it is
quite possible that the representation (2.21) makes sense
but the aﬁectral ghift function defined by (2.21) is
even not locally summable., Hence the trace formule (2.20)
loses 1ts meaning., But from atanépoint of applications
it ia natural %o demand that the defect operators belong
to the Hilbert-Schmidt class and to have some trace for-
mu}a. The following considerations give a golution of
this problem. )

The gsolution was obtained by taking into account
ideas of L.S.Koplienko, who trys in [11] to define a
generalized spectral shift function and to legitimate a

Im log det(I + (2,-7)(1,-3e%%)"1) s

modified trace formula for selfadjoint operators which
differ by a Hilbert-Schmidi operator. In [21] the results
of L.S5.Koplienko wére,extended to unitary operators and
to pairs of selfadjoint operators such that the resclvent
difference belongs to the Hilbert-Schmidt clasas.

In the following we apply these results to a pair
of contractions which differ by a nuclear operator. In
this connection we will see that the problem to define a
spectral shift function for a pair of unitary operators
under a Hilbert-Schmidt perturbation or for a pair of

contractions which differ by & nuclear operator is es-~

. sentially the same,

For further considerations we restrict the set 0311
to the get 3:" which elements are characterized by

» 4 OO

(2.22) 7 1%la)} < 4%

JEEL

Theorem 2.4, Let {T,,To} be a pair of contractions on‘b
such that the conditions

(2.23) I-1T € 1,040
and
(2.24) I-110 € d,04)

are fulfilled. Then there is a real measurable function

(.)€ 11¢[0,2X)]) such that the formula

(2.25)  tr((14-2)"" - (1 -2)"") =



holds for every z € € with |zi> 1, The function ¥(.) is
defined up to an additive conatant by (2.25). Por every
X () € T the condition (2.19) is fulfilled end we

have
(2.26) tr {4,017, + X (1) - X () - ¥ _,('.t"g)} =

Ul a2 g, 1t
= - }, 3 ) ;t-gﬁt(e ) dat.
Proof. We prove Theorem 2.4 in several steps.
1. The conditions {2.23) and (2.24) imply that the con-
tractions T, and T o BY® Fredholm operators such that the
condition (1.2) is fulfilled and the defect operators
D‘l‘1’ DT':’ D‘I‘o and DT: belong to the Hilbert-Schmidt class.

To prove these assertions we use the formulas
L] e
(2.27) 2I - ‘1?1‘130 - ‘Io'r1 =

=1 - 1r, + (-1 (1,1 + T - T e L, 0h)

and

» L]
(2.28) 21 - T1T° ~ T,y =

* * m¥ -
= I - P07+ (DT (T-T) + T - 2 rg el ().

But (2.27) and (2.28) immediately imply I - T,TT€ X, (%),
: . -

I -, ;L,(\lk), 1-110e 3.1(_\5) and I -1 € '

e d 1(“)). Hence the defect operators belong to d 2(\5 I

Taking into account Lemma 5.19 of [14] we find that T,

and To are Fredholm operators. The formula T1 - To =

= 7, (1 - T81) - (I - 7,T¥%)T shows that we have

T, =T, e A 1(‘43).

10
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2. To apply [21] we introduce special unitary dilations
U1 and Uo of the contractioné T1 and To' respectively.

It turns out that the matrix-construction of a unitary
dilation described in the book of C.Foias and B.S5z.-Nagy
{6} is very useful for our purposes. In accordance with

this construction we introduce the diletion space af.,

o0
(2.29) H = :1® "N’

‘sj =‘¢d » J = 0,41,42,..., where the original Hilbert
space “a iz identified with “ao, and define the unitary
dilation u"‘j of Ty by

,. 4 . - * ¥
(2.30) 0 I 0 0 0 ©
0 D -T; 0o o
Uy = 1y D‘r‘;. 0 o©
0 1 o
o 1],

'

J = 0,1, Taking into account the results of step one we get

(2.31) Uy = T € Lo

In accordance with [217) we define ¢ = 01631

and we usge
the repregentation G = eiD, pe i 2(‘43 ). Because of Corol-
lary 2.4 and formule (2.69) of [21] we obtain a real

measurable function % (.)€ L‘([O,?ﬂ) such that the relation

iD__~iD
(2.32) {27 - a7 4 (u-e) ! Sty (v -2)7"]

2X it
e + z it
- 3w P RS

izl '# 1, holds.

11



3.

Our next aim is to calculate the left-hand side ex-

pression of (2.32), Teking into account (2.30) a long

but straigﬁtforward calculation proves

ip__-iD
(2.33)  4r { (Uy=2)"1= (U ~2) (U 207! 58y (U -]

< tr{(ny-0) (2207, ,‘z(m°+mTo)(To-z)'2} :

1z{> 1, where E and F are given by

* »
(2.34) E =TT - T,7] + DT:DTa- = DpaDys
o o 1
and
(2.35) P=17D, -~ DT = TD, + DmT,.
1 To T1 o [} T1 To 1

We remark that we have E ¢ % 1(‘5? and FDToe o€ 1(‘4) Y.

4. We assume that T  is an isometry, i.e. T, = V, with
VeV, = I. From (2.32) - (2.35) we find
(2.36)  tr{(ry-2)7" - (V-2 4 BV (v -2)7?) -
2 it
=5 () 2y et at,
0 (™" - z)
121> 1. The operator ¥ = - % E is nuclear and selfadjoint.

Ir Po(.) is the spectral measure of the unitary dilation
of Vo, then we get

. ) 4 it
(2.37) i tr(yvo(vo-z)‘a) =1 3, (—ﬁe—? dtr(YF (t))
e - Z

2K it
= 3 it
= ‘3 ( y.tr(Y) - tr(YF (1)) (ﬁtt_:)j e " at,
1z1> 1. Defining § (.) by

12

(2.38) T(t) = () + tr(YP () - 3= tr(¥),
t €[0,2X] we have § (.)€ L'([0,2X]) and

(2.39) (-7 - (v, - )T =

) 4 it
- i !(t) eit + 2z ol?t at,
0 3

(e7” - 2)-

121> 1. Obviously, the function ¥ (.) ise real one.

5. We assume now that To is a co~isometry, i.e. T _ = Vo

o
with vov:= I. Then the pair {T':,v:} fulfils the assumptions
of the previous step. Consequently, there is a real
measurable function o (.)€ L1([0,2%]) such that the for-

mula
2% it
(2.40)  tr((13-2)"" - (vi-2)"") = RIS (—:ﬂj—:)? it at

|z1> 1, holds. Taking the adjoint of (2.40) we get

(2.41)  tr((1,-2)7 - (v2)T) - EIJ, (t) (%}:%5 o1t
21>1. Setting z2 = z and ¥(t) = & (21 -t), t&[0,27), we
obtain a real measurable function 3§ (.)¢& L1([O,2I])
obeying (2.39).

6. We solve the general case of two arbitrary contractions
’I‘1 and ’I‘o satisfying (2.23) and (2.24). To this end we
introduce the polar decompositions Tj = sign(Tj)\le ,

I’I‘Jl ='4T';Tj » § = 0,1. On account of step one Ty and T

"are Fredholm operators. Hence we have def(sign(Tj)) =

= dim(“_)@ima(sign(l‘j))) < +% and nul(sign(’l‘j)) =
= dim(ker(sign(’l‘j))) < +%, j = 0,1. In every case the

13



operators sign(T,) and sign(T ) are extendible to some
isometries or co-isometries V1 and vo such that the re-~
presentatigns T, = V&IT1| and T = V°|T°| are valid, Now
the pairs {T1,V1},_{V1,V°}, {To’vo} fulfil the essumptions
of step four and five, Summing up the corresponding for-
mulas we prove (2.25).

7. Taking into account T, - T € E4 105) we prove (2.19).
Prom (2.25) we obtain

(2.42) (T} - ) = &P EIS (t) et¥* at,

k= 1,2,...., But this equality implies

2x a2 1t
(2u43) (L1 - €,3)) = - B @) S5 ¢ (et a,

‘((.)53-'1.1. Taking the adjoint from (2.42) we get
2 2
(2.4)  rCE_(T]) - X_(T) = - V3 ) el _('%) at,

Summing up (2.43) and (2.44) we prove (2.26).

8. To prove the uniqueness of ¥ (.) it is sufficient to

show that for every real measurable function $ (.)€ L1([0,213)
the condition

X 1t
2. 1) S+2 . ot at =0,
(2.45) z S (t) ?:IFTTZSS e

V21> 1, implies 8 () = const.. But from (2.45) we get

_a .
(2.46) Y 8(t) ekt at = 0
0

for every k = +1,+2,.... Hence we get 8 (t) = const. . ©
In the following we call a real measurable function -
5¢)e L1(I0,2]J) obeying (2.25) or (2.26) an integrated '

14

spectral shift function of the pair {T,,7;}. We note that
the integrated spectral shift function is defined up to an
additive constant.

Let Pr(t,s) be the Poisson kernel,

1 - r2

2 . 2rcos(t-s) ’

(2.47) P.(t,8) = 3¢ ,
+ r

t,s «[0,2%), and let ¥ (.)€ L'([0,2X]). If the limit §¥ (s),
(2.48) §%(s) = lim - EIS (t) &P (t,s) at
=~ I at et

exists at s € (0,21), then we call 3*(8) the generalized
derivative of § (.) at the point s¢ (0,2K). It.is possible
to show that if the usual derivative §'(s) of ¥ (.) exists
at the point s, then the generalized derivative exists also
at s and both derivatives coincide, i.e. S*(s) = 3 '(s).
Theorem 2.5. Let {T1,To} be a pair of contractions on 4}
such that the conditions (2.23) and (2.24) are fulfilled.
It ¥ (.) denotes an integrated spectral shift function of
{T1,To}, then for a.e. t6¢ [0,21] mod|.] the generalized

derivative S*(t) exists and we have
c * _ 1 -1,ity-1
(2.49) ¥ (¢) = -11mI Im log det(I+(Ty-T )(T -r e *)7"),
1 .
where.we have fixed a branch of the logarithm by the con-

dition lim log det(I + (T, - T )(T_ - 2)”') = o.
12l +oo °ore

Proof. Because of T, - T cd 1(‘5 ), which follows from
(2.23) and (2.24), the determinant det(I + (T,-T )(T -2)”"),
1z1> 1, mages sense. We get

(2.50) & log det(I + (T, - T N(T, - 2)7") =

= -tr((T, - z)~1 - (T, - Z)_1).

15
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121> 1, Taking into account (2.25) we get

(2.51) log det(I + (T, - T )(T, - )" 1) =

2K d eit
= -1 § 3(8) 55— dats
4] e - g
VYzi> 1. Hence we obiain

(2.52) il:cm log det(I + (T, - T )T, r 1t ) -

2X a
=) 3 (t) gp B.(t,8) at,

s ¢{o0,21].
It remains to establigh the existence of

. 1

ﬁm I Im log det(I + ('1‘1 -7 )(T

" s¢10,2X) modi.l. To this end we use the notion of the

eis) 1) for a.e.

regularizqd determinant det(I + .)y which 1s applicable to
Hilbert-S5chmidt operators. For a detalled presentation of
this determinant the reader is refered to [ 7). Taking into
account the factorization (2.9) we get

(2.53)  log det(I + (T, - T )T - r"1el®)~7) -
= log det(I + cB(T, r1e1%) 1) &
.+ tr(cB(T, - r1e18)"p),

o<r<1, s¢[0,2X). Prom Proposition 14 of [4.p. 57] we

£ind that lim CB(T, - r”'e!®)7'B exists for a.e. s¢L0,2X] modl.t
in Z,. But*lhe determinant det(I + . ) is continuous in

the Hilbert-Schmidt norm. Consequently, the 1limit

y‘.}n‘x' det(I + CB(T - r~1e18)"18) exists for a.e. sel[o0,2X]

16

mod 1.} . For the same reasonthe limit lim det(I-CB(T,-r™ 'e!®)B)
=Y
exists for a.e. 8¢ [0,2X) modl.1. Hence we obtain

—~ -
(2.54) 1:;,:: «i:t(I-rCB(To-rqeis)_’B)l%? det(1-cB(1,-r"e15) B)
r . I

= %%111: exp{-—tr(CB('ro-r""eia)'1BCB(T1-’r"1ois)'1B)
30
for a.e. s %[0,2%] modi.}. But (2.54) implies
lim det(x + oB(7, - r"1e!®)7'B) 4 0 for a.e. 8¢[0,23] mod).].
Conaequently,the limit Lim log det(I + cB(7, - r'el®)7Tp)
exists for a.e. s¢ [0,2X]mod .| . It follows that
lim% Im log det(I + CB(T -7 eis) B) exists for a.e.

.t
s e[o 2X} modl l. Po show the existence of

H:T f Im tr(CB(To - r~1e18)=1B) we use Proposition 2 of
[4,p.33). Considering the transformation R'3 X\ —

~» 2 arc ctgh = t € [0,2X] Proposition 2 of [4] can be
formulated as follows. If g(.): [0,21]'—71: 1s a function
of bounded variation, then the 1limit ‘

2%
(2.55) 1im M‘
r# é ot . pl.ls ds(*)

exigts for a.e. 8¢ [0,2X) modl.). Denoting by F,(.) the
spectral measure of a unitary dilation of T, we find

(2.56) tr(cB(T, - r~1el8)-1p)

ox .
1
- g P 5 o e a(tr(CBF (¢)B)),

O0<r<1, 8¢ [0,2X]. Setting g(t) = tr(CBF (¢)B), t&(o0,21],
it is not hard to asee that g( ) is of bounded variation.
Hence the 1limit limi- Im S ”'i'i:_—“‘"I“ atr(CBF (t)B)

1
exists for a.e. 3¢ [0, 21’] modl i -
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Theorem 2.5 shows us that the existence of the limit
(2.21) does not require the additional conditions DT1’
I)Ta;, D,Po and DT: ei,(%). But if these conditions are
fulfilled, then normalizing the spectral shift function
u(.) of {7,,7 ] by the condition 2SI;.L(t) dt = O an inte-
grated spectral shift function E(.) of {T1,T°} can be
obtained by the formula F(t) = §,L(s) ds, te¢(0,21].
Consequently, every integrated sgectral shift function of

{T1,T0} is absolutely continuous., Hence the usual deriva-

tive ¥'(t) exists for a.e. t€[0,21) mod I.l and the equality

§'(t) = ¥¥(t) = m(t) holds for a.e. t&[0,2X]mod ).

From this point of view it seems to be quite natural-

every function m(.) which differs from 3 (.) vy a real
constant to call a spectral shift function of the pair
{T1,To}, what we will do in the following.

We remember that the spectral shift function }L(.)

can be even not local summable, To show this it is suffi-
cient to congslder the Cayley -trensform of the meximal

dissipative operators of Example 3.10 of [20].
V At the end of this section we note that introducing
a diaributlou theory of functions over C°°(‘[1) = 3}{1,
regarding 3 (.) € 1'([0,2¥)) as a distribution ¥ defined
By (3,0) = I'5(6) (1) a, ¥(.)ec™(T") and consi-
dering the distribution derivative §' given by ( ¥',%)

= -(%, ¥') the generalized trace formulas (2.26) of

Theorem 2.4 can be transformed into the form
(.51 {41 + X_(1D - X (1) - X (D} -
= ( 3" ‘?').

Ni.)e o™/ “1). In accordance with the considerations

18

of P.Jonas [9) the distribution derivative X' of the in-
tegrated spectral shift function ¥ (.) can be called the
spectral shift functional or the spectral shift{ distribu~
tion of the pair {T,,T }. Following this line the contents
of Theorem 2.5 can be understood as the possibility to
localize the spectrasl shift distribution at a.e. points
of [0,2%] modl.|. Hence the spectral shift function §7*(.)
of the pair {T1.To} is none other then the a.e. modl.}
localized spectral shift distribution of {T1,T°}. But it

is in general impossible to restore ¥' or X(.) from

_ the spectral shift function §'(.).

2.3, Scattering metrix and spectrasl shift function

We return to the situation, where To ig & unitary operator

on‘% .Our next aim is to generalize the well-known Birman-
Krein formula to our contractive situation.

To this end we remember if {Ui'To} is a pair of
unitary operators on ‘5 such that the condition
U, - T8 11(43) ig fulfilled, then a spectral shift
function s (.) of the pair {01 ,To}enats, which belongs
to L1([0,2]ﬂ) and in accordsnce with (2.21) can be repre-
aented by

T

(2.58) AE) = -iil:l 1 In 1og det(I + (U,-To)(mo-r"e??)“)»f
rt

+ const,

for a.e. t € (0,20 mod}.! . The spectral shift function is
only defined up to an additive constant. Usually a certain
apectral shift function /4°(.) is fixed by the condition

-

- N 2x N
(2.59) 3 /u"(t) at = -1 tr(log(U.‘T:)),

19



where by -ilog(U,l'I‘:)) we denote that operator of
-1Log(U1T:), which spectrum is situated in (<%,W}, and
is called the mean value of the gpectral shift functions
of {U1,To}. The famlly of scattering matrices {so(eit)}teA
of the scattering system f\o = {U,.,TO;I} defined in
accordance with section one consits of unitary operators
in this case, Taking into account Corollary 2.3 it makes
sense to consider the function det(so(eit)), t€A . Now
¥.5.Birman and M.G.Krein have established in [5], that the
gpectral shift funciion /u_o(.) and the family of scattering
matrices {so(eit)}tek are related by

(2.60) det(So(eit)) = ezli/“'o(t)
for a.e, t.e A modl.l.

To extend the Birman~Krein formula to our contractive
situation it turns out necessary to introduce a new object
which 18 called the characteristic function of a contraction
and which was widely investigated by C.Folas and B,Sz.-Negy
in [6]. In the following we deal with contractions T,
characterized by the condition dim ker(T1) = dim ker('l‘f).
Contractions of this structure allows e: representation of
the form T1 = U1R, where U1 is a unitary operator on ‘{a
end R = I‘1‘1! . For this restricted class of contractions

the characteristic function BT (.) can be defined by
1

(2.61) 9T1(z) = R - 2}I-R° Uy VIR,
1

z€A ={z€L : {2l < 1}, where the values of QT (.) are
1

considered as bounded linear operators acting from

(ima(YI-R% ))” into itself. It is not hard to see “that

the definition (2.61) 1s equivalent in the sense of
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[6,chapter v, 2.4.] to the definition of the characteristic
function given in [ 6;chapter v, 1.1},

The characteristic function is an analytic contractive
one, which completely characterizes the contraction T1. De-
manding I - R € :L1(\!a) we obtain 9T1(z) -I€ 11(%5)
for every z€D. Hence it makes sense {o define the complex-
valued function & r1,‘(.),

(2.62) &y (2) = aet( By (1),

z€D. The complex-valued function S'T1(.) ig an analytic
contractive one, too. But this fact implies that the limit
§ 1,1(!»“) .

. ity & o131 8 (reit)
(2.63) 8T1(e )= m Sp
exists for a.e. t&[0,2X) modl.l.

Theorem 2.6, Let I.z( A, ;““,‘3) be a spectral represen-
tation of 72° and let {s(e?®)}, ., be the family of scat-

tering matrices of the scattering system A= {T1,TO;I}
which obeys (1.2). Then there is & spectral shift function
4%(.) of the pair {T1,Tol-auch that

(268 det(s(elt)) = ST1(eit)‘e2li\r°(t)

holds for a.,e. t € A modl.d.
Proof. We prove this theorem in several steps.

1. On account of [10,chapter IV, $5) and condition (1.2)

‘we find that T, 1s a Fredholm operator with the property

nul(’l‘1) = def(T,). Consequently, the operator T, allows
the representation T1 = U1R, where U1 is a unitary opera-
tor on "a and R = IT,] . Moreover, we find U, - T, € 11("3.)
and G,R - U, & i,("a).
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2. The considerations of the first step allow to divide
the gcattering system N into two new gcattering system

2\1 = {T.l,U.l;I} and f\o = {U1,T0;I}such that we have
(2.65)  det(5(e'®)) = det(s (e'¥)) dev(s (el?))

for a,e. t < A modl.l, where 'LS1(e]"k)}t€;A end {So(eit)}tsa
are the femilies of scattering matrices of the scattering

systems I\1 and I\O, respectively, The fact that the spec-
tral cores of both families of scattering matrices are the
game musi be established but it can be easily done.

By /u.o(.) we denote a spectral shift function of the
pair {U1,TQ} normalized by (2.59). If 31(.) denotes the
integrated spectral ghift function of the pair {T.] ,61}, we
choose the generalized derivative 3*1(.) for the spectral
shift function of the przn.:i.r‘{".‘1 ,U.]}. Setting

*
(2.66) Xt = wO1) + 3(1),
t ¢ [0,2X), we obviously define a spectral shift function
of the pair '(_‘1‘1,‘.[‘0}. Taking into account (2.65) snd (2.60)

it remains to show
*
(2.67) det(s1(eit)) - 3T1(eit) 2X §,(t)

for a.e. t & A modl.l.

3. We prove the relation (2.67). To this end we apply
Theorem 2,1 to the scattering system A1 = {T1,U1;I}. Re~
placing T, by U, the operator-valued function e"ith‘l(t),

t € [6,21],0&:1 be represented by

. 2 -
1 (1 -} U
M(t)zlimB-z:[— 4
rt I+r2

- rU:eit - rU1e"it

(2.68) 1t

B
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for a.e. % &[0,2%) mod I.) . The 1limit can be taken in the
trace noym. Using this representation and the property

T1 = U1R we getl

(2.69)  aet(5,(e)) =
*
(1 “re)u1 B-
= det(I + B -
. ;L‘:ﬂ et( 1+r2-rU’1'ait-rU.le it
e - 8 —gg 3eh -
T, - e
o
2
ol - *»
1 I -it"I Rt

= 1im det(X - VI-R D % 1%

e - rU1 3 -rU1 e

I+ VIE —1 5 UVIRD
T1 -r e
for a.e. t8 Hmodid ., We get

(2.70) Wiz = T+ VIR —— UNTE,
-

\zl> 1. We find

(2.71) [R(z)] =1 -VIR ﬁ;—‘__—-ﬂ- UNTE

and

- -1
(2.72) det(T(2)) = [aet(T + (2, - U)W, = 2"D]7,
{z17> 1. Consequently, Awe obtain

1 -~
(2.73)  aet(sy(et®)) = Um det(T VIR — 3% UIF
1

2
1 - T *,I—R‘ ).
- VIR 1t

14 2% - ru:'eit - rII1e"

. det (T (! elty),
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i

for a.e. t €0,2X) mod].|. Hence we get

it N
(2.74) (det(s (e!) = iﬂ’ det(I - VIR 1_7}35511:‘“1@:)-
: 1

. det(:l'f.(r"leit)),
for a.e.t&[0,2X] mod i.i.

A simple calculation proves the equality
(2.75) det( 3T1(r§1t)) = det(I - VI-R (I+relte}).
(I - reitT';)"1m).
0sr<1, t&f0,2%). Using (2.75) we find
(2.76) det(eT1(re“))tdet(:rt(r"e“))]"1 -
= det(I - IR ;—_ﬁﬁm ),

0<r<i1, t €[0,2X]. Putting (2.76) into (2.74) we obtain

(2.77) det(s1(eit)) = lim det(BT (reit)}dEt(E(r-1eit))
*4i 1 det(3ﬁ(r-1eit))

for a.e. t€[0,2K]. From (2.72), (2.49) and (2.63) we
obtain (2.67). m

3. Dissipative case

In this chapter we transform the results of chapter two to
a pair{H1,H0} of operators on “b which consits of a

maximal dissipative operator H1 ;md a selfadjoint operator
Ho and which obeys the condition

CR I N A D AU P el (4).
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We formulate the results and sketch the proofs only.
The main tool to obtain such a transformation is the

Cayley transform
-1
(3‘2 ) TJ = (HJ + 1)(H3 - i) Y

J = 0,1, It is not hard to see that (3.1) implies the con-
dition (1.2} for ithe Cayley transforms T, and T . In guch
a way the results of chapier one hold for the scattering
system N = {‘1‘1,'1'0;13, The problem is to carry over these
results to the acattering system E = {H‘]’HO;I}' Rotice
that under (3.1) the wave operators Q.+

*
(3.3 ) 9,"_ = gjim eitH1 e—itHo PQC(HO)’
+on
and &C_.
(3.4 ) &= s-lim e~1tHy JitH, pac(y )
¥

exiat, where Pac(Ho) denotes the projection from 43 onto
the absolutely continuous subspace ‘laac(ﬂo) of the self-
adjoint operator H . In section 2.1. it was remarked that
under (1.2) behind W, the dilation wave operators 7':' exiat.
The same can be said_concerning the dilation wave o;eratore
of B . See for instance [16]. Taking into account the
invariance principle {4, Corollary 26 p.248] we obtain
that the dilation wave operators of the scatiering systeme
A ana B coincide. But from this fact we get the equali-
ties ’l+ = ‘Q‘*. Hence the scattering operators S and

p ,Q-“;SIL of scattering systems A and T, respectively,
coincide, Moreover, the family -\.’Z (Xx) })&.R defined by

(3.5) Z(N) = 5{2arc ctg\),
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Ry e e ML

NeN={XeR': X = ctg(t/2), t €A} 1s a family of scat-
tering matrices of the scattering system E « Obviously,

we have

(3.6) OO -1y ctan & L,04)

for a.e. XN € N modli.l.
By the transformation ¥ () ) = v ( i : g’)» A C,'R1o we

obtain a new set of functions from 3-_‘_1 which we denote

by ?‘U. Similarly, we introduce the functions Y+(.). A

simple calculation shows the validity of

. 23 s _ d it N .
G e (AW = -2 ety o= -2 ).

‘ ——
Hence we get a certain subset ?1 of 3 4 setting
® ®
(3.8) F,o={WHe T L o1im (1 2y npt = o}.
R LR TRESEINED

Supposing that Ho is slso a maximal dissipative operator,

Theorem 2,4 reads now as follows.

Theorem 3.1, Let {H1,H°} be a pair of maximal dissipative
operators on 5 such that the conditions

.9y @7 - @0 s 2@l @ 0 6 2, (4)
and
(3.10) (-1 - )T - 21(8,-1) T (a%1)" N ¢ 11(‘43)

are fulfilled. Then for every Y(.)g& '5"1 we have
R

26

WL (H) + Y _(HD) - Y (B) - ¥_()e L,04)-

Koreover, there is & real measurable funciion §(.) be-

longing to L’( ‘[R:’,(1+ Xa)'zdx ) such that

tr( Y, () + Y _(H)) - ¢, (H) - ¢ _(5) =
+o

= S 3N )ax

holds for every '!(.v)&': ?&l-. The function $(.) is defined
by (3.12) up to a linear function.

The proof essentially follows the considerations of
chapter 3 of [21].

In the following we call a real measurable function
3 (.) belonging to L1("R1,(1+ Az)'adk) and satisfying
(3.12) the integrated spectral shift function of {H1 ‘Bo}'
We remark that the integrated apectral shift function is

defined up to a linear function.

Let 8(.) & LY(R',(1+2)72ax ). If the 1imit $“(N),

__L___E

*(X) = -1tm § $(x) -1 X la,
Y 1+ X
¥y >0, exists at the point X € ‘R1, then we call S*()‘)
the generalized derivative of 8 (,) at the point M\ & l1.
Let @ (.) be a smooth function on W! obeying 0% O(x)&1,
xR, B(x) =1 for x 6[-1,1] and O(x) = 0 for \xi>2.
Then we find that the generalized derivative 3% () can
be expressed by

* e a 1
= =11 9 —)\ ¥
3700 y-vm+o>§«.3 (@0 (x-N) ;= x



\G.R1. Using this representation we can show that if the
usual derivative 8'()\ ) exists at N\ €R' of 8 (N\),
then the generalized derivative 8* (N ) also exists at
X eR! and equals (X)), 1.e. 3'(A) = $*¥(N). In
such a way tile generalized derivative of a linegr function
exists at every point and equals a constant.

Now Theorem 2.5 goes over into
Theorem 3.2, Let {H1.Ho} be a pair of maximal dissipative
operators on 43 such that the conditions (3.9) and (3.10)
are fulfilled., If § {.) denotes an integrated spectral
shift function of the pair {H1,H°}, then the generalized
derivative S (\) exists for a.e. » € R modl.) .

The proof is based on the fact thet for every inte-
grated spectral shift function 3(.) of the pair of
Cayley transforms ‘[T“’I‘OE there is a real constant such

that we have .

(3150 S0y pare eyt conEte = - S (N)

for a.e. 3: ¢ w! mod .\ .

In accordance with the previous chapier we call
the generalized derivative of the integrated spectral
shift function of {HPHO'S a spectral shift function of
the pair {H,H 0'5. We note that the spectral shift function
is defined up to constant,

We return to the gituation that Ho is selfadjoint.
Next we generalize the Birman-Xrein formule to a pair
iH1,Ho}, where H, is 8 maximal dissipative operator and
H, is a selfadjoint operator,obeying (3.1). Let GT1(.)
be the characteristic function of the Cayley transform
T, of Hy. We call the operator-valued function 6H1(.)
defined by
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Im 240, the characteristic function of the maximal dis-
sipative operator H1. Obviously, the characteristic
function 8 H (.) is a contractive analytic one on the
lower half plane. Because of {3.1) we have SH (z) - 1¢
¢d (“b) for every z of the lower half plane. Hence it
makes sense to define the complex-valued function

SH (z) = dat(BH (z)), Im 240, which is a contractive
analytic one, too. Consequently for a.e. X\ e R modl.)
the limits § (k) = lim 831(x -iy) exist. Obviously,

¥+

we have § ().)— = § (H)fora.e.
T

AeR! mo&H 1

Theorem 3.3. Let { T (X )}y gy be the family of scattering
matrices of the scattering system ‘a ={H1,H°;I} obeying
{(3.1) with respect to some spectral representation of ch.
Then there‘ is an integrated spectral shift function 3 ()
of the pair {H,,H } such that

L]
(3.171) det(Z (N\)) = ‘?31()\) o~ALS(N)

holds for a.e. X € N modl.l.

The proof uses Theorem 2.6 and the
relation (3.15).

We remark that the contents of Theorem 3.3 1é very
similar to the assertions of §4 of [12].
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Hanaxapr X, £5-87-13
MaTpuya PACCeAHMA M QYHKUWA CNEKTPANBHOrO CABMra
ANEPHON AMCCUNATUBHON TEOPHM PACCERHMA

PaBota nocenmwena npobneme CywecTBOBaHUA PYHKUUM CNEKTPANLHOrO CABMra
ANA Napsi CMMMaNKUX ONEpPaTOPOR, OTMIMUANWUMXCA APYr OT [PYra RAEPHHM ONepaTopOM.
H3BeCTHO, 4TO QYHKUMA CNEKTPANbBHOrO CABMIa ANA Naps YHWTapHWX ONepaTopos Ha
TaKoi cnyvan, e olueM, He pacnpoCTPaHREeTCA u OWa He obaaana cywecTBoBaTh
KaK cymmMupyeman ¢ynkuna. B yacTHoCTH, 370 aneuyeT 3a cobol TO, 4TO M3BecTHan
GOPMYNa CNepaos He uMeeT MecTa B Taxohl cutyaumw. (6obBuaerca noaxopsupm obpa-
30M NOHATHME GYHKHWM CNEKTPAnNsHOro CABWMIa Taxk, 4TO oHa Byner CyMmmupyeman
M YAOBNETROPARET BHUAOMIMEHEHHOR QopMyne crnegon. flokazana MOAUOMUMPOBAHHAR
¢opmyna bupamana-KperHa. Bce pesynaTaTe NEpEHOCATCA Ha NAPY MAKCWMATEHBIX
AMCCHNATHAHNX PE30NEBEHTHO-CPABHUMEX ONepaTopoB.

PaGota awnonwexa B flalopaTopun TEOpeTHUeCKOR fuauxu DHAM.

TMpenpior O6AMHEHHONO KHCTHTYTS ALEPHBLIX MecnenoBaHyuR. KyGua 1987

Neldhardt H. ‘ £5-87-13
Scattering Matrix and Speclal Shift of the Nuclear
Disslpative Scattering Theory ’

The paper 1s devoted to the problem of existence of the spectral shift
function for a palr of contractlons which differ by a nuclear operator. it
s well-known that the usual spectral shift functlon for a palr of unltary
operators does not allow an extension to this case In general and, moreover,
the shift functlion cannot be obtalned as a summable one. This fact ylelds
for Instance that the famous trace formula cannot be verifled In this sltua~
tion. in the paper the notlon of the spectral shift function is generallzed
In an approprlate manner such that the shift is summable and satisfles a mo-
difled trace formula, Moreover, a modification of the Birman-Krein formula
is established. All resuits are transformed to a palr of maximal dissipative
operators whose resolvent difference belongs to the trace class.

The investigation has been performed at the Laboratory of Theoretical
Physics, JINR,
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